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DESCRIBING AND LINKING ENTITIES: 
ENTITY-CENTRIC APPLICATIONS & 

KNOWLEDGE BASES



WHY ENTITIES

Entities is what a large part of our 
knowledge is about 

Bing reported that people searching for 
entities alone account for the 10% of all their 
search volume

One single Entity Pane can answer many user 
queries and satisfy users’ diverse information 
needs

Places to go

Photos
Map

Time

Population 

Weather
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PUSH/PULL TECHNIQUES FOR RETRIEVING 
WEB CONTENT 

Keyword 

search
Recommendations

Semantic search
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CORE ENTITIES 

Locations 

Movies

Organizations

Persons
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WHAT IS A KNOWLEDGE BASE (KB)?

Comprehensive, machine-readable descriptions of 
real-world entities are hosted in knowledge bases 
(KB) 

oEntity names, types, attributes,  relationships, 
provenance info

Entities are described as instances of one or 
several conceptual types and may be linked 
through relationships

oSemantic Web data model

dbpedia:

A_Clockwork_Orange_(film)

dbo:director dbpedia:Stanley_K

ubrick

dbo:Work/

runtime

“136”

foaf:name “A Clockwork 

Orange”

dbpedia:Stanley_Kubrick

dbo:birth

Place

dbpedia:Manhattan

rdf:type foaf:Person

rdf:type yago:AmericanFilmDire

ctors

rdf:type yago:Amateur

ChessPlayers

facts
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o
n
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KNOWLEDGE BASES 

Domain-specific Knowledge Bases

 Focus is on a well-defined domain

 IMDB for movies, Music-Brainz for music, GeoNames for geo, CIA World Factbook
for demographics, etc.

Global Knowledge Bases

 Cover a variety of knowledge across domains

 DBPedia, Yago, Freebase, Knowledge Graph, Satori Bing, Knowledge Vault
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KNOWLEDGE BASES IN NUMBERS

Numbers from 2014

KB # Entities # Classes # RDF triples # Properties

YAGO2 10M 350K 120M 100

DBpedia (en) 4.58M 685 583M 2.795K

Freebase 46.3M 1.5K 2.67B 4.5K

Knowledge 

Graph

600M 1.5K 20B 35K

Knowledge 

Vault

45M 1.1K 1.6B 4.6K
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ENTITY-CENTRIC APPLICATIONS

Stanley Kubrick

Entity 

descriptions
Resolved entities

Entity-Centric 
Processing

lived-in

Entity-centric 
search 

Entity-centric 
recommendation

entity

facts

spouse

birth place

director

death placespouse

death 

place

spouse

studio

entity

relationships

Combine knowledge 

regarding an entity 

from multiple sources 

to build a rich user 

experience

10



ENTITY-CENTRIC INFORMATION PROCESSING

Automated construction of entity descriptions

oInformation extraction: extract new entities from web/text

oLink prediction: add relationships among entities

Entity integration and resolution

oKnowledge base integration: instance & ontology mappings

oEntity resolution: merging or splitting similar entities 

Entity-centric access interfaces

oAugmented search: interpret the meaning of queries using entities and compute 
answers based on a knowledge base

oEntity-based matching: recommend new entities given an entity, a user or a query 

oEntity-centric summarization: of textual posts in social media
11



LINKED KNOWLEDGE BASES 
AND THE WEB OF DATA



THE WEB OF DATA

A Web of things in the world (aka 
entities), described by data on the Web

Web of Data

Conceptual Representation

entity entity entity
entity

Typed Links Typed Links Typed Links

Spreadsheets

HTMLXMLRDFa

U
R

Is

U
R

Is

U
R

Is

U
R

Is

U
R

Is U
R

Is

represent

SemiStructuredTriplesStatistical

represent represent represent

Global data space connecting data from 
diverse domains & sources 

 Primary objects: “things” (or 
descriptions of “things”)

 Links between “things” and not 
“strings”

http://linkeddata.org/guides-and-tutorials
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THE LINKED DATA PRINCIPLES

Linked Data is about using the Web to connect related data that wasn't previously 
linked, or to link data currently linked using other methods

Anyone can publish data on the Web for real-world entities by respecting a minimal 
set of syntactic conventions

oUse URIs as names for things

oUse HTTP URIs so that people and machines can look up those names

oInclude links to other URIs, so that they can discover more things

Data becomes self-describing

 Applications encountering data described by an unfamiliar vocabulary, they can 
resolve its URIs and understand the vocabulary terms by their RDFS definitions
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LINKING ENTITIES IN KNOWLEDGE BASES 

dbpedia:

A_Clockwork_Orange_(film)

dbo:director dbpedia:Stanley_K

ubrick

dbo:Work/

runtime

“136”

foaf:name “A Clockwork 

Orange”

dbpedia:Stanley_Kubrick

dbo:birth

Place

dbpedia:Manhattan

rdf:type foaf:Person

rdf:type yago:AmericanFilmDire

ctors

rdf:type yago:Amateur

ChessPlayers

lmdb:director/8476

lmdb:director_nam

e

“Stanley Kubrick”

rdf:type foaf:Person

foaf:made lmdb:film/1894

foaf:made lmdb:film/2014

foaf:made lmdb:film/2685

fbase:m.05ldxl

fbase:film.directedBy lmdb:director/8476

fbase:film_cut/runtime “136”

foaf:name “A Clockwork Orange”

dbpedia:Manhattan

rdfs:label “Manhattan”

rdf:type schema.org:P

lace

dbo:populat

ionTotal

1,626,159KB publishers are 

encouraged to describe and 

interlink real world entities 

using the RDF data model
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THE LINK OPEN DATA (LOD) CLOUD 1,014 Knowledge Bases

