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Abstract. Automatic segmentation of echocardiography videos is criti-
cal for assessing various cardiac functions and improving the diagnosis of
cardiac diseases. Convolutional Neural Networks (CNNs) have recently
demonstrated their ability to segment 2D cardiac ultrasound images,
but they suffer from temporal inconsistency. The main approaches for
more reliable spatio-temporal analysis include 3D deep learning meth-
ods, recurrent segmentation algorithms, and post-processing of 2D seg-
mentations. This paper presents a new efficient method for temporally
regularized segmentation of cardiac ultrasound images. To address this
problem, we propose a post-processing procedure based on the descrip-
tion of left ventricular, endocardial and epicardial, boundaries by their
central distance signatures, which emerges as a powerful representation
with excellent temporal coherence. Principal component analysis of the
boundary signature is shown to provide a concise model for its repre-
sentation. In particular, the coefficient of the first component has an in-
teresting functional interpretation. Temporal smoothing of the obtained
parametric representation enforces the temporal consistency of the seg-
mentation. Results are given on the TED dataset [11] to illustrate the
regularized segmentation and to measure some anatomical cardiac fea-
tures.

Keywords: echocardiography · segmentation · shape signature · prin-
cipal component analysis · regularization · anatomical cardiac features.

1 Introduction

Echocardiographic image analysis is an essential diagnostic tool for assessing
cardiac function [8], [13]. Correctly performing automated segmentation of the
heart’s regions of interest also allows measurement of important parameters,
such as left ventricle (LV) ejection fraction, LV area, LV length and myocar-
dial area. Deep learning in medical image analysis, including echocardiographic
image segmentation, has been the focus of the scientific community in recent
years, especially when incorporating temporal along with spatial information.
An evaluation of the clinical applicability of deep learning methods for dynamic
cardiac imaging using spatiotemporal image information was presented in [3].

Following the exploration of 2D deep learning approaches, several methods
have been developed in recent years to take into account the temporal aspect.
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Fig. 1. Flow chart of the proposed post-processing method.

In [7] different methods are compared and it is shown that a generic 3D nnUnet
CNN for the entire sequence gives better results on a private data set. In [14],
a co-learning mechanism is proposed to explore the mutual benefits of cardiac
segmentation and myocardium tracking at the appearance and shape levels in
a semi-supervised framework. A proxy- and kernel-based video segmentation
method for left ventricle localization has also been proposed in a semi-supervised
context [15]. In the context of self-supervised segmentation, multi-level semantic
adaptation was proposed for few-shot segmentation on cardiac image sequences
[2]. A post-processing framework for learning the 2D+time apical long-axis shape
of the heart to improve the accuracy and consistency of segmented echocardio-
graphic sequences has also been proposed [11].

This article presents a new post-processing method for temporal regulariza-
tion of cardiac ultrasound images. To address this issue, we propose to use the left
ventricular boundaries and model their central distance signature using Principal
Component Analysis (PCA), assuming that the ultrasound images are aligned.
The flow chart of the proposed method is shown in Fig. 1. The PCA is based on
the ground truth segmentation maps and is presented in Section 2. Since the first
component is dominant, a prototype for its temporal evolution is estimated (Sec-
tion 3). The temporal inconsistency appears clearly on the first component time
sequence. Therefore, denoising the sequence of the first component results in a
temporally consistent segmentation (Section 4). After reconstructing temporally
smooth segmentation maps, anatomical features can be estimated (Section 5).

We evaluated our approach by testing it on the predictions of some deep
CNN architectures [5], [6], [9], [10] and [12], resulting in improved left ventric-
ular endocardial and epicardial segmentation. Finally our method provides a
simple and efficient approach to achieve an accurate and temporally consistent
segmentation of ultrasound images of the heart. Results are shown on the TED
dataset [11]1.

2 Representation basis computation

The shape of any region can be described by its boundary. A one-dimensional
periodic signal can then be used to represent the resulting contour.Among the
various approaches used to represent shapes, the central distance signature has
interesting properties for nearly convex closed curves. In particular, it is covariant
with respect to scale and rotation transformations and invariant with respect to
translation. Therefore, the central distance signature is suitable for modeling
1 https://humanheart-project.creatis.insa-lyon.fr/databases.html

https://humanheart-project.creatis.insa-lyon.fr/databases.html
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Fig. 2. Endocardium and epicardium boundaries (a) and their signatures (b).

the shape of the left ventricular, endocardial and epicardial boundaries, as the
main transformations during the cardiac cycle are translation, rotation and scale
variation.

