
Phonocardiogram Signal Classification using Deep Learning Models

Eleni Kalaitzi

Bachelor’s Thesis
Department of Physics
University of Crete

Advisor: Prof. Yannis Stylianou
Supervisor: Dr George P. Kafentzis

December 5, 2024

2

Contents

Abstract 5

1 Introduction 7
1.1 Biosignal Interaction: PCG, Mel-Spectroscopy, Signal Processing 7
1.2 Automatic PCG classification . 8

1.2.1 Basics of cardiac auscultation . 8
1.2.2 Automatic heart sound classification . 8
1.2.3 Time-frequency features and neural networks for automatic heart sound classification . . 9

1.3 Proposed Model . 10
1.4 Outline . 10

2 General principles of Convolutional Neural Network (CNN) 11
2.1 Convolutional Neural Network . 12

2.1.1 Convolution Layer . 13
2.1.2 Pooling Layer . 14
2.1.3 Fully-Connected Layer (FC) . 14

2.2 Hyperparameters . 15
2.3 Learning Rate . 15
2.4 Batch Size . 15
2.5 Number of Epochs . 15
2.6 Activation Functions . 15

2.6.1 Sigmoid Function . 15
2.6.2 Tanh Function (Hyperbolic Tangent) . 16
2.6.3 ReLU (Rectified Linear Unit) . 16

2.7 SoftMax . 16
2.8 Optimization . 16
2.9 Gradient Descent (GD) . 16

2.9.1 Stochastic Gradient Descent (SGD) . 17
2.9.2 Mini Batch Stochastic Gradient Descent (MB-SGD) . 17
2.9.3 SGD with momentum . 17
2.9.4 Nesterov Accelerated Gradient (NAG) . 18
2.9.5 Adaptive Moment Estimation (Adam) . 18

2.10 Forward Propagation . 18
2.11 Backpropagation . 18
2.12 Overfitting . 19
2.13 Cross Validation . 19
2.14 Dropout . 19
2.15 L1/L2 Regularization . 19
2.16 Performance Metrics . 19

2.16.1 Accuracy . 19
2.16.2 Sensitivity . 20
2.16.3 Specificity . 20
2.16.4 Precision . 20
2.16.5 F1 Score . 20
2.16.6 Matthews Correlation Coefficient (MCC) . 20
2.16.7 ROC Curve . 21

2.17 Convolutional Neural Network (CNN) in our study . 21
2.17.1 Feature Extraction . 21
2.17.2 Period Marking And Segmentation . 21

3

4 CONTENTS

2.17.3 Computing time-frequency features . 22
2.17.4 Sub-band envelopes as a time-frequency feature . 22

2.18 Machine Learning . 23
2.18.1 Model With Single Convolutional Layer . 23
2.18.2 Model With Two Convolutional Layers (uocseq1) . 23
2.18.3 Model With Four Convolutional Layers (uocseq2) . 23
2.18.4 Our proposal . 23

3 Databases 25
3.1 EPHNOGRAM . 25
3.2 SUFHSDB . 25
3.3 MIMIC-IV-ECG . 25
3.4 Brno University of Technology ECG Signal Database with Annotations of P Wave (BUT PDB) . 25
3.5 Norwegian Endurance Athlete ECG Database . 26
3.6 ECG-ID Database . 26
3.7 Lobachevsky University Electrocardiography Database . 26
3.8 MIT-BIH ECG Compression Test Database . 26
3.9 Databases for our classification . 26

3.9.1 University of Crete, PCGs with murmur (UoC-murmur) database 26
3.9.2 PhysioNet-2016 database . 27

4 Experiments 29
4.1 Preprocessing . 29

4.1.1 Segmentation . 29
4.1.2 Features Extraction . 29
4.1.3 Data Splitting . 29
4.1.4 Data Augmentation . 30

4.2 Recommended Architecture and Results . 30

5 Conclusion and Future Work 37
5.1 Results . 37
5.2 Future Work . 37

References 39

Abstract

Heart disease is the leading cause of death in all continents except Africa. Heart diseases include coronary heart
disease, heart failure, hypertensive heart disease, congenital heart disease, valvular heart disease, and structural
heart abnormalities.

This thesis aims to improve the task of automatic risk detection of structural heart abnormalities from
digital phonocardiogram (PCG) data with applications to pediatric heart disease screening. In a previous study,
a number of convolutional neural network (CNN)-based systems operating on mel-frequency cepstral coefficients
(MFCCs) of phonocardiogram signals are shown to perform better than systems using conventional machine
learning guided by hand-crafted features. These systems were trained using time-frequency representations of
segmental PCG frames. Various techniques for segmentation and time-frequency representations were designed
to model the input recordings. Training and testing has been conducted on high-quality databases while each
test produces five random experiments. Systems were evaluated using Receiver Operating Curve-Area under
Curve, Sensitivity, Specificity, Accuracy, F1 score, and Matthews Correlation Coefficient.

In the context of this thesis, we emphasize on the improvement of pre-existing Convolutional Neural Net-
work (CNN) models. We undertake this endeavor while adhering to the identical preprocessing methodology
employed in a prior study. A Batch Normalization layer is included in pre-existing architectures, showing
improvement in all performance metrics. Additionally, we introduce an enhanced CNN architecture combin-
ing Batch Normalization and an additional convolutional layer that outperforms previous models and presents
significant improvement in all performance metrics.

5

6 CONTENTS

Chapter 1

Introduction

Phonocardiography (PCG) is the term for the recording and analysis of acoustic vibrations made at the patient’s
chest using a microphone-transducer [1]. Analysis of phonocardiogram signals can be used to successfully study
a number of heart disorders, including rheumatic valvular lesions, mitral and aortic regurgitation, and mitral
and aortic stenosis murmurs. Clinicians listen to a patient’s heart sounds to track cardiac tissue functionality,
particularly the opening and closing of valves. Auscultation is the term for this type of evaluation of heart
sounds aimed at making a diagnosis. It normally entails analyzing the time and frequency characteristics of
heart sounds and murmurs, the general periodicity characteristics, and the quality of sounds. Heart disease
is a serious health problem that has significant costs everywhere. Congenital heart disease (CHD), a major
cause of pediatric morbidity and mortality, is a structural heart condition that can be present from birth and
includes a variety of heart defects [2]. According to the severity of the underlying heart abnormality, up to 1%
of newborn children are thought to have some kind of CHD [3]. A valuable asset in facilitating the screening
of pediatric CHD is the utilization of automated heart sound classification technologies [4]. Employing an
affordable, non-intrusive, and rapid screening approach would also enable the examination of a substantial
population of individuals at a young age, leading to the timely detection of certain medical conditions. Due
to recent strides in machine learning and computational capabilities, significant progress has been made in
achieving levels of performance in various audio classification tasks, such as heart sound classification, that are
approaching human-level accuracy [5]. Our research aims to enhance the effectiveness of automated technology
for classifying heart sounds within the context of an ongoing study designed to identify and assess the risk of
CHD during screening.

1.1 Biosignal Interaction: PCG, Mel-Spectroscopy, Signal Process-
ing

The convergence of signal processing, mel-spectroscopy, phonocardiography (PCG), and biosignals has ush-
ered in a paradigm shift in comprehending human physiology and detecting medical disorders in the dynamic
environment of biomedical science and healthcare[6]. Biosignals, which include various electrical, mechanical,
and chemical signals coming from within the body, provide a special window into the complex operation of
physiological systems. These signals, however, are frequently hidden by noise, artifacts, and difficulties related
to their capture. To unravel hidden patterns and glean priceless insights from biosignals, the combination of
signal processing, mel-spectroscopy, and PCG is crucial in this situation.

Data collection, which includes recording electrocardiograms (ECG), electromyograms (EMG), electroen-
cephalograms (EEG), and now phonocardiograms (PCG), is the first step in the process of biosignal processing
[7]. However, these signals rarely arrive pure; they might be distorted by electrode placement, patient move-
ment, or outside interference. During data preprocessing, signal processing methods such as mel-spectroscopy
and PCG analysis take center stage. By converting complicated biosignals into visual representations and dis-
playing their frequency content across time, mel-spectroscopy, which has its roots in speech and audio processing,
can help medical experts handle biosignals. Mel-spectroscopy offers a distinctive viewpoint on how to analyze
biosignals. It displays their frequency content across time through the transformation of those signals into visual
and auditory representations. Researchers and physicians can discover temporal trends, fleeting abnormalities,
and long-term patterns within biosignals because of this integration of auditory and visual dimensions. In addi-
tion, PCG adds a sound component to biosignal analysis by simultaneously recording the acoustic signature of
cardiac events. The heart’s symphony, composed of murmurs, rhythms, and beats, holds vital information about
its health and functioning. PCG transforms these acoustic signals into interpretable data, allowing clinicians
to listen to the heartbeat’s nuances. The integration of PCG completes the convergence, adding an auditory
dimension that enhances our grasp of biosignal intricacies.