60B Triples

649 vocabularies

2014-08-30 http://lod-cloud.net/  

oNodes are KBs (aka RDF 
datasets) published, maintained 
or aggregated by a single 
provider

oEdges are links crossing KBs

16
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685 entity types 

4.58 M entities

5.83 M triples

2.795 K properties

1.5 K entity types

46.3 M entities

2.67 B triples

4 K properties

350 K entity types 

10M entities

120M triples

100 properties

English version

52 entity types

503K entities

6M triples

123 entity types

1.9 B entities

9.6 B triples

112 properties



ENTITY INTERLINKING IN LOD

Only 56.11% of the 

KBs link to at least 

another KB

17.36% of them link to only one other KB 

(typically DBpedia)

The LOD cloud 

diagram is sparse
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DESCRIPTIONS QUALITY 
AND ENTITY RESOLUTION



QUALITY OF ENTITY DESCRIPTIONS IN THE WEB 
OF DATA 

Given the open and decentralized nature of the Web, reliability and usability of 
entity descriptions need to be constantly improved

 Incompleteness: real world entitles are only partially described in KBs

 Redundancy: descriptions of the same real world entities usually overlap in multiple 
KBs

 Inconsistency: real world entities may have conflicting descriptions across KBs

 Incorrectness: errors can be propagated from one KB to the other due to manual 
copying or automated extraction/fusion techniques

21



FORMS OF OVERLAPPING

Among KBs (inter-duplicates, due to common data sources)

Within the same KB (intra-duplicates, due to wrong integration or bad curation)

odbpedia:Dichopogon_strictus and dbpedia:Chocolate_lily refer to the same flower

oLess often than inter-duplicates

Not identical 

descriptions, even 

if they have the 

same source
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ENTITY RESOLUTION (ER)

The problem of identifying descriptions of the same real-world entity

Stanley 

Kubrick

A Clockwork 

Orange

somehow similar descriptions highly similar descriptions 

director

Images are descriptions, not 

real-world entities

o Descriptions are partial, 

incomplete

23



HIGHLY & SOMEHOW SIMILAR DESCRIPTIONS 

Highly Similar

oFeature many common tokens in the 
values of semantically related attributes

oHeavily interlinked

 Mostly using owl:sameAs predicates

oGood for fusing 

oTypically met in central KBs

 Extracted from common sources

Somehow Similar

oFeature significantly fewer common tokens 
in attributes that are not always 
semantically related

oSparsely interlinked

 Using various kinds of predicates

oGood for linking

oTypically met in peripheral KBs

 Extracted from various sources 
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HOW DOES ER IMPROVE KB QUALITY

KB Completeness: 

oLinking somehow similar descriptions will increase coverage of entity facts and 
relationships

KB Conciseness: 

oMerging highly similar descriptions will reduce duplicate entity facts and 
relationships

KB Consistency:

oMatching similar descriptions will enable to detect conflicting assertions

KB Correctness: 

oSplitting complex descriptions will facilitate entity repairing
25



CHALLENGES OF WEB-SCALE ER

ER has been studied for many years in different cs communities, but it still remains active!

The problem has enjoyed a renaissance recently, due to the many descriptions of entities 
provided on the Web by government, scientific, corporate or even user-crafted KBs

How can we: i) effectively compute the entity similarity, ii) efficiently resolve single or sets 
of entities

are challenged by the:

important number of KBs (~ hundreds)

large number of entity types & properties (~ thousands)

massive volume of entities (~millions)

Large-scale, multi-type, cross-domain ER: Big Data Volume, Variety, Veracity

26



ER DEFINITION 

Entity resolution: The problem of identifying descriptions of the same entity within or 
across sources 

 E = {e1, ..., em} is a set of entity descriptions 

 M : E ×E → {true, false} is a match function

 The resolution of entities in E results in a partition P = {p1, ..., pn} of E, such that:

1.∀ei, ej ∈ E : M(ei, ej) = true,∃pk ∈ P : ei, ej ∈ pk

2.∀pk ∈ P, ∀ei, ej ∈ pk, M(ei, ej) = true

each partition contains only 
matching descriptions

all the matching 
descriptions are in the 

same partition

27



ER EXAMPLE
lmdb:director/8476

lmdb:director_nam

e

“Stanley Kubrick”

rdf:type foaf:Person

foaf:made lmdb:film/1894

foaf:made lmdb:film/2014

foaf:made lmdb:film/2685

e1

e3

dbpedia:

A_Clockwork_Orange_(film)

dbo:director dbpedia:Stanley_K

ubrick

dbo:Work/

runtime

“136”

foaf:name “A Clockwork 

Orange”

fbase:m.05ldxl

fbase:film.directedBy lmdb:director/8476

fbase:film_cut/runtime “136”

foaf:name “A Clockwork Orange”

e2 e4

e5

Imdb:co0041067

imbd:location GeoNames:Buckinghamshire

imbd:filmography “A Clockwork Orange”

dbpedia:Stanley_Kubrick

dbo:birth

Place

dbpedia:Manhattan

rdf:type foaf:Person

rdf:type yago:AmericanFilmDire

ctors

rdf:type yago:Amateur

ChessPlayers
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ER EXAMPLE 

Assume as input of entity resolution, the set E = {e1, e2, e3, 
e4, e5} 

A possible output P = {{e1, e3}, {e2, e4}, {e5}} indicates that: 

