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Περίληψη

Η ομιλία αποτελεί μία από τις πιο εκφραστικές μορφές επικοινωνίας. Οι εναλλαγές στη
χροιά, τον τόνο, την ταχύτητα με την οποία μιλάμε, όταν πρόκειται για προφορικό λόγο, αυξάνουν
καθοριστικά την εκφραστικότητα μας. Αυτή η παραγλωσσική πληροφορία μας δίνει τη δυνατότητα
να  εκφράσουμε  σκέψεις  και  προθέσεις  πέραν  του  λεκτικού  περιεχομένου.  Μια  πληθώρα
χαρακτηριστικών της φωνής απαρτίζουν το συναίσθημα που εμπεριέχεται σε αυτή, με αποτέλεσμα
να γίνεται αντιληπτή η χαρά, η λύπη, η πλήξη, ο θυμός και άλλα συναισθήματα του ομιλητή.

Στην παρούσα πτυχιακή εργασία θα εισάγουμε το θέμα της συναισθηματικής ομιλίας στον
τομέα της  Επεξεργασίας Φωνής και  θα ακολουθήσει  μια ανάλυση με τη χρήση ενός  Τεχνητού
Νευρωνικού  Δικτύου.  Για  την  εξαγωγή  συναισθήματος  από  το  σήμα  της  φωνής  έχουν
χρησιμοποιηθεί  διάφορες  μέθοδοι  Μηχανικής  Μάθησης,  ωστόσο  εμείς  προτείνουμε  ένα
Συνελικτικό  Νευρωνικό  Δίκτυο,  που  παίρνει  ως  είσοδο  εικόνα  και  εξάγει  κατανομές
συναισθημάτων, από τις οποίες συμπεραίνουμε την τελική ταξινόμιση. Κάνουμε χρήση επίσης μιας
πληθώρας βάσεων δεδομένων, για την εκπαίδευση και την αξιολόγηση του μοντέλου, καθεμία από
τις οποίες ενδέχεται να υποστηρίζει διαφορετικό αριθμό (και είδος) συναισθημάτων. Ωστόσο το
πλήθος τους είναι πεπερασμένο και αναμένεται να εξάγουμε ένα τη φορά για κάθε ηχογράφηση
ομιλίας.

Η τεχνική που ακολουθούμε περιγράφεται αναλυτικά, με τις λεπτομέρειες και τα trade-offs
της,  καθώς  και  μέθοδοι  για  βελτίωση  της  απόδοσης  και  την  ανάκτηση  αμερόληπτων
αποτελεσμάτων.  Παρουσιάζονται,  επιπροσθέτως,  οι  διαδικασίες  της  δειγματοληψίας  και  της
προεργασίας των δεδομένων προτού αυτά εισαχθούν στο Νευρωνικό Δίκτυο. Τελος, παρατίθενται
αποτελέσματα  των  πειραμάτων  που  διεξάχθηκαν  έπειτα  από  ανάλυση  δεδομένων  για  να
αξιολογηθεί το δίκτυο, για κάθε βάση δεδομένων ξεχωριστά.



Abstract
Speech consists one of the most expressive forms of communication. The alternations

in the tone, the volume, the speed, when it comes to oral speech, significantly increase one’s
expressiveness. This paralinguistic information allows the speaker to express thoughts and
intentions apart  from the verbal  content.  A variety of  voice  traits  make up the emotion
contained in it, resulting in perceived joy, sadness, boredom, anger and more.

In this thesis,  we introduce the subject of the expressive speech in the context of
Speech Processing and we follow up with an analysis using a form of Artificial  Neural
Network.  For  the  extraction  of  emotion  from  speech,  a  variety  of  Machine  Learning
techniques  gives  interesting  research  outcomes.  However,  we  propose  a  Convolutional
Neural Network, that takes image input and outputs emotion distributions, from which we
conclude in the final classification. We also make use of a variety of databases,  for the
training and evaluation of the model, where each of them might support different number
(and type) of emotions. However, their number is finite and we expect to extract one at a
time -one for each speech recording.

The technique we follow is described in detail -with all the implicated trade-offs- as
well  as  methods  for  performance  improvement  and  the  acquisition  of  unbiased  results.
Furthermore, we present the processes of data sampling and preprocessing before they get
fed into the Neural Network. Finally, results of the experiments performed for the evaluation
of the network are presented for each database separately.
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Chapter 1

Introduction

1.1 Human Speech

The human voice has two main characteristics; it can be produced by the human body
and it can be perceived as a signal. These mechanisms are related to each other inside
the human brain. As long as our brain receives the voice signals, it creates patterns
that help us recognize henceforth similar signals.
In engineering, we are interested in the processing of this signal in order to create
useful applications. Speaking about language, we refer to something different than
plain voice. The language has structure, while the voice does not. Speech is therefore a
structured form of the human voice that is produced using a language syntax.

In terms of signal processing, it is widely accepted that voice can be modeled with an
input   A that is given to a system B and the result is an output signal C, as shown in
the figure 1 below. The vibration of the vocal folds produces a varying airflow which
may be treated as a periodic signal A, called source,  that  produces a spectrum of
equally-spaced frequency peaks or harmonics, starting with a fundamental frequency
F0.  The resonance frequencies of the vocal tract (F1, F2, F3) are called formants and
they can be displayed as spectral peaks in the frequency response of the vocal tract
filter. This source signal is input to a system B (the vocal tract). The tract behaves like
a variable filter. Its response is different for different frequencies and the frequency
response may be further adjusted by changing the position of the tongue, jaw etc.
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Fig.1 : speech apparatus (top), source-filter model (middle), frequency domain representation
(below) [1] 

Resonance  peaks  (A1,  A2,  A3)  add  gain  to  specific  frequencies  of  the  harmonic
spectrum. The input signal and the vocal tract, together with the radiation properties of
the mouth, face and external field, produce the sound output C. These resonances can
be determined approximately from the formants (peaks) in the envelope of the sound
spectrum. Given a different spectrum A with higher or lower fundamental frequency,
the frequency of the output spectrum C will be different as well.

According to  the  source-filter  theory,  the  vocal-tract  filter  becomes  a  linear  time-
invariant (LTI) system, and an output signal y(t) can be expressed by the convolution
of an input signal x(t) and the impulse response of the system h(t). In discrete time:

That is described with the convolution equation: 

The system with impulse response h[n] modifies the signal x[n] in the appropriate way
so that the output signal y[n] can be rendered differently each time. The role of the
‘system’ is played by the vocal tract. For instance, we set our mouth and articulators in
a  way  to  pronounce  the  phoneme  /a/,  but  in  a  different  way  to  pronounce  the
phoneme /o/.