7

8 CHAPTER 1. INTRODUCTION

Key elements with the potential for diagnosis and prognosis can be found within the intricate tapestry of
biosignals. These characteristics, including as amplitude, frequency, duration, and others, are crucial indica-
tors of physiological events. These traits are precisely retrieved with the use of PCG and mel-spectroscopy.
Comprehensive spectrograms that map the frequency content and its changes over time are revealed this way.
Contrarily, PCG converts cardiac events into recognizable sound patterns. By combining these tools, we can
explore physiological dynamics in several dimensions and gain a deeper knowledge of biosignals.

Understanding the intricate patterns of biosignals is crucial because they contain a plethora of infor-
mation. Signal processing, mel-spectroscopy, PCG analysis, and machine learning all work together in this
situation. [8].Biosignals can be correctly characterized using algorithms for pattern recognition and classifica-
tion. Machine learning algorithms can decipher complex patterns that could evade standard approaches using
mel-spectroscopy-enhanced visuals and specific sound patterns acquired by PCG as vital inputs. For instance,
the combination of PCG analysis and mel-spectroscopy enables the detection of heart murmurs, assisting in the
diagnosis of cardiac diseases [9].

The foundation of contemporary healthcare is the real-time monitoring of biosignals. Imagine that ECG
and PCG readings are used to continuously monitor a patient’s cardiac health. Signal processing algorithms, led
by mel-spectroscopy and PCG, can quickly identify anomalies, triggering immediate actions should an arrhyth-
mia or aberrant sound occur. This combination gives medical professionals a toolkit for dynamic monitoring,
enabling quick reactions to physiological changes.

Beyond clinical applications, cutting-edge research is fueled by the combination of signal processing, mel-
spectroscopy, PCG analysis, and biosignals. With the aid of these methods, researchers can reveal the dynamics
and underlying relationships that underlie both health and disease. Mel-spectroscopy and PCG analysis com-
bined increase depths of understanding. For instance, using mel-spectroscopy on PCG recordings offers a special
insight into fluctuations in heart sound, illuminating cardiac function that was previously obscure.

The integration of signal processing, mel-spectroscopy, PCG analysis, and biosignals is crucial in the com-
plex mosaic of biomedical science. Their mutually beneficial partnership opens the door to accurate diagnoses,
prompt solutions, and significant insights. By accurately revealing the richness of biosignals, which is frequently
hidden by noise and complexity, this synergy enables physicians, researchers, and healthcare professionals to
make well-informed judgments. A future in which human health is illuminated by the harmonic interaction of
signals, spectroscopic transformations, audio signatures, and algorithms is promised as technology develops.

1.2 Automatic PCG classification

1.2.1 Basics of cardiac auscultation

Before creating an automated system to classify heart murmurs, it is necessary to have a fundamental under-
standing of how the heart produces sound. Heart sounds are acoustic signals that are produced inside the heart
by blood flow and cardiac apparatus motion (mostly valve motion)[10]. These signals are then transported to
the chest surface, where they can be heard directly with the ear or by utilizing a stethoscope. The study of
murmurs or additional heart sounds, if present, as well as the temporal and frequency characteristics of the
normal fundamental heart sounds (S1 and S2, which stand for input and outflow valve closure, respectively),
constitutes proper cardiac auscultation. The key factors under investigation include the pitch, duration, loca-
tion, and form characteristics of heart sounds and murmurs. Heart murmurs are clinically classified as innocent
or abnormal primarily based on their temporal classification within the heart cycle, spatial classification based
on punctum maximum, and finally due to a very subjective validation of murmur sound quality (with innocent
murmurs frequently described as having ”musical” or ”vibratory” properties).

1.2.2 Automatic heart sound classification

In the area of automated phonocardiogram (PCG) classification, a number of tasks have been completed, and
there is still need for improvement. The following are some tasks that have been completed and probable
classification categories: Tasks which have been accomplished are:

• Heart Sound Classification:

In order to categorize heart sound recordings into different groups, such as normal heart sounds, murmurs,
gallops, and other aberrant sounds, algorithms have been devised. On this task, machine learning methods
like neural networks have been used [5],[11].

• Murmur Classification:

The detection and classification of murmurs, which are aberrant heart sounds brought on by turbulent
blood flow, has received particular attention in the field of heart sound classification. Using machine

1.2. AUTOMATIC PCG CLASSIFICATION 9

learning algorithms, different murmur types (such as systolic and diastolic) and their intensity can be
identified [11],[12],[13].

• Valvular Disorder Identification:

Based on the patterns of heart sounds, certain algorithms attempt to diagnose particular valve illnesses
(such as aortic stenosis and mitral regurgitation). The specific audio properties of these illnesses can be
detected using cutting-edge signal processing and machine learning approaches [14],[15].

However, there is still some classification work that has not been completed.Some of them are the followings:

• Severity Assessment: Create algorithms to categorize conditions and determine their severity. For
instance, based on the strength or features of heart sounds, one can distinguish between minor and severe
valvular abnormalities.

• Arrhythmia Detection:

Include in the automated analysis the identification and classification of arrhythmias (irregular heartbeats).
Finding timing issues with heart sounds may be necessary.

• Long-Term Monitoring:

Create algorithms that can analyze ongoing recordings of heartbeats for long- term surveillance, assisting
in the identification of sporadic conditions or changes over time.

• Clinical Decision Support:

Create systems that offer recommendations to clinicians rather than con- clusive diagnoses, assisting them
in making more educated choices based on the automated analysis.

The requirement for high-quality labeled data, dealing with inter-patient variability, and making sure that
automated algorithms support clinical skill rather than replace it are just a few of the obstacles that each of
these jobs presents. Deep learning and explainable AI are two advancements in machine learning techniques
that can considerably improve the success of these tasks [16],[17].

According to the specific classification goal, the quality of the data, and the complexity of the target cardiac
diseases, the general phonocardiogram (PCG) classification using automated algorithms has had various degrees
of success. Here are some broad conclusions regarding the effectiveness of PCG classification:

It has been pretty successful for algorithms to discern between normal and pathological cardiac sounds.
This includes listening for any odd noises, such as heart murmurs. The complexity of the abnormalities and the
unpredictability in the data, however, may have an impact on the accuracy. Some unusual or complicated disor-
ders could be more challenging to appropriately classify. Particularly for frequent forms of murmurs, algorithms
created expressly for classifying murmurs have reached respectable accuracy. It can be difficult, though, to dis-
tinguish between various murmur varieties, particularly delicate or uncommon ones. When addressing a wider
variety of murmurs, accuracy could suffer. Based on distinctive auditory characteristics, several algorithms
have been successful in recognizing specific valve problems, such as aortic stenosis or mitral regurgitation [18],
[19].However, the quality and variety of the training data, as well as the complexity of the conditions classified,
are key factors in this project’s success. Also, convolutional and recurrent neural networks, in particular, have
demonstrated encouraging results in PCG classification using deep learning models [20]. From the unprocessed
audio data, they may automatically learn the necessary features. Deep learning techniques need a large amount
of well-labeled data, and while their performance is often interpretable for medical applications, this is not al-
ways the case. Moreover, some PCG classification algorithms have been effectively included as decision support
tools in clinical contexts, assisting medical practitioners in establishing precise diagnoses [21]. However, because
of regulatory issues, the demand for ongoing validation, and the significance of retaining medical oversight, the
adoption of these algorithms may differ. Generally, there are challenges related to the variability in heart sounds
due to factors like age, sex, body type, and patient positioning poses challenges for accurate classification.

In conclusion, despite significant progress in automating PCG categorization jobs, there are still issues to be
resolved. These algorithms’ success is frequently context-dependent, and it can differ depending on the precise
condition being addressed, the caliber and variety of the data, and the sophistication of the categorization tech-
niques employed. To achieve accurate and therapeutically useful automated PCG categorization, cooperation
between medical professionals, signal processing specialists, and machine learning practitioners is crucial.

1.2.3 Time-frequency features and neural networks for automatic heart sound
classification

A time-frequency representation of a sound source is frequently used to refer to stacking (any representation
of) spectra derived from windowed segments of the signal to construct a two-dimensional representation. The

10 CHAPTER 1. INTRODUCTION

underlying assumption in employing time-frequency representation in audio classification is that some patterns
exist within these image-like representations for specific classes of sounds. While there are numerous methods
for constructing such representations, the most typical is to translate a linear representation such as Short-Time
Fourier Transform (STFT) in a logarithmic scale to approximate human auditory responses such as Bark or
Mel. Mel Frequency Cepstral Coefficients (MFCC) is also widely and efficiently employed in pathology detection
research using automatic PCG categorization. As a time-frequency representation, wavelet-based features are
used in a vast number of automatic PCG classification investigations.