 e1, e3 refer to the same real-world person, the director  
Stanley Kubrick

 e2, e3 represent a different entity, the movie A Clockwork 
Orange 

 e5 represents a third thing, the movie studio PineWood

29
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dbpedia:Stan

ely_Kubrick

freebase:Stan

ely_Kubrick

dbpedia:A_Clock

work_Orange

linkedMDB:A_Cloc

kwork_Orange

dbpedia:Katha

rina_Kubrick

dbpedia:The_

Shining

freebase:The_

Shining

freebase:Ruth

_Sobotka

directsdirector

director
children director spouse

e1

e2

e3

e4

e5 e6e7 e8

MATCHING GRAPH-STRUCTURED ENTITIES



e1

birthPlace Manhattan

type Person

type AmericanFilmDire

ctors

type Amateur

ChessPlayers

e3

director_name “Stanley

Kubrick”

type Person

directs film/1894

directs film/2014

directs film/2685thresh = 0.5

simc(e1,e3) = Jaccard (

{Manhattan, Person, AmericanFilmDirectors, 

AmateurChessPlayers}, 

{Stanley, Kubrick, Person, 1894, 2014, 

2685}) = 0.1

simc: let the content similarity of two descriptions be the 

Jaccard similarity of their values’ token sets

Matching decisions are independent

SINGLE (PAIRWISE) ENTITY MATCHING BASED ON CONTENT

31



dbpedia:Stan

ely_Kubrick

freebase:Stan

ely_Kubrick

dbpedia:A_Clock

work_Orange

linkedMDB:A_Clock

work_Orange

dbpedia:Katha

rina_Kubrick

dbpedia:The_

Shining

freebase:Th

e_Shining

freebase:Ruth

_Sobotka

director
children director spouse

e1

e2

e3

e4

e5 e6e7 e8

One matching provides evidence for another

director directs

COLLECTIVE (JOINT) ENTITY MATCHING BASED ON STRUCTURE 
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e2

director e1

Work/

runtime

“136”

name “A Clockwork 

Orange”

e4

film.directedBy e3

film_cut/runtime “136”

name “A Clockwork

Orange”thresh = 0.5

simc(e2,e4)= Jaccard (

{e1, 136, A, Clockwork, Orange}, 

{e3, 136, A, Clockwork, Orange}) = 0.66

MATCHING NEIGHBORHOOD
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dbpedia:Stan

ely_Kubrick

freebase:Stan

ely_Kubrick

dbpedia:A_Clock

work_Orange

linkedMDB:A_Cloc

kwork_Orange

dbpedia:Katha

rina_Kubrick

dbpedia:The_

Shining

freebase:The_S

hining

freebase:Ruth

_Sobotka

directsdirector

director
children director spouse

e1

e2

e3

e4

e5 e6e7 e8

SIMILARITY PROPAGATION

A weighted sum of content 

and structural similarity is used

Infrequent matching neighbors 

contribute more to the 

similarity score
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FORMS OF ER

sameAs

KB1 KB2

KB1 KB2

Record Deduplication: ER with results merging

o Exploit transitivity of matches

Record Linkage: ER without 

results merging

o Exploit exclusivity of matches

35



FORMS OF ER & SIMILARITY 
High similarity 

in structure

Low similarity in 

structure

High similarity 

in content

Low similarity 

in content

string sim. in the 
values of specific atts
from one relation

set sim. in 
the values of 
specific atts
from two
relations

att & value sim. in a 
network of relations

The definition of 

what is similar is 

domain-dependent
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SCOPE OF THE TUTORIAL 

Describing and Linking Entities

 Knowledge Bases, The Web of Data, Entity Resolution

Matching and Resolving Entities 

 Entity Similarity (Content & Context)

 Blocking Techniques (Token, Attribute, URI)

 Block Post-Processing

 Iterative Resolution Techniques

 Progressive Resolution Techniques

 Conclusions & Open Issues

37



ENTITY SIMILARITY



ENTITY SIMILARITY - MATCH

Matches: Sets of entity descriptions that refer to the same real-world entity: 

oMatching descriptions are placed in the same partition

oAll the descriptions of the same partition match 

Finding matches vs non-matches is a classification problem

A match function M() maps each pair of entity descriptions (ei, ej) to {true, false} 

oM(ei, ej) = true => ei, ej are matches

oM(ei, ej) = false => ei, ej are non-matches

Imbalanced: typically, O(E) matches, O(E^2) non-matches

39



MATCH FUNCTION: FORMAL PROPERTIES

The match function M() introduces an equivalence relation (owl:sameAs) among entity 
descriptions:

 Reflexivity: ∀ei ∈ E, M(ei, ei) = true

 Symmetry: ∀ei, ej ∈ E, M(ei, ej) = M(ej ,ei)

 Transitivity: ∀ei, ej, ek ∈ E, if M(ei, ej) = true and M(ej, ek) = true, then M(ei, ek) = 
true 

40



ENTITY RESOLUTION – SIMILARITY 

In practice, the match function is defined via a similarity function sim(), measuring how similar 
two entity descriptions are to each other, according to certain comparison criteria  

Given a similarity threshold :

oM(ei, ej) = true, if sim(ei, ej) ≥ 

oM(ei, ej) = false, otherwise

ML techniques for automatically learning similarity measures are challenged by a Web-
scale entity resolution [Köpcke et al. 2010]

oAdaptive learning techniques require training data for each domain [Bilenko et al. 2003] 

oActive learning techniques (threshold-based Boolean functions or linear classifiers) work 
well with highly similar descriptions [Arasu et al. 2010]

41



ENTITY SIMILARITY - EXAMPLE

42

although not identical e2

and e4 are highly similar

dbpedia:

A_Clockwork_Orange_(film)

dbo:director dbpedia:Stanley_K

ubrick

dbo:Work/

runtime

“136”

foaf:name “A Clockwork 

Orange”

fbase:m.05ldxl

fbase:film.directedBy lmdb:director/8476

fbase:film_cut/runtime “136”

foaf:name “A Clockwork Orange”

e2 e4

dbpedia:Stanley_Kubrick

dbo:birth

Place

dbpedia:Manhattan

rdf:type foaf:Person

rdf:type yago:AmericanFilmDire

ctors

rdf:type yago:Amateur

ChessPlayers

lmdb:director/8476

lmdb:director_nam

e

“Stanley Kubrick”

rdf:type foaf:Person

foaf:made lmdb:film/1894

foaf:made lmdb:film/2014

foaf:made lmdb:film/2685e1 e3

e1 and e3 are at best 

somehow similar



Entity Matching: Relies on a similarity function, the higher the similarity of two 
descriptions, the more likely it is that they match

oContent : standalone comparisons between entities based on the values of their 
attributes 

oContext: graph-based comparisons between entities based on their relationships

43



THE ROLE OF SIMILARITY FUNCTIONS: THE IDEAL CASE

44

Matching pairs of 

entity descriptions

Pairs of entity 

descriptions 

satisfying an 

ideal similarity 

function  

Set of all pairs of 

entity descriptions 

Intuitively, the higher the similarity of 
two descriptions, the more likely it is 
that they match 

oThe similarity of two descriptions is 
used as a hint for their matching

There is no general way of determining 
which attributes should count as salient in 
determining matching entity descriptions



A PRAGMATIC CASE

45

Set of all pairs of 

entity descriptions Missed matching 

pairs of entity 

descriptions

True matching 

pairs of entity 

descriptions

Pairs of entity descriptions 

satisfying a pragmatic 

similarity function  Matching pairs of 

entity descriptions

[Hogan et al., 2010]: a pair of descriptions 
is more likely to be matching if they share 
several common attribute-value pairs: 

oCertain attributes are more appropriate 
to determine matches 

oCertain values of these attributes are 
more discriminant than others



CONTENT-BASED ENTITY SIMILARITY



IN SEARCH OF ENTITY SIMILARITY MEASURES 

Defining similarity functions that satisfy the formal properties of metric spaces is, in practice, 
too restrictive for non-geometric models

Two main families of similarity measures for resolving entity descriptions in the Web of data

oContent-based: mostly for measuring string similarity of attribute values in pairs of entity 
descriptions

oCharacter-based, token-based

oContext-based: exploit similarity of neighbour descriptions via different entity relationships

oTree-based, graph-based

47



STRING SIMILARITY MEASURES 

48

Dice    

Phonetic

Good for Text-intensive

descriptionsGood for Names

Good for 

abbreviations,

nick names

Record Linkage: Similarity 
Measures and Algorithms 
N. Koudas S. Sarawagi D. 
Srivastava, SIGMOD06 Tutorial



TOKEN-BASED ENTITY SIMILARITY 

49

name Eiffel Tower

architect Sauvestre

year 1889

location Paris

name Statue of 

Liberty

architect Bartholdi Eiffel

year 1886

located NY

about Lady liberty

architect Eiffel

location NY

about Eiffel Tower

architect Sauvestre

year 1889

located Paris
name White Tower

location Thessaloniki

year-

constructed

1450

e1
e2

e3

e4

e5

Jaccard(e1,e3) = 1/8

Jaccard(e1,e4) = 1

Jaccard(e1,e5)= 1/8

Jaccard(e2,e3) = 3/7

Jaccard(e2,e4) = 1/11

Jaccard(e2,e5) = 0/11

Jaccard( tokens(ei), tokens(ej) ) = | tokens(ei) ∩ tokens(ej) |

| tokens(ei)  tokens(ej) |



CONTEXT-BASED ENTITY SIMILARITY



CONTENT & CONTEXT SIMILARITY
LINDA [BÖHM ET AL. 2012]

Works on an entity graph constructed from RDF triples having URIs as subject, predicate and 

object: Literals are stored for each entity e as L(e)

Matches are identified using a hybrid similarity:

oString similarity (token-based) of their literal values L(e)

oContextual similarity (based on in and out neighbors in the entity graph)

The context C(n) of e is a set of tuples (pi,ei,wi), where

oei is a neighboring node of e 

opi is the label of the relationship between e and ei

owi is a numeric weight selected to be higher for less frequent and thus the most discriminative 

context information
51



CONTEXTUAL SIMILARITY 

The contextual similarity of nodes n and m is:

context_sim(n, m) :

where xn,m is 1, if n, m are identified as matches, and 0 else and    

sim(pi, pj) is the string similarity of the predicates of n, m (edit-distance based)  

It counts the number of common or matching neighbours of two descriptions, which are 
linked to them in a similar way, i.e., using a relationship with a similar name

52



 max
(p j ,z j ,w j )C(m )

wi  xzi ,z j  sim(pi, p j ),if |C(n) ||C(m) |
( p i ,zi ,wi )C (n )



 max
(p i ,zi ,wi )C(n )

w j  xzi ,z j  sim(pi, p j ),else
( p j ,z j ,w j )C (m )





LINDA HYBRID SIMILARITY 

The similarity score for descriptions e and e’ is: 

simLINDA(e,e’)= content_sim(e,e’) + β*context_sim(C(e),C(e’))−θ

where β controls the contextual influence, θ is used for re-normalization to values around 0,

content_

simLINDA is not a normalized measure as it serves to rank pairs of descriptions based on the 
evidence that they are matching

 positive scores reflect likely mappings 

 negative scores imply dissimilarities

More common tokens & common neighbours that two descriptions have, the more likely they are to match

53
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CONTENT & STRUCTURE SIMILARITY
SIGMA [LACOST-JULIEN ET AL 2013]

Entities i and j have no tokens in 
common

The fact that several of their 
neighbors are matched together is 
an evidence that i and j should be 
matched together

 Use neighbors for scoring and 
suggesting candidate pairs

54

SiGMa: a scalable greedy iterative algorithm that exploits previous matching decisions 
as well as the relationship graph information between entities



