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Abstract

Linear prediction (LP) of speech is a mathematical technique used to estimate future samples of a speech signal
based on past samples. It models the vocal tract as a linear filter, predicting the current sample as a weighted
sum of previous samples. This approach is fundamental in speech analysis and coding, allowing efficient rep-
resentation and compression of speech signals. By capturing the spectral characteristics of the speech, linear
prediction aids in various applications such as speech synthesis, recognition, and enhancement.

LP feature extraction from speech signals is conventionally performed using short-time frames, assum-
ing stationarity within each frame. For spectral envelope extraction, which captures the formant frequencies
produced by the resonances of the slowly varying vocal tract, frame lengths of 20–30 ms are commonly used.
However, traditional frame-based spectral analysis disregards the broader temporal context of the signal and is
susceptible to degradation from environmental noise.

This thesis presents a recent frame-based LP analysis method that incorporates a regularization term. The
method is named Time-Regularized Linear Prediction (TRLP). Its regularization term penalizes energy differ-
ences between consecutive frames in an all-pole spectral envelope model, thereby integrating the slowly varying
nature of the vocal tract into the analysis.

Objective evaluations of feature distortion were conducted by analyzing the mel-frequency cepstral co-
efficient (MFCC) representations derived from various spectral estimation methods under noisy conditions,
using the TIMIT database. The results indicate that the proposed time-regularized LP approach outperforms
traditional methods, demonstrating superior MFCC distortion characteristics.
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Chapter 1

Introduction

According to Fant’s classical source-filter theory [5], speech production can be modeled as a sequence of three
processes: glottal airflow excitation, vocal tract shaping, and lip radiation effects (Figure 1.1). Assuming the
vocal tract consists of concatenated lossless tubes, its transfer function for non-nasalized sounds can be repre-
sented by an all-pole model. For low frequencies, the lip radiation effect is approximated as the time-derivative
of the oral airflow.

The glottal excitation is often simplified as a quasi-periodic signal with a time-varying fundamental fre-
quency and spectral tilt, which convey individual speaker characteristics and paralinguistic information. For
unvoiced speech, the glottal airflow is modeled as white noise. Therefore, the vocal tract, particularly its
resonances known as formants, is crucial for generating linguistic information. The vocal tract, comprising
articulators such as the tongue, soft palate, and pharynx, controls its shape and consequently the formant
frequencies. Despite the need for sophisticated and precise motor control to produce intelligible, continuously
varying speech, the rate of articulatory configuration change is limited by inertial mass as per Newton’s second
law.

To accommodate the slow rate of articulatory changes (and thus formant contours), speech is typically
assumed to be stationary within short-time frames of approximately 20–30 ms and processed with frame skips
of about 5–10 ms. This approach is standard in speech feature extraction due to its simplicity, sufficient accu-
racy, and suitability for online processing. However, frame-by-frame feature extraction methods, such as linear
prediction (LP) [6] or mel-frequency cepstral coefficient (MFCC) computation, disregard the context outside the
frame. This makes these methods susceptible to issues like background noise or the initial phase of the signal.
Consequently, context-aware speech feature extraction methods that consider a broader temporal context (e.g.,
100 ms to several seconds) have been developed.

Prominent context-aware methods for computing autoregressive (AR) spectral envelope models of speech
include time-varying linear prediction (TVLP) [7] and frequency-domain linear prediction (FDLP) [8]. In TVLP,
the filter coefficient trajectories over a macro frame are fitted into a basis function of a predefined form, such as
polynomial or trigonometric functions. In FDLP, bandpass filtered time-trajectories of speech are modeled with
an AR model, and these trajectories are used to estimate frequency-domain parametric envelopes of speech at
given time instants. Both TVLP and FDLP have been applied successfully for robust speech feature extraction,
yielding improved results over traditional frame-based methods. However, their effectiveness is limited by the
need for long macro frames, which introduce algorithmic delays. Additionally, the modeling of time-trajectories
in TVLP and FDLP is driven by mathematical convenience rather than optimal time-trajectory representation.

This study introduces a novel regularization method for AR model computation, where the model op-
timization for a speech frame considers the filter coefficients of the previous frame. This approach, termed
time-regularized linear prediction (TRLP) [4], effectively implements a leaky integration process for the tempo-
ral dynamics of the envelope spectrogram. TRLP generates smoothly evolving time-frequency contours similar
to FDLP and TVLP, motivated by the slow movements of the articulators. Unlike FDLP and TVLP, TRLP
does not introduce delays in envelope modeling because it does not require long macro frames. The results
indicate that TRLP outperforms known all-pole modeling techniques in spectral modeling of noisy speech.

The following chapters of this thesis build upon the foundation laid in this introduction by delving into
the specific methods and experiments conducted to advance noise-robust speech signal processing. Chapter
2 introduces the Linear Prediction Model of Speech, offering a comprehensive discussion of the theoretical
principles and mathematical formulations that underpin the methods explored in this work. In Chapter 3,
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10 CHAPTER 1. INTRODUCTION

we focus on the Stabilized Weighted Linear Prediction (SWLP) method, detailing its development and the
key innovations that differentiate it from traditional approaches. Chapter 4 introduces the concept of Time-
Regularized Linear Prediction (TRLP), highlighting its unique advantages in dynamic noise environments.
Chapter 5 is dedicated to the experiments and results, where we compare the performance of these methods
against traditional techniques like Fast Fourier Transform (FFT) and Linear Predictive Coding (LPC) across
various noise conditions. Finally, Chapter 6 presents a detailed discussion and analysis of the findings, followed
by future research directions and concluding remarks. Together, these chapters provide a thorough examination
of advanced linear prediction methods in the context of noise-robust speech processing, contributing valuable
insights to the field.

Figure 1.1: Fant’s source-filter model of speech production: the excitation signal e(n) may be produced by
phonation (voicing) or by turbulent excitation (voiceless) (Image obtained from [1]).