1.3 Proposed Model

The existing study includes tests on two high quality data sets (PhysioNet-2016 and UOC-murmur; these
are discussed in the following sections). From these tests it emerged that sub-band envelopes are preferable
to other options in many settings using a CNN with a relatively simple architecture. Specifically, sub-band
envelopes are the envelopes calculated for individual frequency bands. A CNN with two convolutional layers
named M1SubEnv64by16eSyn1000 employs sub-band envelopes with time resolution of 64 and 16 frequency
bands computed period synchronous 1 s frames as the feature, is the best system produced through tests on our
data (UoC-murmur database). The system with the highest performance among the asynchronous systems has
been evaluated on the PhysioNet-2016 challenge data after tests with the UoCmurmur database. With 0.845
sensitivity, 0.785 specificity, and 0.815 mean accuracy, it has been demonstrated that our asynchronous system
performs similarly to the top-ranked state-of-the-art systems. At first, we tried to improve the performance of
the already existing convolutional layers by adding a batch normalization layer with a momentum parameter of
0.999.Then we changed the number of filters in the uocseq2 model using a filter sequence 16 to 32 to 64. Since
some important improvement was achieved from these tests we added a new model with three convolutional
layers (presented in detail in the Paragraph 2.1.4) which provided the best results.

1.4 Outline

The organization of the chapters is as follows. Chapter 2 presents some general archives about CNNs and their
operation.Then it describes the convolutional layers that have already been used for this study, as well as our
own proposal for improving their operation and extending them. Chapter 3 presents the existing databases for
this study, followed by a detailed description of the PhysioNet-2016 database. Chapter 4 reports on processing,
the proposed architecture and the results obtained.Finally, chapter 5 presents the conclusions and future work.

Chapter 2

General principles of Convolutional
Neural Network (CNN)

Artificial intelligence techniques called neural networks educate computers to interpret data in a manner that is
modeled after the structure and operation of the human brain [22],[23]. More specifically, their function tries to
combine the way the human brain works with abstract mathematical thinking. Thus, neural networks use ideas
such as, for example, that a network learns and trains, remembers or forgets a numerical value, etc., things that
have so far been attributed only to human thinking [24]. Of course, they can also make use of sophisticated
mathematical operations and a wide range of mathematical analysis tools. Any type of neural network draws its
influence from biology. Numerous neural networks with specialized functions make up the neurological systems
of species. Each neural network consists of neurons, which are the fundamental units of the system. The tiniest
autonomous unit in the network is the neuron. Neurons receive and transmit electrical impulses to other neurons
in a constant and ceaseless process of information. Networks that mimic how the human brain operates are
called Artificial neural networks (ANNs). The purpose of the neural network is to perform certain functions,
such as image or sound recognition, after it has been trained with a significant amount of related data.

As a result, neural networks are made up of layers of connected nodes, or artificial neurons, that process
different types of information and produce an output based on a set of inputs, or inputted data. Each network
has a specific set of inputs and outputs (input-output). This is because they can be trained on vast amounts of
data and model complicated correlations between input and output data, drawing conclusions and applying a
variety of generalizations.

A basic neural network has interconnected artificial neurons at three levels [25]:

1. Input Layer The first level of nodes in an artificial neural network is referred to as the input layer.
Artificial neurons make up the input layer, which is in charge of transforming the raw input data into a
format that the network can comprehend.

2. Hidden Layer Hidden layer refers to a layer in between input layers and output layers, where artificial
neurons take in a set of weighted inputs and produce an output through an activation function [26].It is
possible to have more than one hidden layer in a neural network.

3. Output Layer The output layer in an artificial neural network is the last layer of neurons that produces
given outputs for the program. Though they are made much like other artificial neurons in the neural
network, output layer neurons may be built or observed in a different way, given that they are the last
“actor” nodes on the network [27].

Usually we denote the input layer as vector X, the output layer as vector Y and the hidden layer, which
is the ”activation” node,as vector W.Each node is connected with each node from the next layer and each
connection has particular weight. Weight can be considered as impact that that node has on the node from the
following tier. So, if we were to look at just one node, it would appear as follows [28]:

All values are multiplied by their weight to give the value of the node. The node has a predefined activation
function which determines whether the node is activated or even how active it is. We can also add a ”bias”
node. In particular, a bias value enables the activation function to be shifted to the left or right and aids in
improving data fit (better prediction function as output).

Vector A is commonly used to represent hidden layers. The weights between the input and hidden layers
is a 3x4 matrix,while the weight between the hidden and output layers is a 1x4 matrix.If network has a units
in layer j and b units in layer j + 1, then Wj will be of dimension b×(a+ 1) [28].

The ”activation” nodes for the hidden layer should then be computed. The activation function g(·) must
then be used after multiplying the input vector X and weights matrix w1 for the top layer (Xw1). The result

11

12 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

Figure 2.1: An example of a Fully Connected Feed-forward Neural Network.

Figure 2.2: An example of a Fully Connected Feed-forward Neural Network in terms of input variables and
weights.

is:

a
(2)
1 = g

(
w

(1)
10 x0 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3

)
(2.1)

a
(2)
2 = g

(
w

(1)
20 x0 + w

(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3

)
(2.2)

a
(2)
3 = g

(
w

(1)
30 x0 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3

)
(2.3)

Additionally, we obtain the output for the hypothesis function by multiplying the hidden layer vector by
the weights w matrix for the second layer (Aw):

hw(x) = a
(3)
1 = g

(
w

(2)
10 a

(2
0 + w

(2)
11 a

(2)
1 + w

(2)
12 a

(2)
2 + w

(2)
13 a

(2)
3

)
(2.4)

In this example, there is just one hidden layer and four nodes. The following formula would be obtained if
we were to generalize for neural networks with multiple hidden layers and numerous nodes in each layer.

aLn =

σ
∑

m

wL
nm

· · ·
σ
∑

j

w2
kj

[
σ

(∑
i

w1
jixi + b1j

)]
+ b2k

 · · ·

m

+ bLn

n

(2.5)

where we have L layers with n nodes and L− 1 layers with m nodes.

2.1 Convolutional Neural Network

A neural network type called a convolutional neural network, or CNN or ConvNet, is particularly adept at
processing input with a grid-like architecture, like an image. A binary representation of visual data is a digital

2.1. CONVOLUTIONAL NEURAL NETWORK 13

image. It is made up of a grid-like arrangement of pixels, each of which has a pixel value to indicate how bright
and what color it should be [29], as in Figure 2.3.

Figure 2.3: Representation of image as a grid of pixels [29]

Our brain, when we see an image, coordinates all its neurons (each operating in its own receptive field) in
such a way that the image is captured as best as possible. So, CNNs are constructed in such a way to mimic the
human brain. Each neuron in the CNN processes a specific piece of information. The CNN layers are arranged
in such a way that they first detect simpler patterns and then combine them to create more complex ones
until they finally identify the intended object. Node layers, which include an input layer, one or more hidden
layers, and an output layer, make up CNN. Each node has a threshold and weight that are connected to one
another. Any node whose output exceeds the defined threshold value is activated and begins providing data to
the network’s uppermost layer. Otherwise, no data is transmitted to the network’s next layer [30]. The first
layer in a convolutional network is the convolutional layer. It can be followed by other convolutional layers and
pooling layers, whose number depends on the particular work. The final layer is a fully-connected layer. These
three types of layer are described in detail below.

2.1.1 Convolution Layer

In convolutional neural networks, the majority of computations occur.This layer creates a dot product between
two matrices, one of which is the kernel—a collection of learnable parameters—and the other of which is the
constrained area of the receptive field. Assume that the input will be a color image that is composed of a 3D
pixel matrix. Thus, the input will have three dimensions: height, width, and depth, which are equivalent to
RGB in an image. Compared to a picture, the kernel is smaller in space but deeper. Since the depth goes up
to all three channels, the kernel height and breadth will be spatially small. In order to determine whether the
feature is there, the kernel will traverse over the image’s receptive fields. Convolution describes this process. As
for the feature detector, it is a 2D array of weights, usually represented as a 3x3 table. This size also determines
the receptive field. Following the application of the filter to an area of the image, the dot product between the
input pixels and the filter is determined as in Figure 2.4. The output array is then fed with this dot product.

Figure 2.4: Feature Map [30]

Once the kernel has swept through the entire image, the filter shifts by a stride and repeats the operation. A

14 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

feature map, activation map, or convolved feature is the ultimate result of the series of dot products from the
input and the filter. These include:

• Number of filters: The number of filters describes how many distinct convolutional kernels were used to
transform the input data. A feature map or an activation map is the result of element-wise multiplications
and additions performed by each filter, which is a tiny matrix that slides over the input data. The variety
of patterns or features that a convolutional layer may learn from the input data depends on how many
filters are included in the layer [31].