1.2  Emotion in human speech

This thesis does not focus on features of plain voice but on structured speech, which in
fact, includes information about the emotional state of the speaker. This means speech
does not only bear a message but also paralinguistic information. This is important
because we can understand the emotional condition of the speaker and consider it as a
factor  in  order  to  make  the  appropriate  decisions.  Furthermore,  the  emotion  as  a
phenomenon colours speech and act as a necessary ingredient for natural two-way
communication between humans.
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There have already been developed multiple systems that process the speech signal
and draw conclusions for the emotional state of the speaker using feature extraction.
Systems can use audio only, text only (context-based), image only (face recognition)
or a combination of these types of features (multimodal).  Focusing on audio only
systems, most of them rely on specific features extracted from the speech signal and
fed into a classification algorithm.
It  would be very useful to build systems that  can extract  the emotional state of a
speaker directly from his/her speech signal, without the necessity of linguistic analysis
-just the way that the human brain does!

1.3  Extraction of emotion from speech

One step beyond plain speech recognition lies the recognition of subjective patterns of
speech such as the emotion. For extracting emotion from speech signals, algorithms
that focus on identifying patterns in human speech have been developed. The speech
signal  that  corresponds to  each emotion  is  found to  have  different  characteristics.
Patterns  in  speech  are  described  by  features;  features  are  sets  of  numbers  that
collectively  and  compactly  represent  characteristics  of  the  speech  signal.  In  the
literature, features such as formants, zero-crossing rate, pitch, speech rate, energy, and
loudness  are  often  used  [6].  However,  more  sophisticated  features  such  as  LPC
coefficients, MLPC coefficients, Teager-Kaiser energy, PLPCs, MFCCs, filterbanks,
chroma vectors,  and other spectral properties (centroid, flux, spread, entropy) have
been  successfully  used  [9,  15,  24].  These  data  are  meant  to  be  extracted
“automatically” by the respective pattern recognition system.

1.3.1  Emotion Literature and Classic Methods

Βefore the outburst of CNNs, that are reviewed extensively in the next chapter, aefore the outburst  of CNNs, that  are reviewed extensively in the next chapter,  a
variety of machine learning methods had been developed and used in practice, which
offer  a  great  deal  of  research  outputs  for  speech  emotion  recognition  so  far.
Classification techniques based on  PCA (Principle Component Analysis) [18], LDA
(Linear Discriminant Analysis) [19], SVMs (Support Vector Machines) [17, 20], kNN
(k-Nearest Neighbors) [13, 14], GMMs (Gaussian Mixture Modelling) [9, 16], HMMs
(Hidden Markov Models) [17],  and ANNs (Artificial Neural Networks) [10, 11], are
briefly reviewed.

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are
two major techniques used for dimensionality reduction. These methods reduce the
dimensionality  by  projecting  the  original  feature  space  into  a  smaller  subspace
through a transformation. According to the first one, a linear classifier that separates
the data into the different classes of a dataset has to be found. This is reduced to a
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problem of optimization of a cost function and is usually implemented using iterative
optimization methods (such as Gradient Descent). 

PCA is a method for compressing data into a frame that captures the essence of the
original data. In fact, converts the correlations (or the lack of correlation) among the
data  into  a  lower dimension;  usually  in  2-D or  3-D.  The  samples  that  are  highly
correlated cluster together. Some studies in speech emotion recognition adopted PCA
to analyze the feature sets [18]. Others use LDA, which actually performs better than
PCA in many applications [3, 5]. However, the reduced dimensionality must be less
than the number of classes, which consists a limitation for the technique [8].
A feature selection technique named Sequential Forward Selection [6] combines the
nearest  mean and Bayes  classifier  where  class  PDFs are  approximated via  Parzen
windows  or  modelled  as  Gaussians.  After  selecting  the  best  features,  the
dimensionality is reduced by applying PCA for less computational complexity. 

Support  Vector  Machines  (SVMs)  is  a  natural  extension  of  LDCs  (Linear
Discriminant Classifiers)  which provides good generalisation properties  even for a
large  feature  vector.  The  main  idea  of  SVMs  is  to  move  the  data  into  a  higher
dimension  and  use  a  Support  Vector  Classifier  (SVC)  that  separates  the  higher
dimensional  data into groups.  They use Kernel Functions,  such as the Polynomial
Kernel, to transform the original input set to a high dimensional feature space and
systematically achieve an optimum classification in the new feature space with the
SVC. The results of a relevant survey [7] highlight that the technique can achieve high
emotional classification scores on both male and female speech.

k-Nearest Neighbors (k-NN) classifiers are also popular since the very first studies
[13, 14]. According to this algorithm, a sample is classified by a plurality vote of its
neighbors, with the sample being assigned to the class that is most common among the
k  -already  classified-  samples  whose  feature  vector  has  closer  values  to  the  new
observation. k is a positive, usually small integer. Note that training data normalization
and weight assignment  to the contributions of the neighbors has been proposed to
improve the accuracy dramatically. k-NN turned out to be efficient for acted and non-
acted  emotional  speech  but,  in  accordance  with  LDCs,  show problems  with  “the
increasing number of features that leads to regions of the feature space where data is
very sparse” [4].

A very  powerful  and  popular  soft  clustering  algorithm  is  the  Gaussian  Mixture
Modeling  [16] which is based on the Gaussian (normal) distribution. In effect, each
cluster  is  modeled  according  to  a  different  Gaussian.  This  model  is  commonly
extended to fit a vector of unknown parameters after a several number of iterations
upon the data. This flexible and probabilistic approach to model the data inflects that
rather than having hard assignments into clusters, like on k-means clustering, each
data  point  can  be  generated  by  any  of  the  distributions  with  a  corresponding
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probability. A research [9] upon the performance of GMMs utilises spectral features of
the data and models each emotion as a mixture of Gaussian densities. This method
performed better than k-NN for the Berlin emotional database.

Hidden Markov Models have been used widely for speech recognition and emotional
speech  recognition  [2,  3,  17]  as  well  as  for  a  wider  variety  of  applications  for
sequence  modeling.  They  can  be  considered  as  a  subclass  of  the  framework  of
Dynamic Bayesian Networks (DBNs). It is yet another probabilistic model based on
the Bayes’ theorem that implicates the different states that make up a given dataset. As
we  feed  in  evidence  about  the  observed  acoustic  signal  and  we  run  probabilistic
inference over this  model  what we get  out is  the  most  likely set  of  -in  our case-
phonemes that give rise to the speech signal in question. The overall model can be
viewed  as  graph  with  finite  states  -that  correspond  to  phonemes-  and  transitions,
whose weight values represent the probability P(stateX | stateY) i.e. the probability of
stateX being the next state given that the stateY is true. While they seem unstructured
at the level of random variables, there is a perceived structure that manifests in the
sparsity of the conditional probabilities and also in terms of repeated elements within
the transition matrix. In the emotional speech recognition case, this means that the
same “phoneme” can occur in multiple different acoustic signals and then we can
replicate that structure across the different places where the same pattern can be used
in the signal.