Let (x(θ), y(θ)) be the boundary coordinates, with an appropriate location
parameter θ. The central distance is defined as

ρ(θ) =
√

(x(θ)− xc)2 + (y(θ)− yc)2, (1)

where (xc, yc) is a central shape point. Since we are considering a representation
basis for an entire set of boundaries, the position parameter θ is defined by the
angular position, which is determined in exactly the same way over the entire
set. Therefore, the entire set of signatures is computed at the same angular po-
sitions with a fixed angular interval step. Furthermore, for both the endocardial
and epicardial boundaries of the left ventricle, the center is extracted from the
epicardial boundary. Then, adaptive representations can be computed separately
for endocardium and epicardium.

The basis of the representation is determined from the ground truth seg-
mentation to be the most expressive and accurate. An example of a ground
truth segmentation and corresponding signatures of endocardium (‘red’) and
epicardium (‘green’) is shown in Fig. 2. The angular interval step is set to 1/2
degree, so we have K = 720 angular positions, from −π to π, to calculate the
distance of the boundary points from the origin (xc, yc). Distance is given in
pixels in Fig. 2(b), and the pixel size is [0.308, 0.308].

Let Y be the N ×K matrix containing the set of N known signatures from
the ground truth segmentations. The basis of the representation is determined
by the eigenvectors of the matrix C = Y tY . We will call these eigenvectors
the eigenboundaries. Since the number of significant eigenvalues is limited, the
basis can be restricted to the eigenvectors corresponding to the most significant
eigenvalues. Exactly, the cumulated sum of the first seven eigenvalues are

0.988 0.992 0.996 0.998 0.998 0.999 0.999
0.996 0.998 0.999 0.999 1.000 1.000 1.000
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Fig. 3. The two most important eigenboundaries for the representation of the endo-
cardium and epicardium boundaries.

The first row shows the coefficients for the endocardium and the second row
shows the coefficients for the epicardium. Note that only the first component
explains approximately 0.99 of the total. Based on these observations, our ex-
periments retain 36 components for endocardium and epicardium. This number
is more than sufficient for the ground truth, and at the same time limiting the
number of components to 5% results in noise reduction at the boundaries of real
machine segmentations.

The two main eigenboundaries for the endocardium (‘red’) are shown in
Fig 3. Note that the two peaks near the angle origin in Fig. 3(a), where the first
eigenboundary is shown, correspond to the two endpoints of the valve, while the
peak near the angle −π gives the approximate position of the apex. In the same
figure are shown in ‘green’ the two first eigenboundaries for the epicardium, with
the same observations regarding the characteristic points.

Comparing the typical LV signatures shown in Fig. 2 with the first eigen-
boundaries, it can be concluded that they are quite similar, the similarity being
measured by the first eigenvalue mentioned above. On the ground truth dataset,
the standardised signature is always close to the first eigenboundary.

Having the basis of the representation, we can represent each boundary with
the corresponding set of expansion coefficients. Then, for each patient and for
the corresponding boundary sequence, we can have the sequence of coefficients
of the representation. Fig. 4 shows, for two patients, the sequences of coefficients
for the principal eigenboundary, both for the endocardium (‘red’) and for the
epicardium (‘green’), for one cardiac cycle. It can be seen that the shape of
the cardiac function follows a systolic phase with a decreasing coefficient and
a diastolic phase with an increasing coefficient. In fact, the minimum position
of the sequence of coefficient values gives the approximate position of the end
of the systolic phase. An exception is patient number 69, in whom the ejection
fraction was extremely low, equal to 13, while the ejection fraction of patient 14
is equal to 75.
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Fig. 4. The coefficient of the most important eigenvector for the endocardium and the
epicardium during one cardiac cycle versus the square root of the corresponding area.

The same figure shows the corresponding sequences of the square root of the
left ventricular area and the area defined by the epicardium. Note the extremely
high correlation between the most important coefficient and the area of the
respective regions for the ground truth. Indeed, the first coefficient is

K∑
k=1

ρ(θk)x(θk) ≈

√√√√ K∑
k=1

ρ2(θk) ≈
√

KA

π
, (2)

where {x(θk), 1 ≤ k ≤ K} is the first eigenboundary and A is the area of the
corresponding region. The distance between the epicardial coefficient and the
endocardial coefficient is an approximation of the thickness of the myocardium.