• Stride: The kernel’s stride is how many pixels or how far it travels across the input matrix. Despite the
rarity of stride values of two or higher, a longer stride results in a lesser output [30].

• Padding: Padding is the technique of increasing the input image’s pixel count before applying convolution.
These extra pixels serve as a barrier around the image, preserving more spatial information for the network.
Padding is typically applied uniformly to all sides of the input image. Zero padding in CNN is the most
popular technique, where you add a lot of zeros all around your input feature map. The CNN architecture’s
padding feature allows you to keep the feature maps’ spatial dimensions. By extending the input’s borders,
it makes sure that every pixel is treated equally during convolution. Padding is also important for figuring
out how big each layer’s output should be in the CNN. If not, each convolution will gradually diminish
the feature maps’ spatial dimensions, which will result in a considerable downsampling. Padding allows
us to regulate the output size of each layer. The degree of downsampling depends on how much padding
is used [32]. There are three types of padding:

1. Valid padding: Also known as no padding.In this situation, if dimensions do not line up, the final
convolution is dropped.

2. Same padding:the output has the same size as input layer

3. Full padding:This kind of padding enlarges the output by padding the input border with zeros.

For determine the size of the output volume, the following equation is used:

output size =
W − F + 2P

S
+ 1 (2.6)

where W is the input size (width and height), F is the spatial size of the convolutional filter (or kernel),
S is the stride and P is the amount of padding.

2.1.2 Pooling Layer

Downsampling, sometimes referred to as pooling layers, carries out dimensionality reduction and lowers the
amount of parameters in the input. The pooling operation sweeps a filter across the entire input similarly to the
convolutional layer, with the exception that this filter lacks weights. Instead, the kernel populates the output
array by applying an aggregation function to the values in the receptive field. There are principally two forms
of pooling:

• Max pooling: This operates by choosing the highest value possible from each pool. The most noticeable
aspects of the feature map are retained by Max Pooling, and the resulting image is crisper than the original
[33].

• Average pooling: The average values of the features on the feature map are preserved through average
pooling. While maintaining the essential qualities of the feature, it blurs the image [33].

The pooling layer loses a lot of information, but it also offers the CNN a number of advantages. They
lessen complexity, increase effectiveness, and lower the risk of overfitting. An example of a pooling operator for
both average and max pooling is shown in Figure 2.5.

2.1.3 Fully-Connected Layer (FC)

As was already noted, partially connected layers do not have a direct connection between the input image’s pixel
values and the output layer. In contrast, every node in the output layer of the fully-connected layer is directly
connected to a node in the layer above it.Based on the features that were retrieved from the preceding layers and
their various filters, this layer conducts the classification operation. FC layers often utilize a softmax activation
function to categorize inputs appropriately, producing a probability ranging from 0 to 1. Convolutional and
pooling layers typically use ReLU functions. The activation functions are described in detail below.

2.2. HYPERPARAMETERS 15

Figure 2.5: Max Pooling and Average Pooling [34]

2.2 Hyperparameters

Hyperparameters are parameters whose values are set before starting the model training process [35]. These
hyperparameter values govern the training algorithm’s behavior and how it learns the parameters from the data.

2.3 Learning Rate

It is in charge of the basic learning feature and must be chosen in such a manner that it is not too high,
preventing us from converge to minima, and not too low, preventing us from speeding up the learning process.
It is advised to experiment with powers of ten. The value of the learning rate is heavily influenced by the
optimizer utilized.

2.4 Batch Size

It is an indication of how many patterns were presented to the network prior to an update to the weight matrix.
Less repeated patterns would result in more erratic weights and problematic convergence if the batch size were
smaller. Learning would be delayed if batch sizes were large because the batch size wouldn’t vary for a while.

2.5 Number of Epochs

The number of epochs refers to how frequently the model is presented with the whole training set.

2.6 Activation Functions

Based on the weighted total, the activation function in a neural network determines whether a specific node
should be ”activated” or not. This weighted total value will be defined as z. Some of the commonly used
activation functions in CNNs are:

2.6.1 Sigmoid Function

It is not a linear function and ideal for binary classification problems. Moreover, it allows the nodes to have
range values between (0, 1). Different probability of ”activation” for each output class would result in the case
of numerous output classes. The option with the highest ”activation” (probability) value will be picked. It is
represented as:

16 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

S(x) =
ex

ex + 1
(2.7)

2.6.2 Tanh Function (Hyperbolic Tangent)

Similar with the sigmoid function,but with different output range (-1,1).It is a zero centered function,so it will
be easy to map the output values. It can be represented as:

tanh(x) =
ex − e−x

ex + e−x
(2.8)

2.6.3 ReLU (Rectified Linear Unit)

It is the most used activation function [36]. All negative numbers are reset to zero, while positive values are left
unaltered. ReLU tackles the vanishing gradient issue and aids in training convergence more quickly. Not every
neuron is activated simultaneously by the ReLU function. Only if the output of the linear transformation is
less than 0 will the neurons become inactive.The ReLU function is far more computationally efficient than the
sigmoid and tanh functions since it only activates a subset of neurons. Due to ReLU’s linear, non-saturating
nature, gradient descent’s convergence towards the loss function’s global minimum is sped up. Mathematically,

ReLu(x) = max(0, x) =
x+ |x|

2
(2.9)

2.7 SoftMax

A vector of K real numbers is transformed into a probability distribution of K potential outcomes using the
softmax function, also known as softargmax or the normalized exponential function. It is applied in multinomial
logistic regression and is a generalization of the logistic function to many dimensions. Furthermore,the softmax
function normalizes a vector z ofK real numbers into a probability distribution withK probabilities proportional
to the exponentials of the input values. Thus,it accepts this vector as an input. In other words, some vector
components might not sum to 1 or be negative before using softmax, but each component will be in the interval
after applying softmax.They can be regarded as probabilities because the components are (0, 1) and sum up to
1. In simple words, it applies the standard exponential function to each element zi of the input vector z and
normalizes these values by dividing by the sum of all these exponentials; this normalization ensures that the
sum of the components of the output vector σ(z) is one [37]. The mathematical representation of softmax is:

σ(z)i =
ezi∑k
j=1 e

zj
(2.10)

where i = 1, · · · ,K and z = z1, ..zk are real numbers.

2.8 Optimization

In order to change the attributes of the neural network, algorithms or methods are used,which are called
optimizers.Their aim is to minimize the losses.Loss in deep learning,inform us about the performance of the
model. Therefore,by minimizing losses we achieve better model performance as well as faster training model.This
process is called optimization.

It’s impossible to predict your model’s weights from the beginning. You can ultimately get there, though,
with a little bit of trial and error based on the loss-cost function.The optimizers you employ determine how you
should modify the weights or learning rates of your neural network to minimize losses.Below,there are different
types of optimizers with their own benefits and drawbacks.

2.9 Gradient Descent (GD)

An optimization method called gradient descent can be used to locate the local minimum of a differentiable
function.[38] Gradient descent is simply used to identify the parameters (coefficients) of a function that minimize
a cost function as much as is practical.

Starting by initializing the parameter’s value,gradient descent adjust the values in such a way as to minimize
the cost function.The way is adjusted in accordance with the update equation after being initialized using a
few initialization procedures.The gradient of the cost function J(θ) computes with this repeated equation until
convergence:

2.9. GRADIENT DESCENT (GD) 17

wj ← wj − a
∂

∂wj
J(w) (2.11)

The aim is to reach the local minimum.To reach this local minimum,it should be set the learning rate to
an appropriate value. If this rate is big enough,may not be possible to it may not be possible to achieve the
desired outcome. While if this rate is too small,It will take some time to get the minimum.

The advantages of this technique is that it easy to compute and to implement.On the other hand, may
trap at the nearby minimum. Also, after computing the gradient on the entire dataset, weights are modified.
So,it could take years for this to converge to the minima if the dataset is too vast. Therefore,to calculate the
gradient across the entire dataset, a lot of RAM is needed.

2.9.1 Stochastic Gradient Descent (SGD)

SGD is an improved algorithm which is computed taking over one point at a time.[38] It can be thought of as
a stochastic approximation of gradient descent optimization since it substitutes an estimated gradient for the
true gradient, which is generated from the whole set of data. This lessens the extremely high computational
burden, particularly in high-dimensional optimization problems, allowing for faster iterations at the cost of a
reduced convergence rate. Parameter of the SGD performance is:

w = w − a
∂J(w;x(i), y(i))

∂w
(2.12)

where x(i), y(i) are the training examples. So, less memory is used than with the GD technique, because
the derivative is computed using only one point at a time. However, it may also stuck at local minima and
might take a long time to converge.