Finally, Artificial Neural Networks (ANNs) is the most used non-linear discriminative
classifier together with decision trees [1]. This model was firstly designed to simulate
the way the human brain analyzes and processes information. ANNs have self-learning
capabilities that enable them to produce better results as more data become available.
Relevant surveys on classic ANN based emotion classification and recognition have
provided interesting results with decent classification accuracy for the most common
emotional states [10, 11].

1.3.2 Deep Learning Methods

Speaking about ANNs, the modern bibliography tends to suggest models that aim to
approach the human brain functionality. In effect, our brain can effortlessly recognize
an image of a number, a shape, or an animal because it is trained to recognize these
elements from a very young age. Thus, our study, closely related to neural networks, is
initially inspired by the human brain, probably the most vital and complex among the
human organs, able to recognize objects/patterns with an incredibly intelligent way.

Considering it as a system, the brain network gets its input from the visual cortex and
then it processes the snapshot it receives internally. As soon as it receives again an
image of a similar object (of the same category) it will most probably “recognize” it.
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The more the images of objects of the same category it receives, the easier for the
brain to recognize similar objects in the future, even if it perceives them for the first
time. Our visual cortex resolves these as representing the same concept. This happens
until the process of recognition becomes trivial for our brain.

Such an idea led to the outburst of  Deep Learning, a popular, modern day batch of
techniques and methods for pattern recognition. Many giant companies (like Google,
Facebook, Amazon, YouTube) use Deep Learning at the core of their services in order
to upgrade the level of data manipulation and services [25]. 

The  first  modern  neural  nets  that  were  used,  known  as  DNNs  (Deep  Neural
Networks),  were composed of simple dense layers.  Afterwards, the introduction of
convolutional, max pooling and other fully connected layers presented a significant
improvement  that  performed  more  effectively  for  special  classification  purposes.
Convolutional Neural Networks (CNNs) for instance, are good for image recognition.
Long short-term memory networks (LSTM) on the other hand are found to be good
for speech recognition.

Deep Neural Networks
DNNs are typically feedforward networks in which data flows from the input layer to
the output layer without looping back. They consist of an input and an output layer of
neurons with inner fully connected layers. A typical DNN is shown in Fig. 2.

Fig. 2: DNN layers (a), Flow of information between the DNN layers (b) [2]

The layers in between are called “hidden layers”. An artificial neural network is called
“deep” when the hidden layers are more than one (usually they are multiple).  The
above  network  consists  of  n  hidden  layers  each  one  of  96  nodes.  Each  node  is
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connected to all the nodes of the next layer. Each one of those connections has its own
weight  associated  with  a  neuron.  Also  each  node  has  a  bias  term.  “Learning”  is
referred to finding the right weights and biases of the network and is achieved during
the part of the network’s training that is called backpropagation.
The classification data feed the network through the input layer and what we expect
from the output is a number that indicates the right class. For an emotional speech
recognition model, each neuron of the last layer represents the probabilistic estimation
of the system on how much the given image corresponds to the given emotion.

Activations in one layer determine the activations of the next layer.  Namely,  each
node called “neuron” holds a value (or set of values) and each connection holds a
relevant  weight.  Accordingly,  each  node  of  a  hidden  layer  is  going  to  receive  a
weighted sum calculated from the previous layer, described as follows:

When we compute a weighted sum like this, the result might be any number. For these
networks however, we want the activations to be some value between [0 , 1]. The
range  is  selected  for  two  reasons:  first  to  introduce  non-linearities  and second  to
obtain a probabilistic output.  This is why we use a function that squishes the real
number line into this range. A common function that does this is the sigmoid function:

      Fig. 3: The sigmoid activation function

Apparently,  the  very  negative  values  converge  to  0  and  the  very  positive  ones
converge to 1.
Therefore  the  new  computed  sum  is  enclosed  by  the  “activation”  function  and
becomes as follows:
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The weights indicate what pixel pattern this neuron in the next layer is picking up on,
and the “Bias” scalar indicates how high the weighted sum needs to be before the
neuron starts getting meaningfully active. That is just the connection of one neuron
with all the neurons of the previous layer. In linear algebra:

By calculating the inner product for each row with the vector and then adding the
biases we get a vector where each value corresponds to a neuron. After wrapping up
these results by an activation function, for instance a sigmoid (as shown above) or
ReLU, we get an activation layer ready to pass through the next layer. Thanks to the
activation functions, neural networks are effective in modeling nonlinear mappings.

Training
During training, data may pass through the network multiple times. The number that
indicates one single feedforward passage of full trainset is called an  epoch. In one
epoch, data can be split  to smaller  batches  that feed the network all  at once. The
overall dataset can be split into training, validation and test data. In order to evaluate
a model we use  performance metrics,  like accuracy. The training accuracy, is the
average  accuracy  the  network  achieves  in  one  training  epoch  on  the  validation
(tuning) subset, while the test accuracy is the average accuracy of the network for a
given test set (separate from the train set) after one training period. In both cases a
forward propagation happens and once the final calculated values reach the output
layer, we normally possess a number that represents the possibility for each class to be
the right  one (and finally  pick the  one with the  highest  possibility).  A significant
distinction here, is that during training we also have backpropagation, which means
that the network is updating its weights and biases, while during testing we do not.
The only purpose in the last  case is  to  educe the results  from a network that  has
previously learnt to recognize the target patterns. Every single train statistic (mean
accuracy, standard deviation) contributes to the overall accuracy of the epoch.
Moreover,  data can be  labeled (hold the name of the class) or  unlabeled.  During
training, data -usually- are labeled. When we use a validation set (different than the
trainset) to pass data through the network after the training process, these data are also
labeled.  By  making  this  step,  we  aim  to  examine  whether  our  network  performs
“overfitting”  upon  the  training  set.  That  is,  to  test  whether  our  network  makes  a
sufficiently accurate classification into data in which it has not yet been trained, or it
fits exactly against its training data in a way that leads to misclassifications over the
new data.  This  behavior  is  explained more extensively in a subsequent  section of
Chapter 2. Finally, the testing data are fed into the network, which are unlabeled. In
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fact, it is really common for the test set to perform the activity of the validation and
testing at the same time.

1.3.3  Data Bases

The majority of emotional speech data collections encompasses six or seven emotions,
although the emotion categories are much more in real life. Although today there are
two  predominant  approaches  for  the  emotion  representation,  we  followed  the
approach  that  categorizes  the  emotions  in  discrete  classes.  The  other  approach
categorizes each emotion according to a tuple of speech specifications;  arousal and
valence. Respecting the first approach, the most common emotions are: anger, fear,
sadness, joy and surprise. Non-basic emotions are called ‘‘higher-level’’ emotions and
they are rarely represented in emotional speech data collections. In order to validate
our model we used a variety of datasets.

The overall datasets we used for our experimental work are briefly the following:

Berlin
German database consisting of 535 samples. The emotions it provides are 'neutral', 
'anger', 'boredom', 'disgust', 'fear', 'happiness' and 'sadness'.