Figure 1.2: A spectral envelope is a curve in the frequency-amplitude plane, derived from a Fourier magnitude
spectrum. It is a function of frequency that matches the amplitudes of the individual partials of the spectrum. It
is the basic defining factor for its timbre. The envelope changes over time and can change with the fundamental
frequency of the sound (Image obtained from [2]).



Chapter 2

The Linear Prediction Model of Speech

2.1 Introduction

Linear Prediction (LP) [9, 6] is a powerful tool used in speech processing to model the human vocal tract and
estimate the spectral envelope of speech signals. By assuming that a speech signal can be approximated by
a linear combination of its past samples, LP provides a framework for efficient speech analysis, synthesis, and
compression. This chapter explores the theoretical foundations of LP, its practical implementation, and its
applications in the field of speech processing.

2.2 Theoretical Foundations of Linear Prediction

Linear Prediction operates on the principle that a speech signal at any given time can be approximated as a
linear combination of its past values. Mathematically, this is expressed as:

s(n) = −
p∑

k=1

aks(n− k) + e(n) (2.1)

where:

• s(n) is the current speech sample.

• ak are the linear prediction coefficients.

• p is the order of the prediction.

• e(n) is the prediction error or residual.

The goal is to determine the coefficients ak that minimize the prediction error e(n) over a segment of
speech. This is typically done by solving the normal equations derived from minimizing the mean squared error
of the prediction.

2.3 Practical Implementation of Linear Prediction

The practical implementation of LP involves several key steps: framing, windowing, autocorrelation computa-
tion, and solving the normal equations to obtain the LP coefficients.

2.3.1 Framing and Windowing

Speech signals are non-stationary, so they are processed in short overlapping frames where the signal can be
assumed to be approximately stationary. A typical frame length is 20-30 ms with a frame shift of 10 ms. Each
frame is multiplied by a window function, such as the Hamming window, to reduce discontinuities at the frame
boundaries.

2.3.2 Autocorrelation Method

The term s(n) in the context of linear prediction represents the discrete-time speech signal at the sample index
n. Speech, inherently a continuous-time signal, is sampled at regular intervals to produce a sequence of data
points s(n), where each point corresponds to the amplitude of the speech signal at a specific time. This discrete

11
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representation allows for digital processing and analysis. In linear prediction, s(n) is used to model the speech
signal within each frame. The objective is to predict the current sample s(n) as a linear combination of its
previous p samples s(n − 1), s(n − 2), . . . , s(n − p). The coefficients of this linear combination are the linear
prediction (LP) coefficients, which are determined by minimizing the prediction error over the frame.

The autocorrelation method [9] is a common technique to compute the LP coefficients. The method starts
by computing the autocorrelation function for each frame of the speech signal. The autocorrelation function
measures the similarity between the signal and a delayed version of itself as a function of the delay (or lag).
Mathematically, for a frame of N samples, the autocorrelation function is defined as:

r(i) =

N−1−i∑
n=0

s(n)s(n+ i), (2.2)

where i is the lag, and r(i) is the autocorrelation value at lag i. This function is used to populate the
autocorrelation matrix R and the autocorrelation vector r.

The elements of the autocorrelation matrix R are given by:

Rij = r(|i− j|) =
N−1∑
n=0

s(n− i)s(n− j), (2.3)

and the elements of the autocorrelation vector r are:

ri = r(i) =

N−1∑
n=0

s(n)s(n− i). (2.4)

The linear prediction coefficients a = [a1, a2, . . . , ap]
T are then obtained by solving the normal equations,

which are expressed as:

Ra = r. (2.5)

To solve these equations efficiently, the Levinson-Durbin recursion algorithm is employed. The Levinson-
Durbin algorithm is an efficient recursive method for solving the Toeplitz system of equations that arise in the
autocorrelation method of linear prediction. Instead of directly inverting the autocorrelation matrix R, which
can be computationally expensive, the Levinson-Durbin recursion computes the LP coefficients iteratively,
reducing the computational complexity from O(p3) to O(p2).

The recursion begins by initializing the first-order prediction coefficient and the prediction error. At each
iteration k, the algorithm computes the next order prediction coefficient ak using the previous coefficients and
the autocorrelation values. The process continues until all p prediction coefficients are determined. This efficient
computation makes the Levinson-Durbin recursion a widely used method in speech processing applications.

In summary, the autocorrelation method combined with the Levinson-Durbin recursion provides a robust
and computationally efficient approach to determining the linear prediction coefficients, which are essential for
accurate speech signal modeling and subsequent processing tasks.

2.4 Applications of Linear Prediction in Speech Processing

Linear Prediction (LP) is a fundamental technique in speech processing that has found wide-ranging applications
due to its ability to model the vocal tract and predict future speech samples based on past observations. This
predictive power makes LP an invaluable tool in various domains, including speech coding, synthesis, recognition,
enhancement, and even speaker verification.

In the realm of speech coding, LP is employed to achieve efficient compression of speech signals, which
is essential for storage and transmission, particularly in low-bitrate environments. LP-based speech coding
techniques, such as Linear Predictive Coding (LPC) [10], are used to represent the spectral envelope of the
speech signal by encoding the LP coefficients—also known as predictor coefficients—along with the residual
signal, which is the difference between the actual and predicted speech signals. This approach significantly
reduces the data required to represent speech while maintaining intelligibility and quality. An advanced variant,
Code-Excited Linear Prediction (CELP) [11], further enhances compression efficiency and is widely used in
modern telecommunication systems and voice-over-IP (VoIP) services.

LP is also integral to speech synthesis, particularly through the use of LP-based vocoders. These vocoders
decompose the speech signal into its spectral envelope, modeled by the LP coefficients, and the excitation signal,
which can either be a periodic signal for voiced sounds or noise for unvoiced sounds. The synthesis process
involves passing this excitation signal through a filter defined by the LP coefficients to produce speech that
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closely resembles natural human speech. The LPC vocoder is one of the most notable examples, having been
utilized in various applications from text-to-speech systems to secure communications [12].