2.9.2 Mini Batch Stochastic Gradient Descent (MB-SGD)

The MB-SGD algorithm is an extension of the SGD algorithm that solves the SGD algorithm’s issue with
high time complexity.[38] A group or subset of points from the dataset are used by the MB-SGD algorithm to
generate the derivate. After a certain number of iterations, it is noted that the derivative of the loss function
for MB-SGD is almost identical to a derivative of the loss function for GD. However, MB-SGD requires more
repetitions than GD does to reach minima, and the cost of computing is also higher.The derivative of loss for
a group of points determines how the weight is updated. Because the derivative is not always heading towards
minima, the updates in the case of MB-SGD are very noisy. The parameters are updated:

w = w − a
∂(J(w;B(i)))

∂w
(2.13)

The benefit of this method is takes less time complexity to converge compared to standard SGD algorithm
[9]. However, when compared to the update of the GD algorithm, the MB-SGD update is significantly noisier.
Also,converge more slowly than the GD algorithm and may get stuck at local minima.

2.9.3 SGD with momentum

The MB-SGD method has a significant disadvantage in that weight changes are quite noisy.[38] By denoising the
gradients, SGD with momentum eliminates this issue. Weight updates are dependent on noisy derivatives, and if
the derivatives can be denoised , convergence time will be reduced.The objective is to denoise the derivative using
an exponential weighting average, which gives more weight to recent updates than to older ones.It promotes
convergence in the relevant direction while decreasing fluctuation in the irrelevant direction. This approach
employs another hyperparameter called as momentum, denoted by ′γ′.

The weights are updated by:

w = w − v(t) (2.14)

where

v(t) = γv(t− 1) + α
∂(J(w))

∂w
(2.15)

Usually,the term γ is set to 0.9. Momentum at time ’t’ is calculated using all prior updates, with current
updates receiving more weight than previous updates. This accelerates the convergence.

However, for each update, one more variable is need to be computed.

18 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

2.9.4 Nesterov Accelerated Gradient (NAG)

The NAG algorithm’s concept is extremely similar to SGD with momentum, with a little variation.[38] The
momentum and gradient are computed on the last updated weight in the case of SGD with a momentum
method. Momentum is a decent strategy, but if it is too strong, the algorithm may miss the local minima and
continue to rise. As a result, the NAG algorithm was created to address this issue. It is a strategy of planning
ahead of time. We know we’ll be adjusting the weights with γ.v(t − 1), thus w − γv(t − 1) approximates the
future position. We’ll now compute the cost using this future parameter rather than the current one.

v(t) = γv(t− 1) + α
∂(J(w − γv(t− 1)))

∂w
(2.16)

while the parameters are updated by:

w = w − v(t) (2.17)

Again,the parameter γ has a value of around 0.9.

2.9.5 Adaptive Moment Estimation (Adam)

To speed up the optimization process of a typical optimizer in a CNN model, an Adam optimizer with a power-
exponential learning rate is used to train the CNN model, with the power-exponential learning rate controlling
the iteration direction and step size [38],[39].The power-exponential learning rate can be adaptively modified
based on the previous stage’s learning rate and the gradient relationship between the previous stage and the
present stage. To meet the requirements of adaptive adjustment, the prior gradient value is used to alter the
correction factor.This helps to adjust the learning rate in a narrow range, the parameters of each iteration
are relatively stable, and the learning step is chosen based on the appropriate gradient value to change the
convergence performance of the network model and ensure the network model’s stability and effectiveness.

For each parameter, Adam computes adaptive learning rates. Adam, like momentum, preserves an expo-
nentially decaying average of previous squared gradients vt in addition to an exponentially decaying average of
past gradients mt.

The exponential decay rates of these moving averages are controlled by the hyper-parameters β1, β2, ϵ[0, 1].
The decaying averages of past and past squared gradients, mt and vt, are computed as follows:

mt = β1mt−1 + (1− β1)gt (2.18)

vt = β2vt−1 + (1− β2)g
2
t (2.19)

where mt and vt are estimates of the first moment (the mean) and the second moment (the uncentered variance)
of the gradients respectively [38].

2.10 Forward Propagation

Forward propagation is the process through which input data is fed forward through a network to generate an
output. The data is accepted by hidden layers and processed according to the activation function before being
passed to the next layer. The forward flow of data is intended to avoid data travelling in a circular motion,
which produces no output. Pre-activation and activation occur at each hidden and output layer node of a neural
network during forward propagation. The weighted total is calculated via the pre-activation function. Based
on the weighted sum, the activation function is used to make the neural network flow non-linearly employing
bias.

However, a neural network relies on both forward and backward propagation to be taught.

2.11 Backpropagation

Backpropagation is a popular method for training feedforward neural networks. It determines the gradient of the
loss function in relation to the network weights. It is far more efficient than explicitly computing the gradient
for each weight. Because of this efficiency, gradient methods can be used to train multi-layer networks and
update weights to minimize loss; variations like as gradient descent or stochastic gradient descent are frequently
utilized. To prevent unnecessary computation of intermediate terms in the chain rule, the backpropagation
algorithm computes the gradient of the loss function with respect to each weight using the chain rule, layer by
layer, and iterating backward from the last layer.

2.12. OVERFITTING 19

2.12 Overfitting

Overfitting occurs when a model accurately models the training data. Precisely, overfitting occurs when a
model learns the information and noise in the training data to the point where it severely impairs the model’s
performance on new data. This means that the model picks up on noise or random fluctuations in the training
data and learns them as ideas. The issue is that these notions do not apply to new data, limiting the models’
ability to generalize. Testing machine learning models on more data with a thorough representation of possible
input data values and kinds is the best way to find overfit models. A portion of the training data is typically
utilized as test data to check for overfitting. Overfitting is indicated by a high error rate in the testing data.One
approach of testing overfitting is Cross validation.

2.13 Cross Validation

The training set is divided into k equally sized subsets or sample sets termed folds in this method.A sequence
of iterations comprise the training process. The following steps are performed during each iteration:

• Use one subset for validation and train the machine learning model on the remaining K-1 subsets.

• Examine the model’s performance on the validation sample.

• Evaluate model performance based on the quality of the generated data.

2.14 Dropout

It is possible to think of the keep-probability of the Dropout layer as a hyper-parameter that may function as a
regularizer to direct our search for the ideal bias-variance point. It achieves this by cutting off some connections
after each iteration so that the hidden units cannot heavily rely on any one feature. The range of possible values
is 0 to 1, and it only depends on how much the model is overfitting.

2.15 L1/L2 Regularization

This regularizer reduces extremely high weight values to make the model less reliant on a single feature. This
typically decreases variation at the expense of raising bias, or diminishing accuracy. Useful when the model
remains over-fit despite a markedly increased Dropout value.

2.16 Performance Metrics

In order to assess the performance of the system and ascertain whether any improvements have been realized,
a set of specific metrics were employed. These metrics include:

2.16.1 Accuracy

Particularly in binary or multiclass classification problems, accuracy is a performance parameter used to evaluate
how accurately predictions made by a classification model as a whole are. It measures the percentage of
accurately predicted instances among all of the dataset’s instances. Accuracy is calculated by:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.20)

where

• True Positives (TP): The percentage of occurrences that were accurately categorized as positive

• True Negatives (TN): The number of occurrences that were accurately labeled as negative

• False Positives (FP): The number of instances that were mislabeled as positive when they actually fall
within the negative class.

• False Negatives (FN): The number of instances that should have been rated positive but were instead
labeled negatively.

20 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

The ratio of the total number of instances to the sum of true positives and true negatives is known as
accuracy. It displays the overall percentage of accurate predictions made across all classes by the model.
Low accuracy signifies that the model is producing more incorrect predictions, whereas high accuracy shows
a high percentage of correctly identified occurrences. Although accuracy is a frequently used data to assess
classification models, it may not be the best one in situations where datasets are unbalanced and one class
considerably outnumbers the other.Other metrics, like as precision, sensitivity, F1-Score, or area under the
ROC curve (AUC-ROC), may offer a more thorough evaluation of model performance in such circumstances.

2.16.2 Sensitivity

Sensitivity is a classification metric that assesses how well a model can detect all pertinent positive instances.Sensitivity
is especially significant when it comes to preventing false negatives. The sensitivity equation is:

Sensitivity =
TP

TP + FN
(2.21)

Sensitivity is defined as the proportion of true positives to all positive occurrences. It is helpful in circum-
stances where omitting positive cases can have important repercussions because it measures how well the model
performs in accurately capturing all positive incidents.

2.16.3 Specificity

Specificity evaluates a model’s capacity to accurately detect instances of the negative class, or examples that
don’t fall under the focus class.When assessing a model’s capacity to minimize false alarms or false positive
errors, specificity is very crucial.Specificity is calculated by:

Specificity =
TN

TN + FP
(2.22)

Specificity is typically expressed as a value between 0 and 1, where higher values indicate a better ability
to correctly identify negative instances. Specificity is particularly useful in scenarios where false positives can
have significant consequences or where it’s essential to minimize incorrect alarms.