AESI
Greek database consisting of 696 samples. The emotions it provides are 'anger', 'fear', 
'joy', 'neutral' and 'sadness'.

SAVEE
English database consisting of 480 samples. The emotions it provides are 'anger', 
'fear', 'disgust', 'neutral', 'happiness', 'sadness' and 'surprise'.

TESS
British english database consisting of 2800 samples. The emotions it provides are 
'anger', 'fear', 'disgust', 'neutral', 'happiness', 'sadness' and 'surprise'.

CaFE
French database consisting of 936 samples. The emotions it provides are 'anger', 
'disgust', 'happiness', 'neutral', 'fear', 'surprise' and 'sadness'.

RAVDESS
English database consisting of 1140 samples. The emotions it provides are 'neutral',
'calm',  'happy',  'sad',  'angry',  'fearful',  'disgust'  and  'surprise'.  For  this  dataset
specifically, we had to eliminate the long silences at the beginning and at the end of
the signals, as they spoiled the performance when using augmentation.

In further detail:
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The Berlin Emotion Speech Database (BES) is the most often used database in the
emotional speech processing community. It  is an acted emotional content database
created by the audio recordings of ten actors; five male and five female of age 21-35
years.

Athens Emotional States Inventory (AESI) [see web resources, 6]  is a dataset in
Greek containing audio recordings of five categorical emotions. The items of the AESI
consist of 35 sentences each having content indicative of the corresponding emotion.
The resulting data include recordings from 20 participants (12 male, 8 female), which
resulted in 696 utterances.

Surrey Audio-Visual Expressed Emotion (SAVEE) database [see web resources, 7]
has been recorded as a pre-requisite  for the development of an automatic emotion
recognition  system.  The  database  consists  of  recordings  from 4  male  actors  in  7
different emotions, 480 British English utterances in total.

Toronto Emotional Speech Set (TESS) [see web resources, 8] is a collection of 200
target words spoken in the carrier phrase "Say the word _____' by two actresses (aged
26 and 64 years). Recordings were made of the set portraying each of seven emotions.
There are 2800 stimuli in total.

The  Canadian French Emotional  (CaFE) speech dataset  [see  web resources,  9]
contains six different sentences, pronounced by six male and six female actors, in six
basic emotions plus one neutral emotion, composing 936 utterances in total. The six
basic emotions are acted in two different intensities.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
[web resources, 10] contains recordings of 24 actors (12 male, 12 female), vocalizing
two lexically-matched statements in a neutral North American accent.  The different
emotions count to 8 and the vocal channel is either speech or song. There are also two
different  emotional  intensities  provided  (except  neutral  emotion).  For  our
experimental  work,  we used the audio-only modality format,  which contains 1440
utterances. Nevertheless, the RAVDESS collection includes 7356 files in total (1440
speech,  audio-only  +  1012  song,  audio-only  +  2880  speech,  video  +  2024  song,
video).

All  databases  were  sampled at  16kHz,  except  CaFE that  was  initially  sampled at
192kHz  (we  used  the  downsampled  version  of  48kHz)  and  SAVEE  at  44.1kHz.
However they were both resampled to 16kHz for consistency reasons.
Whether  the classification model is  speaker  dependent,  that  is,  the training corpus
includes  speech samples from the same speaker,  is  a  matter of  choice,  as  we can
choose to remove completely a speaker from the training set and add them only to the
test  set.  However,  a  real-life  emotion  recognition  system  should  be  speaker-
independent [12].
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1.4  Objective of the work

Developing and training a neural network has been initially inspired by the human
brain functionality -in order to deploy effective systems analogous to the effectiveness
of the human brain to recognize patterns. However, the relation between the biological
brain and the deep neural networks nowadays is negligible. The objective of our work
consists of the computer-based extraction of speech emotion using a convolutional
neural network.

1.5  Outline

The rest of this thesis report is organized as follows. Chapter 2 introduces the idea of
convolutional neural  networks  as well  as  their  functionality in  depth by analysing
more  extensively  the  training  process.  For  this  purpose,  we  shall  describe  its
components  and  methods  that  are  used  for  training  and  optimization.  The  same
chapter details issues of sampling and preprocessing. It also presents the architecture
of  our  model  for  speech  emotion  recognition  as  well  as  performance  issues.
Experimental results of the network’s overall performance for all the data bases in
combination  with  the  related  confusion  matrices,  are  presented  and  discussed  in
Chapter 3. Finally, Chapter 4 gives concluding remarks.
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Chapter 2

Convolutional Neural Networks

2.1 Introduction

Convolutional Neural Networks have been one of the most influential innovations of
the last  decade in the field of Data Science and Computer Vision.  It  has been an
efficient technique for pattern recognition and works in a remarkably effective way for
image inputs. In fact, the term usually refers to a 2-dimensional CNN which is used
for  image  classification.  But  there  are  two  other  types  of  Convolution  Neural
Networks used in the real world, which are 1-dimensional and 3-dimensional CNNs.

Fig. 4: The core of a Convolutional Neural Network for image input [3]

The difference between a simple DNN, as described in the introduction section, and a
CNN lies in the hidden layers part. Convolutional layers are different from standard
(dense) layers of canonical ANNs, and they have been invented to receive and process
pixel data.
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The input layer consists of the image we want to classify and the output layer is a fully
connected  layer  that  outputs  the  predicted  class.  Intermediate  layers  perform
convolutional and pooling operations consecutively. Note, that such a model requires
image data as input, while the data we possess are speech. In this case, one has to
make the appropriate transformations in order to conform with this architecture.

2.2 Training and assessment

Respectively with the description of the training process in the introduction, which is
similar for all the neural networks, the overall data are divided into a training and a
test set. For the network training, 90% of the dataset is usually used, while the rest
10% is used for testing. This happens in a loop of 10 folds each one constituted of a
90-10 analogy of the data set.  This method is called cross-validation and is explained
in more detail in paragraph 2.2.5.
For the assessment,  we usually consider the validation loss or validation accuracy
throughout cross-validation, and of course, the test set, for whom the evaluation we
shall choose a metric such as the accuracy (for balanced datasets) or f1-score (for
imbalanced datasets).

2.2.1 Layers

A convolutional neural network normally consists of three major layers; convolution
layer, pooling layer and a fully connected layer. The first two layers can be repeated
depending on the depth of the network. The last one is usually placed at the end as a
simple dense layer.