3 Model construction for the eigenvector coefficients

Since the most important eigenvector explains about 99% of the energy of the
boundary representation, it is interesting to try to construct a model of the
sequence of coefficients of this eigenvector, as this will help to make the segmen-
tation sequence temporally consistent. To construct a generic model, the average
coefficient sequence over the entire ground truth set is calculated and used to
estimate an initial model for each individual sequence. The average sequence for
endocardium is shown in Fig 5(a). Corresponding average epicardial sequence is
similar. We observe that the systolic phase lasts on average about 45% of the
time of the cardiac cycle and the diastolic phase about 55%.

However, for individual patients the variation in the division of the total
cycle time into systolic and diastolic phases is very large. In order to create
a model suitable for each patient, both the position of the end of the systolic
phase and the amplitude of the variation for the two phases should be adjusted.
If we consider different time division positions for the two phases, we obtain
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Fig. 5. (a) Average coefficient of the first eigenboundary for the endocardium and (b)
adaptation to the individual duration of the two phases of the cardiac cycle.

appropriate models, as shown in Figure 5(b) for the endocardium. The duration
of the systolic phase ranges from 30% to 75% of the total cardiac cycle. Similar
results are obtained for the epicardium.

For each individual sequence, it is necessary to adjust the separation of the
two phases and the amplitude of the change from end diastole to end systole.
Three main parameters determine the pattern of the individual sequence: the
time division of the two cardiac phases, the mean size of the ventricular area,
and the ratio of the area between the end of the diastolic phase and the end of
the systolic phase. Therefore, a linear model can be assumed, given the division
into systolic and diastolic phases

c(t) = b1 + b2fk(t), (3)

where b1 corresponds to the mean size of the ventricular area, b2 corresponds to
the total change in area, and k indicates the relative duration of the two phases
in the heart cycle. fk(t) is the prototype model shown in Fig. 5(b).

The linear model for the sequence c(t) should be estimated in a robust way,
since the data are noisy and have abrupt changes. Robust iteratively reweighted
least-squares regression is used with the Cauchy fitting weight function [4]. With
respect to the time division of the two phases of the heart cycle, the search is
exhaustive. The model is checked for all possible values of k and the total absolute
error e(k) is calculated over the sequence,

e(k) =
∑
t

|c(t)− b̂1 − b̂2fk(t)|. (4)

The time position k that minimizes the error e(k) is chosen. In some cases, it is
preferable to estimate the parameters b1 and b2 separately in the two phases. The
calculation method remains the same, but the number of parameters is doubled
and the two estimates must be linearly combined.
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Fig. 6. Coefficient sequence for the segmentation (‘red’), the ground truth (‘green’),
the model (‘blue’) and after smoothing (‘magenta’) for the endocardium of two patients.

Results for the endocardium for two patients are shown in Figure 6, where
the GUDU segmentation method [12] was used for the plots in the first row, the
ENet (resp. U-Net) predictor was used for the second row on the left (resp. right).
The coefficient is given in mm. The sequence computed from the initial segmen-
tation is shown in (‘red’). For the patient on the left side, the segmentation
was noisy, while on the right side there is noise and unexpected discontinuities.
The prototype of the first coefficient could therefore be used for the detection of
temporal inconsistencies in the segmentation results.

A consequence of the model analysis is the finding of a significant correlation
between the parameter b2 and the ejection fraction, specifically the correlation
coefficient is 0.7 for the set of experimental data. The values of the estimated
parameter b̂2, for the GUDU segmentation method, are shown in Fig. 7(a) for
both the endocardium (‘red’ line) and the epicardium (‘green’ line). We see that
it takes a maximum value for the patient with the maximum ejection fraction (75)
and a minimum value for the sequence corresponding to the minimum ejection
fraction (13). For the last sequence, where the parameter b̂2 takes a negative
value, the above model is not used, but only a smoothed sequence is computed
in the next algorithmic step, since it is clear that this sequence does not fit the
generic model.
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(a) (b)

Fig. 7. (a) Estimation of parameter b2. (b) Ejection fraction after temporal smoothing.