In speech recognition, LP-derived features are crucial for enhancing system robustness, especially in noisy
environments. The LP coefficients, or the more widely used LP-derived cepstral coefficients (LPCC) [6], provide
a compact and informative representation of the speech signal’s spectral characteristics. These features are
instrumental in improving the accuracy of recognition systems by capturing the essential aspects of the speech
signal that are most relevant for distinguishing between different phonemes, words, or speakers.

Speech enhancement, another critical application of LP, involves improving the quality of speech signals
that have been degraded by noise or other distortions. LP techniques are used in methods such as spectral
subtraction [13], where the clean speech spectrum is estimated using LP analysis, and then used to subtract
noise from the signal, resulting in enhanced speech. Additionally, LP residual analysis is often employed to
detect and reduce noise, further improving speech intelligibility [14].

LP’s ability to capture unique vocal tract characteristics also makes it a powerful tool in speaker verification
and identification. By analyzing the LP coefficients extracted from a speech sample, systems can compare these
features against stored profiles to verify a speaker’s identity or recognize them among a group of speakers [15].
This application is particularly significant in security systems where voice is used as a biometric identifier.

Beyond these conventional applications, LP is also used in tasks such as speech segmentation, where it
helps detect boundaries between different speech units like phonemes or words [16], and in emotion recognition,
where changes in the spectral envelope captured by LP can indicate different emotional states [17].

In summary, Linear Prediction has proven to be a versatile and powerful tool in the field of speech process-
ing. Its applications span a broad spectrum, from compression and synthesis to recognition and enhancement,
demonstrating its central role in advancing speech technology. The continued development of LP-based methods
promises to further refine and extend these applications, leading to even more sophisticated and capable speech
processing systems.

2.5 Conclusion

Linear Prediction provides a robust framework for analyzing and processing speech signals. Its ability to model
the vocal tract and estimate the spectral envelope makes it invaluable in many speech processing applications.
By understanding and implementing LP, we can achieve significant improvements in speech coding, synthesis,
and recognition, even under challenging conditions such as noisy environments.
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Chapter 3

Stabilised Weighted Linear Prediction

3.1 Introduction

Stabilized Weighted Linear Prediction (SWLP) [3] is an advanced technique used in speech processing to im-
prove the robustness and stability of Linear Prediction (LP) analysis, particularly in noisy environments. By
incorporating a weighting function and stabilization mechanism, SWLP aims to produce more accurate and
reliable spectral estimates of speech signals.

3.2 Theoretical Foundations of Stabilized Weighted Linear Predic-
tion

The core idea of SWLP is to modify the conventional LP framework by applying a weighting function to empha-
size certain parts of the speech signal and introducing stabilization to ensure the reliability of the prediction.

3.2.1 Weighted Linear Prediction

In Weighted Linear Prediction (WLP), a weighting function w(n) is applied to the speech signal s(n) to give
more importance to certain samples. The weighted speech signal s̃(n) is given by:

s̃(n) = w(n)s(n) (3.1)

The prediction error for WLP is then minimized over the weighted signal, leading to the weighted normal
equations:

Rwa = rw (3.2)

where Rw is the weighted autocorrelation matrix and rw is the weighted autocorrelation vector:

Rw,ij =

N−1∑
n=0

w(n)s(n− i)s(n− j) (3.3)

rw,i =

N−1∑
n=0

w(n)s(n)s(n− i) (3.4)

3.2.2 Stabilization Mechanism

The stabilization mechanism in Stabilized Weighted Linear Prediction (SWLP) is crucial to maintaining the
stability of the prediction filter, especially when dealing with noisy or imperfect data. Stability in this context
refers to ensuring that the roots of the prediction filter’s polynomial lie within the unit circle in the z-plane,
which corresponds to a stable system in the time domain.

To achieve stabilization, a regularization term is added to the weighted autocorrelation matrix Rw. The
regularized or stabilized normal equations are given by:

(Rw + γI)a = rw (3.5)

Here, I is the identity matrix of appropriate dimensions, and γ is the stabilization parameter, a positive
scalar that controls the strength of the regularization.

15
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The regularization term γI effectively adds a bias to the autocorrelation matrix, ensuring that it is positive
definite. This guarantees that the matrix inversion required to solve for the linear prediction coefficients a is
well-conditioned, even in scenarios where Rw might be nearly singular or ill-conditioned due to noise or other
factors.

Mathematically, adding γI shifts the eigenvalues of Rw by γ. If any of the eigenvalues of Rw are close to
zero (which would make the inversion unstable), the stabilization term ensures that all eigenvalues are bounded
away from zero, thereby preventing numerical instability in the solution.

The inclusion of the stabilization term modifies the characteristic polynomial of the prediction filter, ensur-
ing that all roots (poles of the filter) are within the unit circle. This is critical because if any roots lie outside
the unit circle, the filter would become unstable, leading to a non-causal and exponentially growing impulse
response, which is undesirable in speech processing applications.

To see this more concretely, consider the transfer function of the prediction filter derived from the LP
coefficients a = [a1, a2, . . . , ap]

T , where p is the order of the predictor. The filter’s transfer function is given by:

H(z) =
1

1−
∑p

i=1 aiz
−i

(3.6)

The poles of this filter are the roots of the polynomial:

A(z) = 1−
p∑

i=1

aiz
−i (3.7)

Adding the stabilization term influences the coefficients a such that the roots of A(z) are constrained to
lie within the unit circle, ensuring that H(z) represents a stable system.

Choosing the value of the stabilization parameter γ is a key practical consideration. A small γ might
not provide sufficient regularization, especially in high-noise scenarios, potentially leading to unstable filters.
Conversely, a large γ might overly smooth the solution, potentially degrading the predictive accuracy of the
model by underfitting the signal.