Convolutional layers are the layers where filters are applied to the original image, or
to  other  feature  maps  in  a  deep  CNN.  This  is  where  most  of  the  user-specified
parameters are in the network. The most important parameters are the number and the
size of the kernels. Kernels are basically the filters that are applied on a small region
of the image.  The kernel size here refers to the width x height of the filter mask.
Common choices for kernel size are 3x3 (below case) and 5x5.  The values in the
filter/kernel are called weights. Each weight determines how important the pixel is in
forming the output image (feature map). 
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The convolution operation above, between the original input matrix (a) and the filter
(b) is applied successively upon 3x3 areas of the input matrix. By default,  a filter
starts at the upper left corner of the image with the left-hand side of the filter sitting on
the far left pixels of the image. The filter is then stepped across the image one column
at a time until the right-hand side of the filter is sitting on the far right pixels of the
image. The “sliding” of the filter upon the matrix is called stride, and is usually equal
to 1. When the stride is 2 or more (though this is rare in practice), then the filters move
2 or more pixels at a time. The result is the matrix (c) that consists the output “image”
of the convolutional layer  and is  used as an input for  the  next  layer.  Actually no
convolution  is  performed,  but  a  cross-correlation.  The  following  calculations  are
performed to produce the upper right digit of the output matrix (c):

The size of the output image is based on the formula: (I – F + 2P)/S + 1
Here in the example the input size (I) is 5, filter (F) is 3, padding (P) is 0, and stride(S)
is 1. So the output size = (5 – 3 + 0) / 1 + 1 = 3 (matrix c).

Fig. 5: simple convolution upon MNIST handwritten digit (top), 
multiple convolutions (below) [4]

In order to extract the most important features through network training, we perform
multiple convolutions, each using a different filter, which will result in the creation of
many distinct  feature maps. The latter ones are the convolved output matrices that
contain information about the predominant features. We finally stack all these feature
maps together and get the output of the convolution layer.
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In realistic examples, however, there is a significant disadvantage. The corner pixels
do not contribute as much in feature detection. Furthermore, while the filter is sliding
over the input image it performs linear computation which can apparently reduce the
dimensionality of the initial matrix in the process of extracting the important features.
For this reason, the need arose to add some padding around the outline of the image,
in  order  to  keep  the  original  dimensions  throughout  convolutions,  and  train  the
network with the most important features subsequently.

Fig. 6: Zero padding added to image

It is usually useful to have a pad such that the size of the convolved output is same as
the input size. So the size of the feature map is controlled by 3 parameters that we
need to decide before the convolution step: depth (the number of filters we use), stride
and zero-padding.

In  the  normalization  step  that  follows,  we  apply  the  activation  function;  ReLU
(Rectified Linear Unit) / Sigmoid. An image may have pixel values ranging from 0 –
255. However, neural networks work best with scaled “strength” values between 0 and
1. In practice the input image to a CNN is a grayscale image ranging in pixel values
between 0 (black) and 1 (white). Converting an image from a pixel value range of 0 –
255 to a range of 0 – 1 is called normalization. In CNN the normalized input image is
filtered and then a convolutional layer is created. Pixel values in the filtered image
may fall into different ranges that may contain negative values as well, so to take care
of  this  we apply the  activation function.  In  CNN we often use  ReLU (instead of
Sigmoid)  which  simply  turns  negative  pixel  values  to  0.  Convolution  is  a  linear
operation -element wise matrix multiplication and addition- so we account for non-
linearity by introducing a function like ReLU.

The  main  goal  of  the  pooling  layer,  that  follows  the  convolution  layer, is
dimensionality reduction, meaning reducing the size of an image by keeping a single
value  from  a  given  window.  The  most  common  type  of  pooling  layer  is  the
maxpooling  layer. This operation breaks an image into smaller patches, and  returns
the pixel with maximum value from a set of pixels within a patch, subsampling the
input matrix. A maxpooling layer is defined by a patch size and stride. For a patch size
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of 2×2 and a stride of 2, this window will perfectly cover the image. A simple example
of 4x4 input matrix is shown in Fig. 7.

   Fig. 7: Max Pooling

The last layer of CNN is the fully connected layer. Every output that is produced at
the end of the last pooling layer is an input to each node in this fully connected layer.
The role of the fully connected layer is to produce a list of class scores and perform
classification  based  on  image  features  that  have  been  extracted  by  the  previous
convolutional and pooling layers. So, the last fully connected layer will have as many
nodes as there are classes and the sum of output probabilities from the fully connected
layer is 1.

2.2.2 Optimization methods

Deep learning is an iterative process. With so many parameters to tune and methods to
try, it is important to be able to train models fast, in order to quickly complete the
iterative  cycle.  This  is  key  to  increasing  the  speed  and  efficiency  of  a  machine
learning model. Hence the importance of optimization algorithms such as stochastic
gradient descent, min-batch gradient descent, gradient descent with momentum and
the Adam optimizer, among others.  These methods make it possible for our neural
network  to  learn,  however,  some of  them perform better  than others  -for  specific
purposes- in terms of speed.
Essentially what we need to do is to compute the loss, which represents how poorly
the model performs each time, and try to minimize it, because a lower loss means our
model is going to perform better.  The process of minimizing (or maximizing) any
mathematical expression is called optimization.

Optimizers  are  algorithms or  methods  used  to  change  the  attributes  of  the  neural
network such as weights and learning rate to reduce the losses and to provide the most
accurate results possible. They solve optimization problems by minimizing the  cost
function. A cost function is a single value, not a vector, because it rates how good the
neural network did as a whole with respect to the expected output.
Specifically, the latter one is a function with the following parameters:

C(W, B, Sr, Er)
where  W is our neural network's weights,  B is our neural network's biases,  Sr is the
input of a single training sample, and Er is the desired output of that training sample
[11].
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Initially, it is impossible to know exactly what our model’s weights should be right
from the start. But there are methods proposed in the literature on how to initialize a
DNN  [26].  All  the  optimization  algorithms  below  can  be  used  when  training  a
machine learning model for minimization of the network’s loss and configuration of
its optimal parameters subsequently.

Gradient descent

Gradient  descent  is  an  optimization  algorithm  for  finding  a  local  minimum  of  a
differentiable  function.  It  is  used  to  find  the  values  of  a  function’s  parameters
(coefficients)  that  minimize the  loss/cost  function  as  far  as  possible.  The gradient
descent  method  starts  by  defining  the  initial  parameters’ values  and  thereafter  it
utilizes  calculus  to  iteratively  adjust  the  values  so  they  minimize  the  given  cost
function  (Least  Squares  for  instance). The  weight  is  initialized  using  some
initialization  strategies  and  is  updated  with  each  epoch  according  to  the  update
equation.

The above equation computes the gradient of the cost function J(θ) with respect to the
parameters / weights θj for the entire training dataset. θj  essentially represents the step
size,  α  is  the  learning  rate,  and  the  partial  derivative  of  the  cost  function  above
represents the slope.

Fig. 8: Gradient descent for minimizing the cost function [12]
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Our aim is to get to the bottom of our graph, or to a point where we can no longer
move downhill – a local minimum.

The size of the steps gradient descent takes into the direction of the local minimum is
determined by the  learning rate, which figures out how fast or slow we will move
towards the optimal  weights.  It  is  important  to assign an appropriate value to  the
learning rate -neither too big nor too small- because if the steps it takes are too big, it
may not reach the local minimum as it will bounce back and forth between the convex
function of gradient descent (see left image below). If we set the learning rate to a
very small value, gradient descent will eventually reach the local minimum but that
may take a while (see right image below).