SIGMA NEIGHBOURS SIMILARITY

Compatible-neighbors Nij: a 
neighbor k of i being matched to a 
compatible neighbor l of j should 
encourage i to be matched to j

 Nij = {(k, l): (i, r, k)KB1 and (j, s, 
l)KB2 and relationship r is 
matched to s}

55

Properties matching is provided by the users

String similarity: weighted Jaccard (IDF-like)



SIGMA SIMILARITY MEASURES 

Content similarity: static score of both the string representation of entities (rdfs:label) 
and their other property values

Context-dependent similarity: dynamic score where the weight wij,kl is the contribution 
of a neighboring matched pair (k,l) to the score of the candidate pair (i,j)

count the number of compatible neighbors currently matched together for a pair of 
candidates

56



SIGMA SIMILARITY MEASURES 

Global score:

57



IN SEARCH OF ENTITY SIMILARITY MEASURES 

Defining ideal similarity measures is difficult, calls for more pragmatic approaches

oFor highly similar entities content similarity (i.e., their attribute values) is sufficient

oFor somehow similar entities we can consider the similarity of the structured context of 
entities in an iterative way 

oIdentify most discriminating attributes and relationships is helpful

oAn orthogonal issue is the schematic discrepancy of attributes and relationships employed in 
the entity descriptions whose hybrid similarity is assessed 

oSimple: use schematic mappings provided by the users

oComplex: assess similarity of attributes and relationships based on the similarity of their 
names or values

58



BLOCKING TECHNIQUES



60

Matching

Recognize pairs of similar 

entity descriptions

Blocking

Group similar enough 

entity descriptions

O(n) 
if hash-based

O(b∙d2) 

b blocks of d descriptions (avg)

O(n2) 
n entity descriptions

Reduce the number of comparisons not leading to resolved entities

Preliminary experiment over 9M entity 

descriptions in a cluster of 15 VMs:

ER workflow without blocking: >200 hrs

ER workflow with blocking: 11 hrs



TOKEN BLOCKING [PAPADAKIS ET AL 2011]

Assume two clean sets KB1, KB2 of entity descriptions free of intra-overlapping
(Clean-Clean ER)

Each distinct token ti of values of entity descriptions in KB1 ∪ KB2 corresponds to a block

oEach block contains all entity descriptions sharing the corresponding token

oPairs originating from the same (clean) KB are not compared

Token blocking offers a brute-force method for comparing descriptions even if they are 

highly heterogeneous

oThe same pair of descriptions is contained in many blocks (redundant comparisons)

oMany dissimilar pairs are put in the same block (unnecessary comparisons)

61
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name Eiffel Tower

architect Sauvestre

year 1889

location Paris

name Statue of 

Liberty

architect Bartholdi Eiffel

year 1886

located NY

about Lady liberty

architect Eiffel

location NY

about Eiffel Tower

architect Sauvestre

year 1889

located Paris

name White Tower

location Thessaloniki

year-

constructed

1450

Eiffel

e1, e2, 

e3, e4

Tower

e1, e4, 

e5

Statue

e2

Liberty

e2, e3

White

e5

1889

e1, e4

Bartholdi

e2

NY

e2, e3

Sauvestre

e1, e4

Paris

e1, e4

1886

e2

1450

e5

Lady

e3

Thessaloniki

e5

Generated

Blocks

e1

e2

e3

e4

e5

Actually, an inverted 

index
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ATTRIBUTE CLUSTERING [PAPADAKIS ET AL 2013]

Token blocking totally ignores the semantics of attributes

oWhen attribute mappings are not known, attribute clustering considers similarity of 
attributes computed w.r.t. the string similarities of their values

Two main steps:

oSimilar attributes are placed together in non-overlapping clusters

oToken blocking is performed on the descriptions of each cluster
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ATTRIBUTE CLUSTERING [PAPADAKIS ET AL 2013]

For each attribute of KB1:

oFind the most similar attribute of KB2

For each attribute of dataset KB2: 

oFind the most similar attribute of dataset KB1

Compute the transitive closure of the generated pairs of attributes

Connected attributes form clusters

All single-member clusters are merged into a common cluster
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about Eiffel Tower

architect Sauvestre

year 1889

located Paris e11

about Statue of 
Liberty

architect Bartholdi 
Eiffel

year 1886

located NY e12

about Auguste
Bartholdi

born 1834 e13

about Joan Tower

born 1938 e14

work Lady Liberty

artist Bartholdi

location NY e15

work Eiffel 
Tower

year-
constructed

1889

location Paris

e16

work Bartholdi 
Fountain

year-
constructed

1876

location Washingt
on D.C.

e17

Finding the attribute of D2 that is most similar to the attribute “about” of D1:

values of about: {Eiffel, Tower, Statue, Liberty, Auguste, Bartholdi, Joan}

compared to (with Jaccard similarity on token sets) :

values of work: {Lady, Liberty, Eiffel, Tower, Bartholdi, Fountain}   Jaccard = 4/9

values of artist: {Bartholdi}  Jaccard = 1/8

values of location: {NY, Paris, Washington, D.C.}  Jaccard = 0

values of year-constructed: {1889, 1876}  Jaccard = 0
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about Eiffel Tower

architect Sauvestre

year 1889

located Paris e11

about Statue of 
Liberty

architect Bartholdi 
Eiffel

year 1886

located NY e12

about Auguste
Bartholdi

born 1834 e13

about Joan Tower

born 1938 e14

work Lady Liberty

artist Bartholdi

location NY e15

work Eiffel 
Tower

year-
constructed

1889

location Paris

e16

work Bartholdi 
Fountain

year-
constructed

1876

location Washingt
on D.C.