4 Temporal regularization of the segmented images

The representation on the basis of eigenvectors allows to obtain temporally
smoothed segments, since it is sufficient to smooth the values of the coefficients
of the representation. Therefore, smoothing the latent representation yields the
regularized segmentation.

Let c(t) be the first coefficient data sequence and s(t) the desired smoothed
sequence. The following criterion is proposed to be minimized

Ω(s) = ∥W (c− s)∥2 + µ∥Ds∥2, (5)

where c is the vector of all values of the data sequence and s is the vector of
the smoothed sequence. The matrix W is diagonal and gives weights for each
time point to reduce the weight of outliers [1]. The matrix D models the sec-
ond derivative to obtain a degree of smoothing µ and gives the filter d of the
recurrence relation given below. The direct solution to the above optimization
problem is

ŝ = (W ′W + µD′D)−1W ′Wc. (6)
It is proposed to implement the smoothing process by an iterative method

for the coefficient corresponding to the maximum eigenvalue. The matrix W
is re-estimated after each computation, while the initial estimate f(t) is the
model described in the previous section. The iterations, starting from n = 1, are
formulated as follows, ∗ being the symbol of convolution,

s(n)(t) = s(n−1)(t)− β
(
ϵ(n−1)(t) + µ(d ∗ s(n−1)(t))

)
, (7)

where ϵ(n−1)(t) = w(n−1)(t)(s(n−1)(t)− c(t)) and with s(0)(t) = f(t). The factor
w(n−1)(t) is calculated iteratively in order to limit the consequences of the out-
liers. The other expansion coefficients are simply smoothed using a linear filter,
without any a priori model.
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Table 1. Accuracy of segmentation methods after (before) regularization.

U-Net DeepLab LUNet ENet GUDU
Dice endo 0.943(0.939) 0.938(0.934) 0.940(0.934) 0.936(0.931) 0.947(0.944)
Dice epi 0.965(0.963) 0.962(0.959) 0.963(0.961) 0.957(0.954) 0.966(0.965)
Dice myo 0.877(0.870) 0.871(0.864) 0.876(0.871) 0.858(0.852) 0.889(0.885)
Hausdorff endo 3.87(4.13) 4.21(4.62) 4.07(4.38) 4.37(4.77) 3.70(3.97)
Hausdorff epi 3.85(4.16) 4.21(4.79) 4.06(4.58) 4.70(5.18) 3.73(3.90)
Hausdorff myo 4.32(4.82) 4.77(5.57) 4.65(5.32) 5.18(6.05) 4.20(4.61)
EF MAE 2.65(2.74) 2.65(2.85) 2.85(3.08) 2.87(3.23) 2.65(2.71)
EF correlation 0.943(0.934) 0.946(0.938) 0.937(0.932) 0.942(0.926) 0.939(0.940)

Five deep learning segmentation methods are evaluated using statistical and
clinical indices on the TED dataset: U-Net [5], LUnet [6], DeepLab [9], ENet [10]
and GUDU [12]. The results after regularization are given in Table 1 in com-
parison to the results before regularization, which are given in parentheses. The
Hausdorff distance is measured in mm. In addition, Fig. 6 shows the smoothed
coefficient sequence for two patients for qualitative evaluation, compared to the
initial sequence, the prototype and the ground truth. Comparing the regularized
result in the first row with that in the second row, we see that quite different seg-
mentation results provided by different predictors yield very similar temporally
consistent segmentations.

Although the original results showed significant differences between the al-
gorithms, after smoothing the methods have similar performances. Among the
indices considered, an improvement in the Hausdorff distance is obtained for all
methods. The number of iterations in Eq. (7) was equal to 30 in almost all cases,
with β = 0.05. A higher number of iterations results in a better Dice coefficient
and Hausdorff distance, but the EF measurement is worse.

The 2D ejection fraction (EF) is included in the results as it can be calcu-
lated after constructing the smoothed segmentations given the end-systolic and
diastolic positions. Mean Absolute Error (MAE) and correlation to ground truth
are measured for 2D EF. A slight improvement is observed after temporal regu-
larization. Fig. 7(b) compares the GUDU segmentation calculated values (‘red’)
with those of the ground truth (‘blue’).