Fig. 9: The results of big learning rate (left) and small learning rate (right) 
throughout gradient descent [13]

Stochastic Gradient Descent (SGD)

SGD algorithm is an extension of the Gradient Descent and it overcomes some of the
disadvantages  of  the  GD  algorithm.  Gradient  Descent  has  a  disadvantage  that  it
requires a lot of memory to load the entire dataset of n-points at a time to compute the
derivative of the loss function.  In the SGD algorithm derivative is computed taking
one point at a time.

For  each training example  x(i)  and label y(i),  SGD performs a parameter  update  as
follows:
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Fig. 10: GD vs SGD [14]

the star denotes a minimum of the cost

For  each example  above,  we  take  a  Gradient  Descent  step.  On the  left,  we  have
Gradient Descent (1 step per entire training set) and on the right we have Stochastic
Gradient  Descent  (1  point  per  step).  SGD  leads  to  many  oscillations  to  reach
convergence, but each step is a lot faster to compute for SGD than for GD, as it uses
only one training sample (in contrast with the whole batch for GD). Typically, to get
the best out of both we use Mini-batch gradient descent (MGD) which looks at a
smaller number of training set examples at once.

Mini-batch gradient descent (MB-SGD)

MB-SGD algorithm is  an  extension  of  the  SGD algorithm and  it  overcomes  the
problem of large time complexity in the case of the SGD. MB-SGD takes a batch of
points or subset of points from the dataset to compute the derivate. For every mini-
batch of n training examples it performs a following update:

The update of weight is dependent on the derivate of loss for a batch of points. The
updates in the case of MB-SGD are much noisy because the derivative is not always
towards minima. MB-SGD divides the dataset into various batches and after every
batch, the parameters are updated. This way, it reduces the variance of the parameter
updates,  which can lead to  more stable  convergence,  and can make use  of  highly
optimized matrix optimizations common to state-of-the-art deep learning libraries that
make computing the gradient w.r.t. a mini-batch very efficient. 

Common  mini-batch  sizes  range  between  50  and  256,  but  can  vary  for  different
applications. Mini-batch gradient descent is typically the algorithm of choice when
training a neural network.
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Fig. 11: SGD vs Mini-batch GD [15]

“+” denotes a minimum of the cost

Gradient descent with momentum

Gradient  descent  with momentum involves  applying exponential  smoothing to  the
computed gradient. This will speed up training, because the algorithm will oscillate
less towards the minimum and it will take more steps towards the minimum.
The algorithm does this by adding a fraction γ (gamma) of the update vector of the
past time step to the current update vector:

Now, the weights are updated by θ = θ – υt. Note that some implementations exchange
the signs in the equations.
The momentum term γ (usually set to 0.9 or a similar value) increases for dimensions
whose  gradients  point  in  the  same directions  and reduces  updates  for  dimensions
whose  gradients  change  directions.  As  a  result,  we  gain  faster  convergence  and
reduced oscillation.

Adaptive Moment Estimation (Adam)

Adam [21] is another optimization method that computes adaptive learning rates for
each  parameter.  In  addition  to  storing  an  exponentially  decaying  average  of  past
squared  gradients  υt,  Adam also  keeps  an  exponentially  decaying average  of  past
gradients mt, similar to momentum. Whereas momentum can be seen as a ball running
down a slope, Adam behaves like a heavy ball with friction, which thus prefers flat
minima in the error surface [22]. We compute the decaying averages of past and past
squared gradients mt and υt respectively as follows:

mt and  vt are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, hence the name of the method.
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2.2.3  Overfitting

Having  such  a  large  number  of  parameters  inside  a  neural  network  has  another
drawback:  overfitting.  Overfitting  is  a  phenomenon  that  occurs  when  a  machine
learning algorithm attaches too much to the training data provided and loses the ability
to generalize. The neural network must learn different interpretations for something
that is possibly the same. However, when the model trains for too long on sample data
or  when the  model  is  too complex,  it  can start  to  learn the  “noise,”  or  irrelevant
information,  within the dataset.  When the model memorizes the noise and fits  too
closely  to  the  training  set,  the  model  becomes  “overfitted,”  and  it  is  unable  to
generalize well to new data. If that is the case, then it will not be able to perform the
classification or prediction tasks that it was intended for.

Low error rates and a high variance are good indicators of overfitting. In order to
prevent this type of behavior, part of the training dataset is typically set aside as the
“test set” to check for overfitting. If the training data has a low error rate and the test
data has a high error rate, it signals overfitting.

2.2.4 Dropout

It is quite common for a deep neural network to train for a significant time period, or
train without enough data. A fully connected layer occupies most of the parameters,
and hence, neurons develop co-dependency amongst each other during training which
curbs the individual power of each neuron leading to overfitting of the training data.

In  machine  learning,  regularization is  way  to  prevent  overfitting.  Regularization
reduces this behavior by adding a penalty to the loss function. By adding this penalty,
the model is trained such that it does not learn interdependent set of features weights.
Dropout is a method that offers a computationally cheap and effective regularization
method to reduce overfitting and improve generalization error in deep neural networks
of  all  kinds,  by  randomly  dropping  out  neurons  during  training  (Fig.  11  below).
Hence, it helps reducing interdependent learning amongst the neurons.

Specifically, during the training phase, for each hidden layer, for each training sample,
for each iteration, dropout forces the network to “ignore” (zero out) a random fraction,
p,  of nodes and corresponding activations. During test  phase, the network uses all
activations,  but  reduces  them  by  the  same  factor  p (to  account  for  the  missing
activations during training).
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Fig. 12: Neural network before (a) and after 
(b) applying dropout [27]

Implementing dropout is easy, if there is a fully connected layer at the end of the
convolutional network. The Keras Dropout layer randomly sets input units to 0 with a
frequency of rate at each step during training time. Parameter ‘rate’ is a float between
0 and 1 that describes the fraction of the input units to drop. ‘noise_shape’ is a  1-D
integer  tensor  representing  the  shape  of  the  binary  dropout  mask  that  will  be
multiplied with the input and finally the ‘seed’ is a Python integer to use as random
seed. The default interpretation of the dropout hyperparameter ‘rate’ is the probability
of training a given node in a layer, where 1.0 means no dropout, and 0.0 means no
outputs from the layer. A good value in general for dropout in a hidden layer has been
found to be between 0.5 and 0.8.

2.2.5 Cross-validation

Cross-validation is a resampling procedure used to evaluate machine learning models
on a limited data set. The procedure has a single parameter called k that refers to the
number of groups that a given data set is to be split into. As such, the procedure is
often called k-fold cross-validation. When a specific value for k is chosen, it may be
used in place of k in the reference to the model, such as k=10 becoming 10-fold cross-
validation.