e17

KB1 KB2

about

architect

year

born

located

work

artist

year-constructed

location



 Compute the transitive closure of the generated attribute pairs

– Connected attributes form clusters

 Example: Pairs (about, work), (work, about), (artist, architect), (architect, work)

KB1 KB2

about

architect

year

born

located

work

artist

year-constructed

location

about

work

architect

artist

C1
year

year-constructed

born

C2
location

located 

C3
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about Eiffel Tower

architect Sauvestre

year 1889

located Paris e11

about Statue of 
Liberty

architect Bartholdi 
Eiffel

year 1886

located NY e12

about Auguste
Bartholdi

born 1834 e13

about Joan Tower

born 1938 e14

work Lady Liberty

artist Bartholdi

location NY e15

work Eiffel 
Tower

year-
constructed

1889

location Paris

e16

work Bartholdi 
Fountain

year-
constructed

1876

location Washingt
on D.C.

e17

C3.NY

e12, e15

about

work

architect

artist

C1
year

year-constructed

born

C2
location

located 

C3

 compare Lady Liberty to Auguste 

Bartholdi

C1.Tower

e11, e14, e16

C1.Bartholdi

e12, e13, e15, e17

Works only when values 
are quite similar 
attribute clusters contain 
similar attributes



OTHER BLOCKING TECHNIQUES 

Infix blocking: The blocking key is the URI infix of the entity description

oExample: http://en.wikipedia.org/wiki/Linked_data#Principles.html 

oInfix is a local identifier

oIts effectiveness relies on the good naming practices of the KBs publishing entity descriptions 

Frequent itemsets blocking: Build blocks for sets of tokens that frequently co-occur in descriptions

oMay significantly reduce the number of candidate pairs 

oMay significantly increase missed matches between descriptions with few common tokens

Multidimensional blocking: Construct a collection of blocks for each similarity function used to 
resolve entities and aggregate them into a single collection, taking into account the similarities of 
descriptions that share blocks
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PLACING ENTITIES IN THE SAME BLOCK

70

Method Criterion

Token Blocking [Papadakis et al.,

2011]

The descriptions have a common token in their values

Attribute Clustering Blocking 

[Papadakis et al., 2013]

The descriptions have a common token in the values of 

attributes that have similar values in overall

Prefix-Infix(-Suffix) [Papadakis

et al., 2012]

The descriptions have a common token in their literal values, 

or a common URI infix

Frequent itemsets [Kenig and 

Gal, 2013]

The descriptions have frequently co-occurring tokens in their 

values



BLOCK POST-PROCESSING 



META-BLOCKING: IMPROVE THE EFFICIENCY OF 
BLOCKING

7272

MatchingBlocking

Meta-Blocking
Goal:

oRestructure a block collection into a new one that contains significantly fewer 

redundant and superfluous comparisons

oMaintaining the original number of matching ones



Eiffel

e1, e4, e2, 

e3

Tower

e1, e4, 

e5

Liberty

e2, e3

Paris

e1, e4

NY

e2, e3

1889

e1, e4

e1

e5

e2

e4

e3

1

3

11

1

5

1

1

edge weights = 

#common blocks

e1

e5

e2

e4

e3

14 comparisons to 

identify 2 matches 

e1-e4 and e2-e3

2 comparisons 

to identify 2 matches

Blocks (ToB):

Blocking graph (Nodes: 

entity descriptions, 

Edges: common block)

Pruned blocking graph 

(discard edges with weight 

below avg.: 1.75)

Prune edges to discard unnecessary 

comparisons between non-matches based on 

positive overlapping evidence

Sauvestre

e1, e4



EDGE WEIGHTING & PRUNING

Weighting Schemes (how to weight the edges) 

 Common Blocks (CBS): wi,j =|Bi,j| 

 Jaccard (JS): wi,j = |Bi,j|/(|Bi|+|Bj|-|Bi,j|)

 Enhanced CBS (ECBS): wi,j = CBS • log(|B|/|Bi|) • log (|B|/|Bj|)

Pruning Methods (which edges to prune)

 WEP: Keep edges with weight above average

 CEP: Keep top-K edges overall

 WNP: Keep, for each node, the edges with weight above a local average

 CNP: Keep, for each node, its top-K edges
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ITERATIVE RESOLUTION TECHNIQUES



CENTRAL VS. PERIPHERAL KBS

Zooming into the center of the LOD cloud, we can find KBs, such as Dbpedia and YAGO, 
containing millions of descriptions of thousands of different types, heavily interlinked

On the other hand, peripheral KBs are sparsely interlinked and they typically describe entities of 
vey specific types 

76



IN SEARCH OF SIMILARITY EVIDENCE 
[EFTHYMIOU 2015]

Attribute-based comparisons

oUnique attributes (e.g., rdfs:label) provide strong evidence

 >90% of matching pairs have >80% overlap similarity in the values of rdfs:label

Content-based comparisons

oCentral KBs: 3-4 common tokens in entity values

oPeripheral KBs: 1-2 common tokens in entity values

 blocking algorithms miss up to 30% matches in peripheral KBs

Relationships-based comparisons

oMatching neighbors provide positive evidence

 >92% of pairs with at least one matching neighbor, are matches in most KBs

oSome types of relationships provide strong negative evidence

 Dissimilar values for wasBornIn indicate a non-matching pair
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TYPES OF MISSED MATCHES 

78

 Type A: a third, matching description (transitivity)

 Type B: matches of their neighbours

Applicable to identify 

matches within a KB

Can identify matches 

both within a KB and 

across different KBs

directs

isdirected



ITERATIVE ER
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MatchingBlocking