In practice, γ is often selected empirically, and it can be tuned based on the specific application, noise
conditions, and desired trade-off between stability and accuracy. Some adaptive methods may also adjust γ
dynamically based on the signal characteristics, although this adds complexity to the algorithm.

The stabilization technique used in SWLP is conceptually similar to ridge regression, a method used in
statistical regression models to handle multicollinearity and prevent overfitting. In ridge regression, a penalty
term proportional to the square of the coefficients is added to the loss function to shrink the coefficients towards
zero, thereby reducing variance at the cost of introducing some bias. In SWLP, the stabilization term plays a
similar role by adding a bias to the autocorrelation matrix, ensuring a stable and robust prediction model.

3.3 Practical Implementation of Stabilized Weighted Linear Predic-
tion

The implementation of SWLP involves the following steps: selecting an appropriate weighting function, com-
puting the weighted autocorrelation matrix and vector, and solving the stabilized normal equations.

3.3.1 Selection of Weighting Function

The choice of the weighting function w(n) in Weighted Linear Prediction (WLP) is critical, as it directly influ-
ences the emphasis placed on different parts of the speech signal during the prediction process. The weighting
function determines which parts of the signal are given more importance when calculating the prediction error,
and thus, it plays a key role in shaping the linear prediction model’s behavior.

Several commonly used weighting functions are applied in WLP, each with its unique properties and
applications:

• Hamming window: This window provides a smooth tapering at the edges of the frame, reducing the
discontinuities at the frame boundaries. The Hamming window is defined as:

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
(3.8)

where N is the frame length. The smooth tapering minimizes spectral leakage, making the Hamming
window a popular choice in speech processing.
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• Gaussian window: The Gaussian window emphasizes the central part of the frame more than the
edges, which can be particularly useful when the central portion of the frame is expected to contain more
significant speech information. The Gaussian window is defined as:

w(n) = exp

−1

2

(
n− N−1

2

σN−1
2

)2
 (3.9)

where σ is the standard deviation that controls the width of the Gaussian function. A smaller σ leads to
a narrower peak, emphasizing the center even more.

• Perceptually motivated windows: These windows are designed based on auditory models to emphasize
components of the speech signal that are most important for human perception. Examples include the
Mel-scale or Bark-scale weighting, which correspond to the nonlinear frequency scales used in human
hearing. These windows help to focus the LP analysis on the most perceptually relevant parts of the
spectrum, enhancing the quality of applications like speech synthesis and coding.

In SWLP, the weighting function is not just any arbitrary window function but is often designed to reflect
the energy distribution of the speech signal. This energy-based weighting function is crucial for ensuring that
the linear prediction model emphasizes parts of the signal with higher energy, which are typically more critical
for accurate modeling and synthesis.

The energy of the speech signal within a frame can be computed as:

E(n) =
n+k∑

m=n−k

s2(m) (3.10)

where 2k+1 is the width of the energy window centered at sample n. The energy-based weighting function
in SWLP is then defined as:

w(n) =
E(n)∑N−1

m=0 E(m)
(3.11)

This function normalizes the energy across the frame, giving higher weights to regions with more energy.
The rationale behind this approach is that segments of the speech signal with higher energy are generally
more significant for accurate speech representation and synthesis. Therefore, by weighting these segments more
heavily, the SWLP model can produce a more accurate and stable prediction.

The use of an energy-based weighting function in SWLP is particularly advantageous in noisy environments.
Since noise typically has a lower energy compared to the speech signal, the energy-based weighting naturally
de-emphasizes the noise components. This selective emphasis reduces the influence of noise on the prediction
model, leading to more robust and stable linear prediction coefficients.

Furthermore, the energy-based weighting can adapt to the varying energy levels across different speech
frames, allowing SWLP to dynamically adjust its focus. For instance, during voiced speech segments where the
energy is high, the model will concentrate more on these segments, ensuring that the prediction closely follows
the true speech signal.

3.3.2 Computation of Weighted Autocorrelation Matrix and Vector

Once the weighting function is selected, the weighted autocorrelation matrix Rw and vector rw are computed
using equations 3.3 and 3.4. These components are then used in the stabilized normal equations.

3.3.3 Solving the Stabilized Normal Equations

The stabilized normal equations in 3.5 are solved using techniques such as the Levinson-Durbin recursion or
matrix inversion methods to obtain the LP coefficients a. The stabilization parameter γ is typically chosen
based on empirical observations or optimization techniques to balance stability and accuracy.

3.4 Applications of Stabilized Weighted Linear Prediction

Stabilized Weighted Linear Prediction (SWLP) is an advanced extension of traditional Linear Prediction (LP)
methods, designed to address the challenges of noise and instability in speech processing applications. The
robustness and stability of SWLP make it particularly valuable in scenarios where the integrity of the prediction
filter is crucial for accurate signal analysis and synthesis. Below, we discuss several key applications where SWLP
has proven to be especially beneficial.
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In speech recognition systems, the accuracy of feature extraction is paramount, as it directly impacts
the performance of the recognition algorithm. SWLP enhances the feature extraction process by providing
more stable and noise-robust spectral estimates. The introduction of stabilization within the SWLP framework
ensures that the prediction filter remains reliable even in the presence of background noise or other distortions.
This leads to more accurate representations of the speech signal’s spectral envelope, which are used to derive
features such as Mel-Frequency Cepstral Coefficients (MFCCs). Consequently, the use of SWLP in speech
recognition can significantly improve recognition performance, particularly in adverse acoustic conditions such
as noisy environments or reverberant spaces [18, 19].

Speaker identification systems rely on the extraction of robust and discriminative features from speech
signals to accurately identify speakers. SWLP contributes to this process by enhancing the stability and
robustness of the extracted features, which is crucial for reliable speaker identification across different acoustic
environments. The stabilization mechanism in SWLP helps to mitigate the effects of noise and other variabilities
in the speech signal, leading to more consistent feature representations. As a result, speaker identification
systems that utilize SWLP can maintain high accuracy even when operating in challenging conditions, such
as when there is background noise, channel variations, or when the speech signal is captured with different
microphones [20, 21].