It is a very popular technique as it is simple and, at the same time, it generally results
in a less biased or less optimistic estimate of the model skill than other methods, such
as a simple train/test split. In k-fold cross-validation, the dataset passes through the
network as many times as k indicates, in a way that each time (among the k-folds) the
test set used for the evaluation is different. Hence the network is trained multiple times
upon different training and test data, which however belong to the same dataset.
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Fig. 13: k-fold cross-validation when k=5 [12]

In the example above, the blue squares constitute the evaluation part which, in this
case, is the 1/5  of the dataset, and the rest of them are the training folds. As we can
observe, at every row the evaluation set is different and the performance of every fold
may vary. The average of the performances (k=5 overall) is calculated as the final
estimated performance of the model.
Cross-validation is a useful technique when we don’t  possess enough data for our
training -which happens very often in practice- or we want to evaluate our model more
objectively with low cost. There are many variations of the technique, like the Leave-
one-out Cross-Validation (LOO), which as the title dictates leaves one sample out of
the  whole  dataset  to  use  for  evaluation  and  uses  the  rest  of  them  for  training.
Obviously, in this case, the number of folds equals the number of instances in the
dataset. Nevertheless, the most popular and adequately efficient case is 10-fold cross-
validation, that we also use in our speech emotion recognition model.

2.3  Sampling

In this paragraph, we are going to introduce topics of the speech sampling process,
which is conducted in order to constitute the datasets we use. The emotion per se, is
educed by the speech signal that has been sampled under the appropriate conditions.
Usually,  persons  that  express  these  records  are  specialized actors  in  order  for  the
emotion to be as much as real and spontaneous. These records are stored on a database
so that we can use them to create subsequently spectrogram images (the actual input
of the network).
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According to a research [23],  acted speech from professionals  is the most reliable
because professionals are trained to color speech by emotions and such emotions have
a great amplitude or strength. Nevertheless,  when the emotion is acted, it cannot be
absolutely correlated to real conditions. The best practice is to get our samples from
real  situations,  so  we can  work  with  datasets  that  include  spontaneous records  of
speech, which yet has privacy constraints of personal data. In fact, the most important
finding so far is the lack of data for research on spontaneous/real-life speech, both in
terms of data collections and features.
On  the  other  hand  comes  the  trade-off  of  emotional  subjectivity;  assigning  one
emotion to one situation seems fluid problem because as mentioned,  emotions are
subjective and secondly, in natural situations emotions can be contrasted [1]. In any
case, by using a plurality of data bases we hope to achieve unbiased results as far as
possible.

2.4  Preprocessing

Since our research is on speech and the emotion that frames it,  the initial signals are
converted for the needs of feeding the CNN, so the final samples that are given to the
network are in image format.  More specifically, our data are imprinted on the visual
representation of the spectrum of frequencies of each speech signal as it varies with
time; that is a special type of representation that is called spectrogram. Spectrograms
are turned into images in order to feed the neural network.

Fig. 14: Wide-band spectrogram from the Berlin dataset in gray scale. 
Emotion: anxiety/fear
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The  spectrum of  speech  reveals  information  on the  formants,  that  are  one  of  the
quantitative characteristics of the vocal tract. This is the reason we used wideband
spectrograms instead of narrowband, as we can educe more information related to the
vocal cords. Narrowband spectrograms on the other hand, provide information about
the individual harmonics of the voice source.

Fig. 15: A wide-band (top) and narrow-band (middle) spectrograms 
are shown along with the speech signal from a female speaker (bottom),

 used to derive them. The spoken sentence is: "to the third class" [20]

The spectrogram of Fig.  14 is  an example of  the images we use for our training,
however we implement some transformations before sending them to the model. The
final resolution of our images is 129x129 pixels which is a relatively low resolution
resulting from data compression. We also transform the spectrogram to the range 0-4
kHz and apply z-normalization at the end. So, for instance, the spectrogram of Fig. 14
after the preprocessing procedure is transformed as shown in Fig. 16.

By  the  way,  after  each  layer  the  initial  image  is  reduced  and resized,  it  changes
according  to  the  DNN  specifications.  Namely,  convolutional  layers  sequentially
downsample  the  spatial  resolution  of  images  while  expanding  the  depth  of  their
feature maps.  This  series of  convolutional transformations can create much lower-
dimensional and more useful representations of images than what could possibly be
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hand-crafted. So what we get in the first layer with 129x129 pixel neurons undergoes
extensive processing throughout the next DL procedure (training).

Fig. 16: Spectrogram after reducing length (left), 
and after resizing and z-normalization (right)

2.5  Data Augmentation & Performance

The  broader  idea  of  Data  Augmentation  encompasses  a  suite  of  techniques  that
enhance  the  size  and  quality of  training  datasets  such  that  better  Deep  Learning
models can be built using them. It consists a data-space solution to the problem of
limited  data,  which  is  evident  for  many  data  bases  we  used,  and the  problem of
overfitting that also leads to misclassification all along the model evaluation.

Some of the data bases we used do not contain the number of samples we need to have
representative results, so we used data augmentation with adding small noise to the
signals,  without  changing  other  speech  features.  Instead  of  performing  image
augmentation, we augmented the original speech signals by including white Gaussian
noise of 15dB SNR (at a given Signal-to-Noise Ratio). This way, the initial set of
samples augmented to 2x and then to 10x for more extensive and unbiased training.

To avoid misclassifications caused by silence injection at the beginning and at the end
of the speech signal, after the augmentation of the dataset by adding noise, we used a
Voiced-Unvoiced-Silence detector (VUS) in MATLAB that calculates the energy of
each 30 ms frame of the signal and eliminates the silent frames, and the total duration
of the audio by extension. This step was especially useful for the RAVDESS data
base, whose original samples include signigicantly long silences at the beginning and
at the end of the signal.  Before silence detection,  it  seemed that  the network was
learning the noise we injected through augmentation.
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What we need is to train our model with minimum memory and time resources as well
as achieve simplicity. Performance may vary from one dataset to another. Also the
increase of the number of epochs optimizes the results. However, our focus is to keep
the network simple without adding extra layers and also keep the number of epochs
stable  to  100.  Data  augmentation  manages  to  “fake”  a  bigger  dataset,  although it
increases a lot training time.

2.6  Model Architecture

The network we propose is being trained to recognize emotions, providing a classifier
algorithm of a CNN with two convolutional layers. After each convolution follows the
max pooling layer as well as padding.  This network is called 2-dimensional CNN
because the kernel slides along 2 dimensions on the data. The activation function we
use after the convolution is ReLU. Filter sizes may vary; they are 5x5 matrices but for
some  data  sets  we  observe  that  10x10  filters  on  the  first  layer  perform  as  well
decently. The base architecture with the corresponding parameter values is shown in
the  flowchart  below.  The  value  of  dropout  is  set  to  0.2,  however,  the  bigger  the
augmentation we had, the bigger the dropout we used so it reached as well the value
of 0.5 for the ten-fold datasets.
We  implement  the  model  using  the  keras  library  with  our  modifications.  All
experiments are run on a single GPU. All the models are trained/tested based on the
same implementation as shown in Fig. 17.  This simple architecture consists the core
of our network and achieves the results listed in Chapter 3.
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   Fig. 17: Convolutional Neural Network architecture flowchart
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Chapter 3

Experiments and Results

In this section we will review some measurements of the model’s performance and
make relative conclusions regarding the results. Berlin Emotional Speech (BES) is the
first dataset that we worked with and thereafter we also turned to other datasets in
order to validate the model’s performance more thoroughly.