Iterative ER: identify new matches based on partial results either of matches or 

of merges
Increase the number of matching entities

Generate new candidate pairs of descriptions 

not considered in a previous step

o Several passes increase the number of 

comparisons and reduce the Reduction 

Ratio



ITERATIVE ER APPROACHES 

Merging-based: new matches can be found by exploiting merged (more complete) 
descriptions of previously identified matches

oIdea: ER resembles a database self-join operation (of the initial set of descriptions with itself)

oNo knowledge about which descriptions may match, so all pairs of descriptions need to be 
compared

Matching-based: If descriptions related to entity ei are matching to descriptions related to ej, 
then ei and ej are likely to match

oIdea: ER resembles to a graph traversal problem in which similarity is propagated until a 
fixed point is reached

oUse positive or negative evidence for prioritize similarity re-computation

80



MATCHING-BASED ITERATIVE 
RESOLUTION



SIMILARITY PROPAGATION

A graph structure for encoding the similarity between descriptions and matching decisions, and 
iteratively assess matching of entities by propagating similarity values

oDetails of how the graph is constructed and traversed and how similarity is computed vary

Similarity-propagation ER: the match function is re-computed at each iteration step by 
considering previous matching decisions: 

 Mn(ei,ej) = true, if simn-1(ei,ej) ≥  

 Mn(ei,ej) = false, if simn-1(ei,ej) ≤  ’

 Mn(ei,ej)= undecided, otherwise

Total similarity: 

sim(ei,ej)= a*simnbr(ei,ej)+(1-a)*simnbr(nbr(ei),nbr(ej)), where nbr(e) denotes the neighbourhood 
nodes of e
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ORDER OF COMPARISONS 

In similarity-propagation approaches, the order of comparisons is dynamic

Graph traversal is supported by a priority queue (PQ) on the similarity score of nodes

oAs entities are resolved, the PQ is updated for maximizing effectiveness & reducing re-
comparisons

Different strategies of order maintenance:

oType of nodes and edge direction [Dong et al. 2005], degree of nodes [Weis & 
Naumann 2006], edge weights [Kalashnikov & Mehrotra 2006], triggered by recent 
matches [Böhm et al. 2012, Lacoste-Julien et al. 2013]
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DEPENDENCY GRAPH [DONG ET AL 2005]

Works on an entity graph constructed from the relational records 

 nodes represent similarity comparisons between pairs of records and their attribute values 
(real-valued) 

 edges represent match decisions based on the matching of associated nodes (boolean-
valued) 

A matching decision is taken when the real-valued similarity score of a node is above a 
threshold θ

 If it exceeds the threshold, it is marked as match, otherwise as undecided

 If no more neighbors are undecided, it is marked as non-match
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DEPENDENCY GRAPH: EXAMPLE

85

Let E be a set of entity descriptions

 A node v = {ei,ej}, where ei,ej∈ E, i ≠ j

 An edge e = (va,vb) from va={eai,eaj} to vb = {ebi, 
ebj} implies ebi , ebj ∈ values(eai)  values(eaj)

Include nodes whose two entities have the potential 
to be similar

v1

v2

v3 v4



RICHER MATCHING EVIDENCE [DONG ET AL 2005]

Positive evidence (i.e., constraints for match nodes) is captured by the Boolean 
similarity of neighborhood nodes

oStrong-boolean: Resolution implies resolution of neighbour 

oE.g., if two movies are matched then director must also be matched

oWeak-boolean: No direct implication

oE.g., similarity of two movies increases as their rdf:labels are highly similar

Negative evidence (i.e., constraints for non‐match nodes) is verified after similarity 
propagation is performed, and inconsistencies are fixed
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TRAVERSING THE ER GRAPH

Nodes can be active, merged or inactive

At each iteration step, the node in the head of the PQ is processed and its similarity is 
assessed (i.e., update its similarity)

If the similarly is above the threshold then it becomes merged, otherwise inactive

 In both cases, the node is removed from the PQ

If the updated similarity increase its similarity then all its inactive out-neighbors 
become active and inserted at PQ
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TRAVERSING THE ER GRAPH
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Initially all nodes are active and 

placed in the PQ

A node is processed before its 

out-neighbors

h

a b

d

c

f

g

e

PQ

f

a

b

c

h

d

e

g



TRAVERSING THE ER GRAPH
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PQ

b

c

h

d

e

g

h

a b

d

c

f

g

e

merged node

inactive node



TRAVERSING THE ER GRAPH
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PQ

c

h

d

e

g

h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

h

d

e

g

h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

d

e

g

h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH

93

PQ

g

b

e

h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

b

e
h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

e

c
h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

c
h

a b

d

c

f

g

e



TRAVERSING THE ER GRAPH
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PQ

h

a b

d

c

f

g

e



LINDA [BÖHM ET AL. 2012]

Key Idea: the more matching neighbours via similar relationships two descriptions have, the 
more likely it is that they match

oString similarity of the literal values of entities: checked once

oContextual similarity of the graph neighbours: checked iteratively

Two square matrices (|E|×|E|) are used:

oX captures the identified matches (binary values)

oY captures the pair-wise similarities (real values) (is used only for the PQ)

oInitialization: common neighbors & string similarity of literals

oUpdates: use the new identified matches of X

Until PQ becomes empty:

oGet the pair (ei, ej) with the highest similarity: match by default!

oUpdate X: matches of ei are also matches of ej

oUpdate the similarity of nodes influenced by the new matches 
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LINDA EXAMPLE
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Matches e1 e2 e3 e4 e5

e1 1 0 0 0 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e1 – e4

e2 – e4

e1 – e3

e5 – e3

e2 – e3

…

e3 e4

e2 e1

e5

A priority queue, derived by an 

initial similarity computation 

between all pairs, based on 

their attribute values



LINDA EXAMPLE
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Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e1 – e4

e2 – e4

e1 – e3

e5 – e3

e2 – e3

…

e3 e4

e2 e1

e5

the head of PQ is a 

match by default 



LINDA EXAMPLE
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Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e2 – e4

e1 – e3

e2 – e3

e5 – e3

…

e3 e4

e2 e1

e5

unique mapping constraint 

(1-1 Assumption)

similarity re-computation, 

based on the matching 

neighbors and the names 

of the links to them
directs

directs



LINDA EXAMPLE
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Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 1 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e2 – e3

e5 – e3

…

e3 e4

e2 e1

e5

directs

directs



LINDA EXAMPLE
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Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 1 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e5 – e3