Formant estimation is a fundamental task in speech analysis, as formants represent the resonant frequencies
of the vocal tract, which are key to understanding speech sounds. Traditional LP methods often struggle with
formant estimation in noisy conditions due to the instability of the prediction filter. SWLP addresses this
issue by incorporating a stabilization mechanism that ensures the filter remains reliable even in the presence of
noise. This leads to more accurate formant estimates, which are essential for tasks such as speech synthesis,
linguistic analysis, and clinical speech pathology. Researchers have demonstrated that SWLP provides robust
formant estimation, particularly in situations where traditional methods fail, such as with low signal-to-noise
ratio (SNR) speech signals or when dealing with non-stationary noise sources [18, 20].

Glottal inverse filtering is a technique used to estimate the glottal waveform from the speech signal, which
is critical for various applications, including speaker characterization, emotion detection, and voice quality
assessment. The accuracy of glottal inverse filtering largely depends on the stability and precision of the linear
prediction filter used to model the vocal tract. SWLP’s stabilization mechanism makes it particularly suitable
for this task, as it prevents the prediction filter from becoming unstable or overly sensitive to noise, leading to
more accurate and reliable glottal waveform estimates. Studies have shown that SWLP-based approaches to
glottal inverse filtering outperform traditional LP methods, particularly in noisy environments or when dealing
with complex vocal tract configurations [20, 22].

In speech coding, the goal is to compress speech signals for transmission or storage while maintaining high
fidelity. Noise robustness is a critical requirement for effective speech coding, especially in applications such as
mobile communications or VoIP, where the signal is often corrupted by various types of noise. SWLP enhances
the robustness of speech coding by ensuring that the prediction filter remains stable even in the presence of
noise, leading to more accurate spectral estimates and thus higher-quality compressed speech. The weighted
and stabilized prediction process helps to preserve the essential characteristics of the speech signal, reducing
artifacts and improving the intelligibility and naturalness of the decoded speech signal [20, 23].

3.5 Conclusion

Stabilized Weighted Linear Prediction offers significant improvements over conventional LP by incorporating
weighting functions and stabilization mechanisms. These enhancements make SWLP a valuable tool in various
speech processing applications, particularly in noisy and challenging environments. By adopting SWLP, we
can achieve more accurate and reliable spectral estimates, leading to better performance in speech recognition,
enhancement, and identification tasks (as illustrated in Figures 3.1 3.2 3.3)
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Figure 3.1: Upper panel: time-domain waveforms of clean speech (vowel /a/ produced by a male speaker),
additive zero-mean Gaussian white noise corrupted speech (SNR = 10 dB), and short-time energy (STE)
weight function (M = 8) computed from noisy speech. Lower panel: glottal flow estimated from the clean vowel
/a/ together with STE weight function (M = 8) computed also from the clean speech signal (Image obtained
from [3]).

Figure 3.2: Time-domain waveforms of clean speech (vowel /a/ produced by a male speaker) and short-time
energy (STE) weight function (upper panels) and corresponding all-pole spectra of order p = 10 computed by
LP, MVDR, and SWLP (lower panels). SWLP analysis was computed by using two different values for the
length of the STE window: M = 8 (left panels) and M = 24 (right panels) (Image obtained from [3]).
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Figure 3.3: Time-domain waveforms of clean speech (vowel /e/ produced by a female speaker) and short-time
energy (STE) weight function (upper panels) and corresponding all-pole spectra of order p = 10 computed by
LP, MVDR, and SWLP (lower panels). SWLP analysis was computed by using two different values for the
length of the STE window: M = 8 (left panels) and M = 24 (right panels) (Image obtained from [3]).



Chapter 4

Time-Regularized Linear Prediction

4.1 Introduction

Time-Regularized Linear Prediction (TRLP) is an advanced technique designed to enhance the robustness of
Linear Prediction (LP) analysis in dynamic and noisy environments. TRLP integrates temporal smoothness
into the LP framework by introducing a regularization term that penalizes rapid changes in the LP coefficients
over time. This chapter explores the theoretical concepts, practical implementation, and applications of TRLP
in speech processing.

4.2 Theoretical Foundations of Time-Regularized Linear Prediction

Time-Regularized Linear Prediction (TRLP) is a sophisticated enhancement of the traditional Linear Predic-
tion (LP) model that aims to improve the temporal consistency of LP coefficients across consecutive frames.
Traditional LP models are primarily focused on minimizing the prediction error within each frame indepen-
dently, which can result in abrupt changes in the LP coefficients from one frame to the next. These abrupt
changes can be detrimental in applications where smooth transitions between frames are critical, such as in
speech coding, recognition, and synthesis. TRLP addresses this issue by introducing a regularization term that
enforces temporal continuity, leading to more stable and consistent LP coefficients.

4.2.1 Formulation of TRLP

The key innovation in TRLP is the introduction of a regularization term to the conventional LP cost function.
The traditional LP approach minimizes the prediction error over each frame independently. However, TRLP
modifies this approach by adding a penalty for large variations in the LP coefficients between consecutive frames.
This regularized cost function is given by:

J =

N−1∑
n=0

e(n)2 + λ

p∑
k=1

(ak(n)− ak(n− 1))2 (4.1)

where:

• e(n) is the prediction error, defined as the difference between the actual and predicted signal values.

• ak(n) are the LP coefficients for the kth predictor at frame n.

• λ is the regularization parameter that controls the trade-off between minimizing the prediction error and
enforcing temporal smoothness.

• p is the order of the linear prediction, representing the number of previous samples used to predict the
current sample.

The cost function J consists of two terms:

1. The first term,
∑N−1

n=0 e(n)2, represents the traditional LP objective of minimizing the prediction error for
the current frame.

