Bibliography
Probabilistic Machine Learning
- K. P. Murphy, Probabilistic Machine Learning: Advanced Topics, The MIT Press, 2023
(link).
- K. P. Murphy, Probabilistic Machine Learning: An Introduction, The MIT Press, 2022
(link).
- K. P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT Press, 2012
- J. M. Tomczak, Deep Generative Modeling, Springer, 2022
(code).
Machine Learning & Deep Learning
- Ch. M. Bishop and H. Bishop, Deep Learning: Foundations and Concepts, Springer, 2024
- R. O. Duda, Peter E. Hart and D. G. Stork, Pattern Classification (2nd Ed.), Wiley, 2001
- E. Alpaydin, Introduction to Machine Learning (4th Ed.), The MIT Press, 2020.
- Ch. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- S. Haykin, Neural Networks and Learning Machines (3rd Ed.), Prentice Hall, 2009
(link).
- I. Goodfellow and Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016
(link).
- Ph. Grohs, G. Kutyniok (editors), Mathematical Aspects of Deep Learning, Cambridge University Press, 2023.
- A. Pajankar, A. Joshi, Hands-on Machine Learning with Python: Implement Neural Network Solutions with Scikit-learn and PyTorch, 2022.
Probability & Mathematical Statistics
- L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer, 2004.
- T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd Ed.), Springer, 2008
(link).
- G. Casella, R. L. Berger, Statistical Inference, Duxbury Press, 2001.
- M. H. DeGroot, M. J. Schervish, Probability and Statistics (4th Ed.), Addison Wesley - Pearson, 2011.
- A. Papoulis, "Probability, Random Variables and Stochastic Processes" (4th ed.), McGraw Hill, 2001.
- D. P. Bertsekas, J. N. Tsitsiklis "Introduction to Probability", Athena Scientific, 2002.