…

e3 e4

e2 e1

e5

directs

directs

stops when PQ is empty

unique mapping constraint (1-

1 Assumption)



PROGRESSIVE RESOLUTION 
TECHNIQUES



PROGRESSIVE ER

Extend the typical ER workflow with a planning phase

oSelect which pairs of descriptions, that have resulted from blocking, will be 
compared in the entity matching phase and in what order

The goal: Favour the more promising comparisons, i.e., those that are more likely to 
result in matches

oThose comparisons are executed before less promising ones and thus, more matches 
are identified early on in the process

[Optional phase] Update: Propagate the results of matching, such that a new 
scheduling phase will promote the comparison of pairs that were influenced by the 
previous matches
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PROGRESSIVE ER

Matching
Blocking

Planning

UpdateOptimization: maximize benefit (number or type of matches) 

for a given cost (number of comparisons, disk/cloud access)

Progressive ER: estimates

which part of the data to 

resolve next and adapts

this decision in a pay as 

you go fashion

Good for high Velocity

This iterative process continues until the pre-defined computing budget is consumed



PROGRESSIVE RELATIONAL ER [ALTOWIM ET AL 2014]

Key Idea: Divide ER into several windows and generate a 
resolution plan for each window

oSpecify which blocks and entity pairs within these blocks will 
be resolved during the plan execution phase of a window

oAssociate with each identified pair the order in which to 
apply the similarity functions on the attributes of the two 
entities

Lazy resolution strategy to resolve pairs with the smallest cost

oUnlike single entity type resolution a block based 
prioritization is significantly more important when resolving 
multiple types
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PROGRESSIVE RELATIONAL ER [ALTOWIM ET AL 2014]
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A1 M1

A2 D2

D1

M2

v1

v2

v3

v4 v8

v7

v6

v5 v9

v10

v11

v12

Actors Movies Directors

Blocks with 

entities of the 

same type A1 M1

v1

v2

v3 v7

v6

v5

Nodes: Pairs of entity 

descriptions of the same 

type (relation)

Edges: Dependency 

between pairs (foreign 

keys) - an edge indicates 

that the resolution of a 

node influences the 

resolution of another node



PROGRESSIVE RELATIONAL ER [ALTOWIM ET AL 2014]

Black-box blocking phase

oAvoid building a dependency graph with all the description pairs

Scheduling phase: divide the total cost budget into several windows of equal cost

oFor each window, a comparison schedule is generated

oChoose among the schedules whose cost does not exceed the current window, the one with 
the highest expected benefit

oThe cost of a schedule is computed by considering the cost of finding the description 
pairs in a block according to the available storage policy (in memory/disk/cloud), and 
the cost of resolving every description pair
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PROGRESSIVE RELATIONAL ER [ALTOWIM ET AL 2014]

Schedule benefit: 

oHow many matches are expected to be found by this schedule – direct benefit

oHow useful it will be to declare those nodes as matches, in identifying more matches 
within the cost budget – indirect benefit

A node is more likely to be a match, when it is influenced by more matching nodes, and it is 
more influential, when it is expected to be a match and it has many direct dependent nodes 
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PROGRESSIVE RELATIONAL ER [ALTOWIM ET AL 2014]

Update phase

oAfter schedule execution: matching decisions are propagated to all influenced nodes, 
whose expected benefit now increases and have, thus, higher chances of being chosen by 
the next schedule

The algorithm terminates when the cost budget has been reached

oAll unresolved pairs are considered non-matches – statistically, matches are significantly 
fewer than non-matches
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OPEN ISSUES



OPEN ISSUES 

Tight coupling of Blocking with Iterative Matching/Merging

oBetter control of block characteristics w.r.t. the entity similarity subsequently used [J. Fisher 

et al. 2015]

Progressive ER with Quality Guarantees

oGuarantees (e.g., coverage) regarding the quality of matches/merges w.r.t. subsequent 

entity-centric services and data analysis tasks

ER for Big Data

oAlgorithms for high Velocity [D. Firmani et al. 2016], Variety, and Volume entity 

descriptions [Q. Wang et al. 2015, L. Kolb et al. 2012]

Large-Scale ER Testbeds

oReal-world ground truth datasets for different match types and open source ER platforms 

[Efthymiou et al. 2015, 2016]
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OPEN ISSUES

Crowdsourced ER

oReduce the crowdsourcing cost for obtaining ground truth [Chai et al. 2016, Gokhale
et al. 2014, Wang et al. 2012]

Temporal ER

oResolve evolving entity descriptions and analyse the history of descriptions [Dong & 
Tan 2015]

Uncertain ER 

oConsider confidence scores when resolving certain & uncertain entity descriptions 
[Gal 2014, Demartini et al. 2013]

Privacy-aware ER

oTrade-off between entity obfuscation techniques and ER results quality [Whang & 
Garcia-Molina 2013]
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LICENSE 

These slides are made available under a Creative Commons Attribution-ShareAlike
license (CC BY-SA 3.0): http://creativecommons.org/licenses/by-sa/3.0/

You can share and remix this work, provided that you keep the attribution to the 
original authors intact, and that, if you alter, transform, or build upon this work, you 
may distribute the resulting work only under the same or similar license to this one
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THANK YOU! Questions?
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