2.16.4 Precision

Precision,also known as positive predictive value,quantifies the accuracy of positive predictions made by a model,
indicating how many of the predicted positive instances were actually correct.To compute precision:

Precision =
TP

TP + FP
(2.23)

In most cases, precision is expressed as a number between 0 and 1, with larger numbers indicating a
greater capacity for precise positive prediction.In situations when false positives have major implications or
costs, precision is especially important.

2.16.5 F1 Score

F1 score provides balance between precision and sensitivity.When classes in the dataset are distributed unevenly
or when false positives and false negatives have varied costs, the F1 score is particularly helpful. It must first
be calculated the precision and recall before combining them with the harmonic mean to get the F1 score.

F1 score =
2(Precision · Sensitivity)
Precision + Sensitivity

(2.24)

It provides an accurate assessment of the model’s performance by combining the two criteria into one
value. The F1 score penalizes models with a large discrepancy in precision and sensitivity because the harmonic
mean gives more weight to lower values. It ranges between 0 and 1, where a higher score indicates better
overall performance. It’s particularly useful in situations where false positives and false negatives have different
implications, as it helps find a compromise between precision and sensitivity.

2.16.6 Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (MCC), also known as the phi coefficient, takes into account true positives,
true negatives, false positives, and false negatives to provide a balanced measure of a classification model’s
performance.The MCC value ranges from −1 to +1, where +1 indicates perfect prediction, 0 indicates random

2.17. CONVOLUTIONAL NEURAL NETWORK (CNN) IN OUR STUDY 21

prediction, and −1 indicates total disagreement between the model’s predictions and the actual outcomes. The
calculation is made in the following way:

MCC =
TP · TN + FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.25)

The MCC provides a more robust evaluation of a model’s performance than accuracy.

2.16.7 ROC Curve

An illustration of a binary classification model’s performance at various discriminating thresholds or decision
limits is called a Receiver Operating Characteristic (ROC) curve. It is a crucial tool for evaluating the trade-off
between the model’s true positive rate and its false positive rate as the threshold for identifying occurrences as
positive or negative is changed.On the vertical axis,the ROC curve plots the true positive rate(sensitivity) while
on the horizontal axis,ROC curve plots the false positive rate(specificity) which is equal to 1. The ROC curve
provides a visual representation of how well a model can distinguish between positive and negative instances
across various threshold values. The ideal ROC curve hugs the top-left corner of the plot, indicating high
sensitivity (few false negatives) and low false positives. In contrast, a random classifier’s ROC curve would be a
diagonal line from the bottom-left corner to the top-right corner, indicating no discriminatory power. The Area
Under the ROC Curve (AUC-ROC) can be used to summarize a binary classification model’s performance. A
higher AUC value indicates better discriminatory power, and the AUC-ROC measures the model’s capacity to
distinguish between positive and negative examples. While an AUC of 1.0 indicates flawless discrimination, one
of 0.5 suggests random performance.

2.17 Convolutional Neural Network (CNN) in our study

The CNN-based classifiers are designed to test various settings of common time-frequency representation used
directly as the input to a CNN classifier. So, it is presented here the various features, various options for
segmentation and CNN’s architectures.

2.17.1 Feature Extraction

Both the entire signal level and the frame/segment level, where numerous frames are extracted via windowing,
can be used for feature extraction. Frame level decisions are fused in order to categorize specific files. A
signal must be automatically segmented into frames in order to extract features at the frame level. Both
period synchronous and asynchronous segmentation techniques can be used, and we test both of them in our
comparisons. Period marking is required for period synchronous segmentation.

2.17.2 Period Marking And Segmentation

Period marking can be carried directly on PCG signals (segmentation into heart cycles or marking of cycle
starting occurrences).Since ECG signals are less noisy and contain a major peak that can be monitored for
accurate period marking,automatic marking can be done more consistently when ECG signals are captured
in parallel. So, ECG signals are recorded simultaneously together with PCG signals. So by following the
following procedure we managed to extract period marks from the ECG signals. At first, ECG signal was
filtered by High-pass filter, where its purpose is to remove the low frequencies.Then,energy signal was computed
and there was an amplitude normalization of this signal and an autocorrelation based period detection from
energy signal.Then,the number of heart cycles in the signal was estimated.Afterwards the peaks were detected
by applying a threshold of 0.5 and finally the spurious peaks were removed using amplitude comparison and
distance to surrounding peaks.

Once the period markings are available, various ways for segmentation can be utilized to retrieve PCG
frames. Τhe strategies used are as follows :

• Period synchronous segmentation with segment length defined proportionally to the local period (half
period, one period, two periods, etc). Overlap is inevitable for segment lengths longer than one period.

• Period synchronous segmentation with fixed segment length (0.5s, 1s, 2s etc.)[2]. Overlap occurs whenever
the segment length exceeds the period length.

• Period asynchronous segmentation with or without overlap and fixed segment length.

22 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

2.17.3 Computing time-frequency features

When considering automatic audio/sound categorization systems with CNN architectures, the time-frequency
representations listed below were chosen to be among the most frequent:

• Spectogram

• MFCC (with or without delta coefficients)

• Mel-Spectogram (with or without delta coefficients)

We added sub-band envelopes as a time-frequency representation to these standard representations. Also,sub-
band envelopes of a given PCG signal are created by stacking temporal modulation envelopes of sub-bands
obtained by band-pass filtering the PCG signal. Various time and frequency resolutions were tested for all
functionalities. Just before the computation, a Tukey window (r = 0.08) is added to signal segments. Where
Tukey window is a cosine lobe of width Na

2 that is convolved with a rectangular window of width N(1− a
2)

2.17.4 Sub-band envelopes as a time-frequency feature

Envelope signals are used in segmentation tasks and also as features fed into neural network classifiers.
For computing sub-band envelopes of a PCG segment,the following steps are followed:

• Using Gammatone filter banks to apply band-pass filtering to PCG signals.

• Accomplish envelope detection by computing an analytical signal using the Hilbert transform.

• Resampling of envelopes to a specific time-resolution.

• Using logarithmic algorithm to compress the final envelope signals.

• Generate an image-like time-frequency representation,all envelopes are layered.

• The resultant matrix is processed to have a zero-mean and normalized amplitude.

In Fig. 2.6, it is represented the process flow diagram and an example of feature extraction, with the com-
puted sub-band signal envelopes and final feature obtained in matrix form. The top sub-plots show 8 sub-band
signals as well as their resampled equivalents taken from the original PCG signal (in blue). In this case, after
stacking 8 vectors (corresponding to 8 sub-bands) of size 128 (number of time bins), an 8 × 128 image-like
representation is derived and plotted with color coding element values, yielding the bottom sub-plot, which is
the main feature used as input to the classifier.

Figure 2.6: Sub-band envelopes feature computation. Original PCG signal depicted in blue. Sub-band envelope
feature is the matrix obtained at the output of the feature extraction process which is depicted as a colored image
via mapping matrix coefficients to color code (low values: dark, high values: bright) (image from [2])

2.18. MACHINE LEARNING 23

2.18 Machine Learning

For the PCG classification task, a wide range of neural network models can be used. The tests are restricted to
the usage of feed-forward CNN models. To keep the number of tests limited , three similar models with common
sequence of layers are used : 2D convolutional layers (with kernel size 3 by 3, rectified linear unit activation)
followed by max-pooling and drop-out layers.The input dimension is the same as the feature dimension, and the
output dimension has two categories (normal and abnormal). Because PCG database sizes are frequently small
(in comparison to other automatic classification tasks using CNNs), complicated models with high capacity
learn to memorize the train data. As a result, the number of layers was maintained to a minimum, and
L1-regularisation was used to avoid over-fitting. The three models have 1, 2, and 4 2D convolutional layers,
respectively. Each model is intended to compute the probability of a segment belonging to a recording of a
patient with pathology. To compute the probability of a file/patient belonging to a problematic class, all frame
probabilities are sorted, the 15% lowest and 15% highest values are removed, and the probability for a file is
computed as the mean probability of these remaining frames.

2.18.1 Model With Single Convolutional Layer

More specifically, the first model is a single convolutional layer. It is a sequential model where the output of one
layer is passed as input to the next layer. In this layer 32 filters are applied to the input data. This indicates
that the layer will yield 32 separate feature maps. Kernel size as mentioned is 3x3.

2.18.2 Model With Two Convolutional Layers (uocseq1)

The second model consists of two convolutional layers. The first one is the same as the previous model as well
as the second one with the difference that we do not specify the shape of the input data. Next comes the Max
Pooling, the Dropout and the Flatten layer with the values being the same as the model with one layer. Then
follows a Dense layer with 64 units and a ReLu activation. This is followed by a Dropout layer with value 0.5
and a Dense layer with 16 units and L1 regularization with strength of 0.0002. There is also a Dense layer
that includes the number of classes as well as the softmax activation. It contains the same parameters with the
difference in the learning rate which is increased and has the value 0.001. As evaluation metric is used accuracy
again.