2. The second term, λ
∑p

k=1(ak(n)− ak(n− 1))2, is the regularization term that penalizes large differences
in the LP coefficients between consecutive frames, promoting temporal smoothness.
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This formulation ensures that the LP coefficients not only fit the current frame accurately but also vary
smoothly from one frame to the next, which is particularly beneficial for modeling speech signals that exhibit
gradual changes over time.

4.2.2 Regularized Normal Equations

The introduction of the regularization term significantly alters the normal equations that are typically used
to solve for the LP coefficients. In traditional LP, the normal equations are derived from the autocorrelation
method, leading to a set of linear equations that relate the LP coefficients to the autocorrelation values of the
signal. In TRLP, these equations are modified to incorporate the regularization term, resulting in the following
regularized normal equations:

(R+ λI)an = r+ λan−1 (4.2)

where:

• R is the autocorrelation matrix, formed from the autocorrelation values of the signal.

• an are the LP coefficients at the current frame n.

• r is the autocorrelation vector, representing the correlation between the current frame’s samples and the
previous samples.

• I is the identity matrix, introduced as part of the regularization process to ensure numerical stability.

• an−1 are the LP coefficients from the previous frame n− 1.

The term λI adds a regularization factor to the autocorrelation matrix, effectively controlling the smooth-
ness of the LP coefficients. The term λan−1 in the right-hand side introduces a dependency on the coefficients
from the previous frame, enforcing temporal continuity.

4.2.3 Advantages and Optimality of TRLP

TRLP offers several advantages over traditional LP and other regularized LP approaches, making it particularly
well-suited for applications where temporal smoothness and stability are critical.

The primary advantage of TRLP lies in its ability to enforce temporal smoothness in the LP coefficients.
This is essential in applications such as speech synthesis and coding, where abrupt changes in the spectral
envelope can lead to perceptually unpleasant artifacts, such as ”buzziness” or unnatural transitions. By ensuring
that the LP coefficients vary smoothly over time, TRLP produces a more natural and stable representation of
the speech signal, which is crucial for maintaining the quality and intelligibility of synthesized or coded speech.

The regularization term in TRLP also contributes to improved robustness in noisy environments. In
traditional LP, the coefficients can become highly sensitive to noise, leading to large variations between frames
that degrade the performance of speech recognition or coding systems. The regularization introduced in TRLP
mitigates this sensitivity by smoothing the coefficient trajectories, thus reducing the impact of noise on the
prediction model.

The regularization parameter λ provides flexibility in tuning the model to specific applications or conditions.
A higher λ value enforces stronger temporal continuity, which can be beneficial in highly dynamic environments
where the speech signal changes rapidly. Conversely, a lower λ value allows the model to adapt more quickly to
changes in the signal, making it suitable for applications where rapid adaptation is necessary. This adaptability
makes TRLP a versatile tool in various speech processing tasks.

TRLP can be considered optimal in contexts where both prediction accuracy and temporal consistency
are equally important. The model strikes a balance between fitting the current frame data and maintaining
smooth transitions across frames, leading to a more coherent representation of the speech signal. This balance
is particularly important in applications like real-time speech synthesis and coding, where both accuracy and
temporal stability are crucial for achieving high-quality results.

4.3 Practical Implementation of Time-Regularized Linear Predic-
tion

The implementation of TRLP involves framing, windowing, autocorrelation computation, and solving the reg-
ularized normal equations. The steps are similar to conventional LP but with additional regularization consid-
erations.
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4.3.1 Framing and Windowing

Speech signals are divided into short overlapping frames to assume quasi-stationarity. Each frame is multiplied
by a window function, such as the Hamming window, to reduce spectral leakage.

4.3.2 Autocorrelation Computation

The autocorrelation matrix R and vector r are computed for each frame using the windowed speech samples.
These form the basis for solving the regularized normal equations.

4.3.3 Solving the Regularized Normal Equations

The regularized normal equations (2) are solved iteratively for each frame. The initial frame can use conventional
LP methods to obtain a0. For subsequent frames, the regularized equations ensure smooth transitions in the LP
coefficients. The parameter λ is chosen based on empirical observations or optimization techniques to balance
prediction accuracy and temporal smoothness.

4.4 Applications of Time-Regularized Linear Prediction

Time-Regularized Linear Prediction (TRLP) has proven to be a powerful tool in various speech processing
applications, particularly where the temporal consistency of spectral estimates is crucial. By incorporating a
regularization term that smooths the variation of linear prediction (LP) coefficients over time, TRLP offers
several advantages in terms of robustness, stability, and performance in challenging environments. This section
explores key applications of TRLP, including speech recognition, speaker verification and identification, and
other areas of speech processing.

TRLP is particularly beneficial in applications that require robust and temporally smooth spectral esti-
mates. In traditional LP-based systems, abrupt changes in the spectral characteristics from frame to frame can
lead to reduced performance, especially in noisy or variable conditions. TRLP addresses this issue by enforcing
temporal regularization, which ensures that the spectral features vary smoothly over time. This leads to several
important benefits in various speech processing domains.

In speech recognition systems, the accuracy of recognizing spoken words or phrases relies heavily on the
consistency and reliability of the extracted features. LP-based features, such as the spectral envelope, are
commonly used in automatic speech recognition (ASR) systems. However, these features can be sensitive to
noise and may exhibit variability across frames, which can degrade recognition performance. TRLP mitigates
these issues by promoting temporal smoothness in the spectral features, resulting in more stable and noise-
resistant representations. The regularization introduced by TRLP ensures that the spectral characteristics of
speech remain consistent over time, even in the presence of background noise or other acoustic distortions. This
leads to improved recognition accuracy, particularly in noisy environments, as the system can more reliably
match the stable features to the correct speech models [24, 25].