The results of each dataset for different runs of the model are shown below. Accuracy
results and confusion matrices of the latest runs are listed at the end of the chapter for
each dataset.

Berlin

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 57.570 +-4.949

5x5 5x5 0.3 x2 77.888 +-4.884

5x5 5x5 0.5 x10 87.720 +-4.709

10x10 5x5 0.2 no 58.224 +-4.117

10x10 5x5 0.3 x2 77.944 +-6.554

10x10 5x5 0.5 x10 87.458 +-7.852

AESI

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 80.714 +-1.498

5x5 5x5 0.3 x2 84.511 +-10.649

5x5 5x5 0.5 x10 91.595 +-3.565
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10x10 5x5 0.2 no 79.571 +-2.478

10x10 5x5 0.3 x2 88.649 +-2.711

10x10 5x5 0.5 x10 92.529 +-2.983

SAVEE

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 42.604 +-2.612

5x5 5x5 0.3 x2 49.542 +-6.831

5x5 5x5 0.5 x10 68.771 +-5.653

10x10 5x5 0.2 no 45.521 +-2.836

10x10 5x5 0.3 x2 53.667 +-8.756

10x10 5x5 0.5 x10 70.625 +-4.934

TESS

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 99.464 +-0.505

5x5 5x5 0.3 x2 88.450 +-3.434

10x10 10x10 0.2 no 97.982 +-2.606

10x10 10x10 0.3 x2 67.425 +-35.368

10x10 5x5 0.2 no 99.018 +-0.918

10x10 5x5 0.3 x2 87.614 +-4.426

CaFE

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 25.426 +-3.790

5x5 5x5 0.3 x2 65.256 +-9.469

5x5 5x5 0.5 x10 71.100 +-9.157

10x10 5x5 0.2 no 25.000 +-2.540

10x10 5x5 0.3 x2 58.739 +-7.121

10x10 5x5 0.5 x10 73.098 +-6.482
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RAVDESS

Filter Size 1 Filter Size 2 Dropout Augmentation Accuracy (mean - std)

5x5 5x5 0.2 no 63.646 +-2.914

5x5 5x5 0.3 x2 59.160 +-4.868

5x5 5x5 0.5 x10 61.264 +-6.213

10x10 5x5 0.2 no 66.285 +-2.367

10x10 5x5 0.3 x2 55.014 +-6.366

10x10 5x5 0.5 x10 59.611 +-5.470

As we can observe our learning method has a different effect on each dataset, but still
works better for datasets  with higher  amount  of samples.  This  verifies  that  neural
networks achieve higher classification accuracy as the given data increases. TESS that
achieves the best results, is the biggest dataset between all of them, and additionally,
its speech signals are similar except a few words -usually- at the end of the phrase.
What actually changes between phrases of the same linguistic content is the prosody
of the voice, which is the essential substance of the emotion.
Another factor that must not be neglected is that the number of emotions in the data
collections is not the same for all of them. It varies from 5 to 8, and -as known- the
more the choices, the less the possibility of choosing the right one incidentally. AESI
contains the least emotional states. On the other hand, RAVDESS contains the most.

Accuracy results and Confusion Matrices:
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        Berlin: mean accuracy and standard deviation

            AESI: mean accuracy and standard deviation

 
         CaFE: mean accuracy and standard deviation

    

      RAVDESS: mean accuracy and standard deviation
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        SAVEE: mean accuracy and standard deviation

 
        TESS: mean accuracy and standard deviation

33



Chapter 4

Conclusion and Future Work
The computational paralinguistic task of recognizing the emotion states from human
speech is indeed a challenging problem. Namely, it is not about a classic programming
or  mathematical  problem  that  is  solved  with  structural  logic,  instead  it  is  about
something that requires a learning process. A non-negligible fact is that the human
emotions hide a factor of subjectivity and also increased complexity. In this case, the
field  of  Artificial  Intelligence  and Deep Learning shall  be  implicated,  as  the  ever
evolving machines may be capable to spot patterns that even a human individual could
not recognize.
In the present  thesis,  we started by introducing the human speech and the speech
production system. Our research does not focus on characteristics of plain voice but
on structured speech, which in fact contains emotional payload. Hence, we proposed a
methodology  for  the  recognition  of  speech  emotion  using  Convolutional  Neural
Networks. Specifically, we experimented with simple end-to-end architectures within
the Keras  framework along with data  augmentation.  We started by explaining the
whole concept of Deep Neural Networks, as well as the most commonly used, already
existing Machine Learning techniques proposed in bibliography, and ended up by our
unique model implementation, functionality, trade-offs and optimization elements. By
explaining the training and evaluation procedures, the reader of this report shall be
capable to understand and evaluate the final results of the experimental process. The
network achieves  indeed a  state-of-the-art  accuracy in  speech emotion  recognition
using  different  datasets  for  testing  and  a  cross-validation  practice  that  creates  a
reliable and unbiased surface.
This work can be utilized in the broad area of Human-Computer Interaction, in Virtual
Reality (VR) environments, Telecommunication systems and many more multimedia
applications. As a thesis subject, it shall also trigger future academic study upon a
multi-language dataset. So far, we evaluated our model using one single dataset -with
its own characteristics- each time. The next step would be the combination of these
emotional datasets (or parts of them) and, moreover, to try some different ways in
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augmenting the data. As an ultimate goal we set the pushing of those architectures to
their  limits,  in  order  to  observe  their  potential  behavior  and  achieve  higher
performances.
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	Resonance peaks (A1, A2, A3) add gain to specific frequencies of the harmonic spectrum. The input signal and the vocal tract, together with the radiation properties of the mouth, face and external field, produce the sound output C. These resonances can be determined approximately from the formants (peaks) in the envelope of the sound spectrum. Given a different spectrum A with higher or lower fundamental frequency, the frequency of the output spectrum C will be different as well.
	According to the source-filter theory, the vocal-tract filter becomes a linear time-invariant (LTI) system, and an output signal y(t) can be expressed by the convolution of an input signal x(t) and the impulse response of the system h(t). In discrete time:
	Athens Emotional States Inventory (AESI) [see web resources, 6] is a dataset in Greek containing audio recordings of five categorical emotions. The items of the AESI consist of 35 sentences each having content indicative of the corresponding emotion. The resulting data include recordings from 20 participants (12 male, 8 female), which resulted in 696 utterances.
	Stochastic Gradient Descent (SGD)
	Adaptive Moment Estimation (Adam)