2.18.3 Model With Four Convolutional Layers (uocseq2)

The first two convolutional layers, Max Pooling, and dropout are the same as in the previous model. Then there
are two identical convolutional layers, followed by Max Pooling, Dropout, and a Flatten layer. Next, there is a
Dense layer with 32 units, L1 regularization with a strength of 0.001, and ReLU activation. Following that is
a Dropout layer and another Dense layer with 16 units, applying the same regularization and activation as the
previous Dense layer. Subsequently, there is another Dropout layer, and finally, a Dense layer is added, which
includes the number of classes and employs softmax activation. In the optimization process, SGD is employed
with a learning rate of 0.1. To enhance convergence, a learning rate decay of 106 and momentum with value 0.9.
Furthermore, momentum with a value of 0.9 is used, allowing earlier gradient information to impact the current
update step, allowing for faster convergence. The NAG is true and a clip-norm mechanism is implemented
to restrict the gradient norms to a maximum value of 5. At the end, similar to the other models, the model
is compiled using the binary cross-entropy loss function, accuracy as an early stopping metric, and an SGD
optimizer.

2.18.4 Our proposal

Our proposal to improve the existing model is a model with three convolutional layers.In the first layer there
are 16 filters, kernel size 3x3 and striding is (1, 1). As for the padding, we change it to ”same” to ensure
that the output feature map have the same spatial dimensions as the input image. To achieve this, padding
is added to the input sound so that the convolutional operation covers the entire input image without going
beyond its boundaries. Also,there is an input shape parameter. Then, we have added a batch normalization
layer. Generally, it is used to normalize the activation of the layer. It substracts the mini-batch standard
deviation. This ensures that the activation have a mean of approximately zero. Following normalization,
learnable parameters, specifically a scaling factor (gamma) and a shifting factor (beta) are used to scale and
shift the activation. The network may adjust and learn the best scale and shift for the normalized activation
by the learning these parameters during training. So,we add this lager to our model,in order to normalize the
activation of the previous layer within each mini-batch during training.Also we add the parameter momentum
with value 0.999 which controls the computation of the moving average of the batch-wise mean and variable.

24 CHAPTER 2. GENERAL PRINCIPLES OF CONVOLUTIONAL NEURAL NETWORK (CNN)

Following batch normalization, a ReLU activation layer is added that introduces non-linearity to the model.
Moreover, a Max Pooling layer is added to reduce the spatial dimensions of the feature maps, using a 2x2 pool
size. The code repeats a set of layers twice, each containing a convolutional layer, batch normalization, ReLU
activation, and max pooling. The number of filters increases (32 and 64) in these blocks, enabling the model
to learn more complex features as it goes deeper. Regularization for dropouts is applied at a rate of 0.25.
Dropout prevents overfitting by setting a portion of the input units to zero at random during training. In order
to prepare the data for fully connected layers, the flatten layer is utilized to transform the 2D feature maps
into a 1D vector. Then, two fully connected layers are added. The first has 32 neurons with ReLU activation.a
Dropout layer with a rate of 0.25 follows to further regularize the model. The second fully connected layer has
16 neurons and uses L1 regularization. The final fully connected layer has as many neurons as there are classes
in your classification problem. It uses the softmax activation function for multi-class classification. The model
is compiled with a binary cross-entropy loss function and an Adam optimizer. Again, accuracy is used as an
early stopping criterion.

Chapter 3

Databases

Physionet is a web-based resource intended to support ongoing research and drive new explorations into complex
physiologic and clinical data. Its purpose is to facilitate and catalyze biomedical research and education.
It encompasses innovative work on the analysis of physiological markers from both basic and translational
perspectives. Some of the databases from Physionet containing PCG and ECG recordings are presented:

3.1 EPHNOGRAM

The current database was collected from 24 healthy persons aged 23 to 29 (average: 25.4± 1.9 years) in 30-min
stress-test sessions while resting, walking, jogging, and biking on indoor fitness center equipment using version
2.1 of the created hardware. The dataset also includes many 30s sample records collected when at rest.It
consists, in particular, of 69 simultaneous ECG and PCG recordings, each lasting 30 seconds (8 records) to 30
minutes (61 records) and collected concurrently from a three-lead ECG and a single PCG stethoscope. It sheds
light on the interactions between the mechanical and electrical systems of the heart during rest and physical
exercise [40].

3.2 SUFHSDB

The Shiraz University (SU) fetal heart sounds database (SUFHSDB) contains 109 pregnant women’s fetal and
maternal phonocardiogram (PCG) recordings from single and twin pregnancies. The recordings were made with
a digital stethoscope on the lower maternal abdomen at Hafez Hospital of Shiraz University of Medical Sciences
in Shiraz, Iran, on mothers aged 16 to 47 years. In total, 99 patients had one signal captured, three subjects
had two, and seven cases of twins were individually recorded, for a total of 119 recordings. Each record lasts
roughly 90 seconds on average. The sampling rate was mainly 16000 Hz with 16-bit quantization and a few
44100 Hz recordings. The data was collected using the digital stethoscope’s wide-band mode and a frequency
response of 20 Hz to 1 kHz [41].

3.3 MIMIC-IV-ECG

The MIMIC-IV-ECG module has about 800000 diagnostic electrocardiograms from nearly 160000 different
patients. These diagnostic ECGs have 12 leads and last 10 seconds. They are sampled at a rate of 500 Hz.
MIMIC-IV-ECG includes patients from the MIMIC-IV Clinical Database who had ECGs taken between 2008
and 2019 [42].

3.4 Brno University of Technology ECG Signal Database with An-
notations of P Wave (BUT PDB)

Brno University of Technology ECG Signal Database with Annotations of P Wave (BUT PDB) is an ECG
signal database with highlighted peaks of P waves established by the cardiology team at Brno University of
Technology’s Department of Biomedical Engineering. The database contains 50 2-minute 2-lead ECG signal
recordings with diverse pathologies. The ECGs were chosen from three existing ECG signal databases: the
MIT-BIH Arrhythmia Database, the MIT-BIH Supraventricular Arrhythmia Database, and the Long Term AF
Database. Two ECG professionals manually annotated the P wave positions in all 50 samples.Each record
additionally includes annotation of the positions and types of QRS complexes (from the original database) as

25

26 CHAPTER 3. DATABASES

well as the prevailing diagnosis (pathology) included in the record. This database was built for the purpose of
developing, evaluating, and objectively comparing P wave detection techniques [43].

3.5 Norwegian Endurance Athlete ECG Database

The Norwegian Endurance Athlete ECG Database contains 12-lead ECG recordings from 28 competitive athletes
in Norway representing various sports. This study enlisted the participation of 28 healthy athletes. Men made
up 19 (68%) of the participants, while women made up 9 (32%). The ages of the participants ranged from 20
to 43 years old (Mean = 25 years, standard deviation = 4.7 years). The sports distribution was as follows: 24
rowers (86%), 2 kayakers (7%), and 2 cyclists (7%).All recordings are resting ECGs of 10 seconds taken with a
General Electric (GE) MAC VUE 360 electrocardiograph. All ECGs are interpreted using the GE Marquette
SL12 algorithm (version 23 (v243)) and one cardiologist who has received training in interpreting athlete ECGs.
[44]

3.6 ECG-ID Database

Tatiana Lugovaya produced and supplied the ECG-ID Database, which comprises 310 ECGs from 90 volunteers.
The database includes 310 ECG recordings from a total of 90 individuals.[45] Each recording consists of ECG
lead I, which was captured for a duration of 20 seconds and digitized at 500 Hz, featuring a 12-bit resolution
across a nominal 10 mV range. Additionally, each recording contains annotations for 10 beats (unaudited R-
and T-wave peak annotations derived from an automated detector), along with accompanying information such
as age, gender, and recording date, which is stored in the respective record’s. These recordings were obtained
from a diverse group of volunteers, comprising 44 men and 46 women ranging in age from 13 to 75. The
volunteers consisted of students, coworkers, and friends of the author, and the number of recordings collected
for each individual varies, spanning from two recordings acquired on a single day to twenty recordings collected
over a six-month period.

3.7 Lobachevsky University Electrocardiography Database

Lobachevsky University Electrocardiography Database (LUDB) is an ECG signal database with indicated P, T,
and QRS complex boundaries and peaks [46]. The database contains 200 10-second 12-lead ECG signal records
representing various ECG signal morphologies. In 2017 − 2018, ECGs were obtained from healthy volunteers
and patients at Nizhny Novgorod City Hospital No 5. The patients had a variety of cardiovascular illnesses, and
some had pacemakers. Cardiologists personally labeled the margins of P waves, T waves, and QRS complexes
for all 200 records. Each record is also marked with the appropriate diagnosis.