Another critical application of TRLP is in speaker verification and identification systems. These systems
rely on extracting and modeling unique features from a speaker’s voice to either verify their identity or distinguish
them from other speakers. The temporal regularization in TRLP ensures that the extracted features remain
consistent over time, even when the recording conditions vary or when noise is present. This consistency is
crucial for the reliability of speaker verification systems, as it reduces the likelihood of errors caused by abrupt
changes in the spectral features. In speaker identification, where the system must differentiate between multiple
speakers, TRLP enhances the distinctiveness of the features by maintaining their stability across different
frames, leading to more accurate and reliable identification results [26, 27].

Beyond speech recognition and speaker identification, TRLP is also advantageous in other speech processing
applications that require robustness to noise and temporal stability. For instance, in speech enhancement and
noise reduction systems, TRLP can be used to improve the quality of the enhanced speech by providing more
consistent spectral estimates, which are less affected by transient noise or other distortions. This makes TRLP
an effective approach in scenarios where the speech signal must be processed in real-time and under varying
acoustic conditions [28, 29]. Additionally, TRLP can be applied in speech synthesis, where the smoothness
of spectral features is crucial for generating natural-sounding speech. By ensuring that the spectral envelope
evolves smoothly over time, TRLP contributes to more natural and intelligible synthetic speech, particularly in
dynamic environments where the characteristics of the speech signal may change rapidly [30].
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4.5 Conclusion

Time-Regularized Linear Prediction introduces a temporal smoothness constraint to the traditional LP frame-
work, enhancing its robustness and stability in dynamic and noisy environments (as illustrated in Figure 4.1).
By incorporating regularization, TRLP provides more reliable and accurate spectral estimates, making it valu-
able in various speech processing applications such as noise-robust speech recognition, speech enhancement, and
speaker verification(as illustrated in Figure 4.2). The adoption of TRLP can lead to significant improvements
in performance and reliability, particularly in challenging acoustic conditions.

Figure 4.1: Results of the MFCC distortion test. Rows correspond to different noise types. MFCC distortion
is reported for the direct form (left column) and with CMVN (middle column). The Bhattacharyya distances
DB for phoneme category separability are shown in the right column (Image obtained from [4]).
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Figure 4.2: Frame-wise energy-normalized envelope spectrograms for an one second segment of speech obtained
with the proposed TRLP method (left) and conventional LP (right) in clean (top) and noisy (bottom) conditions
(Image obtained from [4]).
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Chapter 5

Experiments and Results

5.1 Introduction

This chapter presents the experimental setup and results obtained by comparing four different linear prediction
techniques—Fast Fourier Transform (FFT), Time-Regularized Linear Prediction (TRLP), Stabilized Weighted
Linear Prediction (SWLP), and conventional Linear Prediction (LPC). These methods were evaluated based
on their performance in preserving the signal quality across varying noise types and levels. The Mel-Frequency
Cepstral Coefficient (MFCC) distortion metric was used to quantify the distortion introduced by each method.
The experiments were conducted on speech signals corrupted by white noise, babble noise, and pink noise at
different signal-to-noise ratio (SNR) levels. The results are presented using bar plots, heatmaps, line plots, and
3D surface plots to provide a comprehensive comparison.

5.2 Experimental Setup

5.2.1 Noise Types and Levels

Three types of noise were considered in this study:

• White Noise: A type of noise with a flat spectral density, where all frequencies are equally present.

• Babble Noise: Simulates background speech noise, commonly encountered in crowded environments.

• Pink Noise: A type of noise with a power density that decreases with increasing frequency, commonly
found in natural environments.

Each type of noise was added to the speech signals at five different SNR levels: -5 dB, 0 dB, 5 dB, 10 dB,
15 dB, and 20 dB.

5.2.2 Evaluation Metric

The distortion introduced by each method was evaluated using the Mel-Frequency Cepstral Coefficient (MFCC)
distortion metric. The MFCC is a perceptually motivated feature set commonly used in speech processing.
Distortion in MFCCs directly correlates with the perceived quality of the speech signal, making it a suitable
metric for this comparison.

5.2.3 Methods Compared

The following methods were compared:

• Fast Fourier Transform (FFT): A basic spectral analysis technique used as a baseline.

• Linear Prediction (LPC): A conventional method that models the speech signal as a linear combination
of past samples.

• Time-Regularized Linear Prediction (TRLP): An enhanced LP method that includes temporal
regularization to improve robustness in noisy environments.

• Stabilized Weighted Linear Prediction (SWLP): A method that incorporates stabilization and
perceptual weighting to further improve signal fidelity under challenging conditions.
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5.3 Results

5.3.1 Comparison of Signal Distortion Across Noise Types and Levels

Figure 5.1 shows the signal distortion across different noise types and SNR levels for the four methods. The
distortion is generally higher in the presence of white noise, especially at lower SNR levels. Across all noise
types, FFT consistently shows the highest distortion, while SWLP and TRLP perform significantly better,
particularly in babble and pink noise.

Figure 5.1: Signal Distortion Across Noise Types, dB Levels, and Algorithms

5.3.2 Heatmap Analysis of Signal Distortion

Figure 5.2 provides a more detailed analysis using heatmaps that illustrate the distortion levels for each algo-
rithm across the different noise types and SNR levels. The heatmaps reveal that SWLP consistently results in
the lowest distortion across most conditions, particularly in babble and pink noise. TRLP also shows strong
performance, especially at higher SNR levels. LPC shows moderate distortion, generally outperforming FFT
but falling short of TRLP and SWLP.
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Figure 5.2: Heatmap of Signal Distortion Across Algorithms, Noise Types, and dB Levels

5.3.3 Line Plot Comparison of Signal Distortion

To further examine the performance trends of each method across the noise types and SNR levels, Figure 5.3
presents line plots that depict the distortion metrics for each algorithm. These plots provide a clear visual
comparison of how each method’s performance changes with increasing SNR and different noise conditions.