5 Anatomical feature computation

Anatomical features can be calculated from the reconstructed boundary sig-
natures and segmentation maps after smoothing. For comparison with the true
values, it is also necessary to compute them from the ground truth segmentation.
The measured anatomical features are those considered in [11]: left ventricular
(LV) area, myocardial (MYO) area, long axis length, valve width, left ventric-
ular orientation and epicardial (EPI) center position. For the latter, the global
displacement due to cardiac function is of interest.
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(a) (b)

Fig. 8. Anatomical results for one patient : (a) LV and MYO area. (b) LV length and
valve width.

The two areas, the orientation and the centroid are computed in MATLAB®
using the function regionprops. The entire region of the left ventricle, including
the myocardium, is used to calculate the orientation and the centroid. The apex
of the left ventricle is localized as the top point of the corresponding segment,
since the left ventricle is oriented vertically, as shown in Fig. 2(a). Therefore, to
locate the apex, the endocardial border is used. Long axis length is measured as
the distance from the center of the base to the apex. The extreme points of the
valve are determined directly from the segmentation map for the ground truth
and original segmentations.

For the regularized segmentations the extremities of the base are determined
by the two vertices of the signature located around the angle origin, as shown in
Fig. 2(b) for a ground truth segment, to measure the valve width. The fact that
the boundaries of the endocardial and epicardial regions coincide at the valve
position is also taken into account for the predicted segment. Therefore, the valve
is localized differently for the original segmentation and the reconstructed one
after smoothing.The comparison of the corresponding measures may be slightly
affected.

Fig. 8 shows the results for the GUDU segmentation method for one patient.
In (a), the estimated LV and MYO areas are plotted in square mm compared to
the ground truth. In (b), the estimated LV length and valve width in mm are
shown, also compared to the ground truth.

Table 2 shows the average error in the calculation of anatomical features
for the five segmentation algorithms. The absolute mean error is computed for
orientation, in degrees. The relative error is measured for all other features∑

t |ϕs(t)− ϕg(t)|∑
t ϕg(t)

, (8)
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Table 2. Errors in the estimation of anatomical attributes.

U-Net DeepLab LUNet ENet GUDU
LV area 0.051(0.057) 0.060(0.071) 0.067(0.078) 0.056(0.065) 0.054(0.059)
Valve width 0.075(0.070) 0.085(0.083) 0.083(0.081) 0.081(0.083) 0.072(0.063)
Long axis length 0.025(0.028) 0.027(0.032) 0.024(0.027) 0.030(0.035) 0.026(0.029)
Orientation 2.443(2.571) 2.647(2.800) 2.252(2.392) 2.366(2.583) 2.218(2.320)
MYO area 0.057(0.064) 0.077(0.082) 0.100(0.106) 0.091(0.098) 0.086(0.086)
EPI hor center 0.009(0.009) 0.010(0.010) 0.010(0.010) 0.012(0.012) 0.008(0.008)
EPI ver center 0.015(0.014) 0.018(0.018) 0.018(0.018) 0.018(0.018) 0.014(0.014)

where ϕs(t) is the segmentation-estimated feature value after smoothing and
ϕg(t) is the feature value as computed from the ground truth segments. We ob-
serve that the results after regularization are almost equivalent for all methods.
Compared to the measurements before regularization, an improvement is ob-
served for the LV and MYO areas, the long axis length and the orientation. The
errors in estimating the center are small anyway. The difference in valve width
estimation error should be mainly due to the different estimation method.

6 Discussion and conclusion

All the algorithmic modules are implemented in MATLAB® and tested on an HP
Pavilion laptop (Intel® i7 CPU at 2.60GHz). The computation time per patient
was about 14 seconds. The first modules of signature computation, coefficient
extraction and prototype fitting, using robustfit function, take about 10.5 seconds
due to the exhaustive search for the model. The last modules of regularization,
reconstruction, feature estimation and evaluation take about 3.5 seconds.

We have introduced a generic model for representing the left ventricular
boundaries, endocardium and epicardium, in long-axis apical echocardiographic
images. Based on principal component analysis of the boundary signatures, we
have shown that a concise set of parameters describes the boundaries. In par-
ticular, the coefficient of the first eigenboundary has strong correlation with the
left ventricular area and its temporal variation is related to the cardiac cycle. We
proposed an iterative least squares method to smooth this coefficient over time.
The reconstructed segmentation maps are then nearly time consistent and are
used to estimate anatomical features. The main improvements obtained on five
different segmentation results on the TED dataset are in a global temporal con-
sistency and in the measurement of the Hausdorff distance and the anatomical
features.
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