Figure 5.3: Line Plot of Signal Distortion Across Noise Types and dB Levels
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5.4 Discussion

The results clearly demonstrate the advantages of the TRLP and SWLP methods over conventional LPC and
FFT. SWLP, in particular, exhibits superior performance across all noise conditions, which can be attributed to
its stabilization and perceptual weighting mechanisms. TRLP also offers considerable improvements, especially
in dynamic noise environments like babble noise.

The additional line and surface plots further illustrate the consistent trends in performance across varying
noise types and SNR levels.

5.5 Conclusion

The experiments conducted in this chapter show that advanced linear prediction methods like TRLP and SWLP
can significantly reduce signal distortion in noisy environments, outperforming conventional methods such as
FFT and LPC. These results validate the effectiveness of temporal regularization, stabilization, and perceptual
weighting in preserving speech signal quality under adverse conditions.



Chapter 6

Discussion and Future Work

6.1 Discussion

This thesis explored the application of various linear prediction methods for speech signal processing in noisy
environments, focusing on comparing traditional and advanced approaches. The primary contributions include
the implementation and analysis of four distinct algorithms: Fast Fourier Transform (FFT), Linear Predic-
tive Coding (LPC), Time-Regularized Linear Prediction (TRLP), and Stabilized Weighted Linear Prediction
(SWLP). These methods were assessed based on their ability to minimize Mel-Frequency Cepstral Coefficient
(MFCC) distortion across different noise conditions, namely white noise, babble noise, and pink noise.

6.2 Overview of Contributions

A key aspect of this work was the integration and comparison of traditional signal processing techniques (FFT
and LPC) with more sophisticated algorithms (TRLP and SWLP). By doing so, this research provided insights
into the strengths and limitations of each approach, highlighting the importance of advanced regularization and
stabilization techniques in maintaining speech quality under various noise conditions. The analysis was further
supported by detailed visualizations, including bar plots, heatmaps, line graphs, and 3D surface plots, which
collectively illustrated the performance of each algorithm across a range of signal-to-noise ratios (SNRs) and
noise types.

The results revealed that the advanced methods, TRLP and SWLP, consistently outperformed the tra-
ditional FFT and LPC methods. This was evident across all noise environments, where TRLP and SWLP
achieved lower MFCC distortion, indicating a superior ability to preserve the integrity of the speech signal. The
findings underscore the effectiveness of time regularization and perceptual weighting, particularly in challenging
noise scenarios where simple linear prediction models fall short.

The TRLP method, through its temporal regularization, effectively mitigated the impact of dynamic noise,
such as babble noise, which often presents challenges for more static methods like LPC. On the other hand,
SWLP’s stabilization and perceptual weighting mechanisms provided a robust solution across all noise types,
maintaining low distortion levels and ensuring that the processed speech signal remained intelligible and natural-
sounding.

The use of heatmaps and 3D surface plots offered a comprehensive understanding of the distortion patterns,
revealing that while FFT and LPC methods performed adequately in lower noise conditions, their performance
rapidly degraded as noise levels increased. In contrast, TRLP and SWLP maintained consistent performance,
making them more reliable for real-world applications where noise conditions are often unpredictable.

Beyond the performance metrics, this work contributes to the broader field of speech signal processing by
demonstrating the critical role of advanced linear prediction methods in modern applications. The findings
suggest that while traditional methods like LPC have historically been effective, there is significant room for
improvement through the adoption of more advanced techniques such as TRLP and SWLP. These methods not
only improve the robustness of speech signal processing but also open new avenues for research and development
in areas such as real-time noise suppression, speech enhancement, and voice communication systems.

The thesis also underscores the importance of selecting appropriate metrics for evaluating speech processing
algorithms. By focusing on MFCC distortion, a perceptually relevant measure, this work ensured that the
evaluation aligned with human auditory perception, providing more meaningful insights into the practical
effectiveness of each method.
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6.3 Future Work

Future work could involve the exploration of additional linear prediction methods beyond those covered in this
thesis. Techniques such as Generalized Linear Prediction (GLP), Autoregressive Moving Average (ARMA)
models, and machine learning-based approaches could offer further improvements in noise-robust speech pro-
cessing. Comparative studies of these methods in various noise environments could provide deeper insights into
their relative strengths and applicability.

The methodologies and findings from this research could be extended to other types of audio signals, such as
music or environmental sounds. Investigating how TRLP and SWLP perform with these types of signals could
broaden the applicability of these methods and contribute to advancements in fields such as music production,
environmental sound monitoring, and multimedia processing.

Another promising direction for future research is the real-time implementation and optimization of the
methods studied. While the current work was conducted offline, real-time applications, such as in hearing
aids, telecommunication systems, and live broadcast environments, would benefit greatly from these advanced
methods. Research into optimizing the computational efficiency of TRLP and SWLP, perhaps through hardware
acceleration or streamlined algorithms, could make these methods viable for real-time deployment.

While the MFCC distortion metric was effective in this study, future work could explore additional per-
ceptual metrics, such as the Perceptual Evaluation of Speech Quality (PESQ) or the Short-Time Objective
Intelligibility (STOI). These metrics could offer different perspectives on the performance of the algorithms and
help to further refine the evaluation process, leading to more comprehensive assessments of speech processing
methods.

Finally, future research could focus on adapting these linear prediction methods to more diverse and complex
noise environments, including non-stationary noise, impulsive noise, and highly reverberant spaces. Developing
adaptive algorithms that can dynamically adjust their parameters based on changing noise characteristics could
lead to even more robust performance in real-world scenarios, enhancing the reliability of speech processing
systems in various applications.

6.4 Closing Remarks

The research presented in this thesis has laid the groundwork for future advancements in noise-robust speech
signal processing. By demonstrating the efficacy of TRLP and SWLP in various noisy environments, this
work highlights the potential for continued innovation in the field. As speech processing technologies become
increasingly integral to our daily lives, the need for reliable, high-quality methods will only grow. The findings
and future work proposed in this thesis aim to contribute to this ongoing development, driving the field forward
towards more effective and versatile solutions.
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