3.8 MIT-BIH ECG Compression Test Database

This database contains 168 brief ECG recordings (20.48 seconds each) chosen to present a variety of problems
to ECG compressors, including lossy compression algorithms [47].

3.9 Databases for our classification

For the purpose of conducting comparative experiments, two databases were employed, each showcasing no-
table differences in terms of patient ages and medical conditions. The first database, known as the UoC-murmur
database, is a proprietary collection that accurately portrays real-life scenarios encountered in pediatric cardi-
ology screening through the utilization of phonocardiograms (PCGs). Distinguished by its focus on pediatric
cases, this database stands as one of the most extensive compilations of digital phonocardiograms exclusively
within the pediatric context.The second database, in contrast, is publicly accessible and goes by the name
PhysioNet-2016 database [48]. This repository predominantly consists of heart sound recordings from adult
subjects. It stands as the most expansive and up-to-date collection of phonocardiograms globally, serving as a
cornerstone for the comparison of various classification studies.

3.9.1 University of Crete, PCGs with murmur (UoC-murmur) database

This database contains anonymized digital phonocardiograms (4 − 10 seconds in length, including 4 to 18
PCG cycles with an average of 8 cycles) obtained from pediatric cardiology outpatients as standard of care
and from a pilot pediatric cardiology screening program for school-age children (8 years old), which included

3.9. DATABASES FOR OUR CLASSIFICATION 27

digital phonocardiogram as a component for pediatric heart disease screening. The database contains aberrant
murmurs associated with various types and levels of CHD severity. As a result, this collection contains samples
with aberrant murmurs recorded from children of diverse ages, often under inadequate recording conditions, or
harmless murmurs that were difficult for their pediatricians to define as such.

The database comprises 336 recordings obtained from 327 healthy children exhibiting innocent murmurs,
alongside 130 recordings stemming from 117 children spanning various age groups, encompassing infants through
adolescents, who presented with diverse forms of congenital heart defects (CHD). Each patient underwent four
recording sessions, corresponding to specific anatomical locations: apical, lower left (fourth intercostal space),
and upper (second intercostal space) left and right parasternal positions.

The data encompassed both ECG signals and digital acoustic data, with a sampling rate of 44100 kHz
and a dynamic resolution of 16 bits. These data were then stored in the form of wave files. To streamline the
data, an initial preprocessing phase was undertaken. Firstly, the ECG data underwent downsampling, reducing
its original frequency to 882 Hz. Similarly, the phonocardiogram (PCG) data was downsampled to 4410 Hz.
Secondly, both the ECG and PCG signals underwent amplitude adjustment, setting their maximum levels at
0.9 to achieve uniformity and facilitate subsequent analyses.

3.9.2 PhysioNet-2016 database

The 2016 PhysioNet Challenge seeks to create a large database with the aim of providing automated diagnosis
on the mobile phone, providing access to patients wherever they are. The current Challenge aims to promote
the creation of algorithms that can accurately categorize heart sound recordings obtained from various clinical
or nonclinical environments as normal or abnormal, and subsequently determine whether the subject of the
recording needs to be forwarded on for an expert diagnosis.In this competition 348 open-source entries were
submitted by 48 teams.

The database comprises nearly 30 hours of recordings, encompassing 233512 heart sounds derived from
116,865 individual heartbeats. These recordings are extracted from a collection of 4430 individual recording
sessions, involving a total of 1072 subjects.The heart sound recordings were categorized into two types: normal
recordings from healthy subjects, and abnormal recordings from patients diagnosed with heart valve defects and
coronary artery disease (CAD). Specifically, the evaluated heart valve defects included mitral valve prolapse,
mitral regurgitation, aortic regurgitation, aortic stenosis, and instances involving valvular surgery. A detailed
sub-classification for these abnormal recordings was not provided.

Labeling

Signal quality labels are provided to identify recordings with low signal quality. These recordings, labeled
as ”unsure” ,also received reference segmentation annotations for the four heart sound states (first sound S1,
systole, second sound S2, and diastole).

Train and test data

Four of the eight independent heart sound databases were separated into training and test sets, with a 70:30
training-test split. The remaining four databases were assigned to either the training or test sets. The training
and test populations are mutually exclusive (no recordings from the same subject/patient are included in both
training and test sets). The challenge training set (a through f) has 3153 heart sound recordings from 764
subjects/patients, whereas the test set (b through e, plus g and i) contains 1277 heart sound recordings from
308 subjects/patients. Following the manual correction technique for the segmentation annotations, there are
84425 beats in the training set and 32440 beats in the test set.The recordings range in length from a few
seconds to more than a hundred seconds.All recordings have been resampled to 2000 Hz and are available in
uncompressed WAV format.

Algorithms

The Challenge presented a very simple benchmark classifier example. Initially, a balanced heart sound database
consisting of 472 abnormal and 472 normal recordings was selected from the training set. Springer’s segmenta-
tion algorithm was employed to segment each chosen cardiac sound recording, thereby generating time durations
corresponding to the four states: S1, systole, S2, and diastole. From the location data of these states, twenty
distinct characteristics were derived.Subsequently, these twenty characteristics were utilized in a binary logistic
regression classifier employing forward selection. This process aimed to identify the most advantageous char-
acteristics for classification. It’s important to note that the ’unsure’ class was omitted from consideration,
resulting in the binary outcome of either ’normal’ or ’abnormal’. After conducting the analysis, it was de-
termined that the optimal number of characteristics for effective categorization was seven.During the training
phase, a set of five features was identified, leading to a sensitivity of 0.66, a specificity of 0.77, and a challenge

28 CHAPTER 3. DATABASES

score of 0.71 through a 10-fold cross-validation process. These specific characteristics were selected due to their
evident significance; the classifier was not subjected to cross-validation, and only a random subset of the data
was utilized in this analysis. Furthermore, the top N submissions from the competition were employed to devise
a straightforward, unweighted voting mechanism. It’s worth noting that by excluding submissions with lower
performance, this strategy commonly results in achieving the highest score within the competition.

Scoring

The total score is determined by the number of recordings that are classified as normal, abnormal, or unsure.

Sensitivity : Se =
wa1 +Aa1

Aa1 +Aq1 +An1
+

wa2(Aa2) +Aq2
Aa2 +Aq2 +An2

(3.1)

Specificity : Sp =
wn1 +Aa1

Na1 +Nq1 +Nn1
+

wn2 ∗ (Nn2 +Nq2)

Na2 +Nq2 +Nn2
(3.2)

where wa1 and wa2 are the percentages that measure the quality of the signal in abnormal recordings,and they
are weights for calculating Se. Respectively, wn1 and wn2 are percentages that measure the quality of the signal
in normal recordings,and they are weights for calculating Sp. Finally, the Challenge score is calculated by the
so-called Balanced Accuracy :

MAcc =
Se + Sp

2
(3.3)

Results

Although there isn’t much of a performance difference between the top three entries (in terms of the MAcc),
we should notice that Potes et al.’s [49] highest scoring entry had a notable Se and low Sp. Potes et al. had the
second-highest overall Se, as we also highlighted. (The highest Se was 0.9633, ranking 34th, but with a low Sp
of 0.5589 and a high MAcc of 0.7611). The third-highest Se, which came in fifth, had a score of 0.8848. Rubin
et al. [50] had the highest Sp (0.9521), but their Se was just 0.7278, placing them in eighth place overall. A
higher sensitivity may be ideal for an application that sends subjects for additional screening, provided that
the resources can handle the false-positive rate.However, with only a 1.5% difference between them, the second,
third, and fourth candidates offer a decent mix between Se and Sp. There is a 2% gap between the top eight
competitors. Finally, take notice of the sample algorithm’s identical performance on the training and test sets of
data. The score varied between 0.47 on training set b to 0.86 on training set c, with a mean ± SD of 0.59±0.15
across all training databases, after stratifying by patient database and running a leave-one-database-out cross
validation on the training data. This shows how challenging it is to train an algorithm for brand-new datasets
under brand-new recording circumstances. Two entirely hidden databases (g and i) were included in the test
data that was hidden.

In conclusion, the database made available for this Challenge is the largest open access database of heart
sounds in the world.

Chapter 4

Experiments

4.1 Preprocessing

Regarding the prepossessing phase, no alterations were made as the available options had previously yielded
optimal results in the prior study.

4.1.1 Segmentation

The segmentation is responsible for dividing a continuous signal into smaller, discrete segments or frames. It
offers options for period-synchronous or asynchronous segmentation and has fixed frame size (2 seconds). The
class’s initialization parameters allow us to specify the source type of the signal (ECG or PCG), whether the
segmentation should be synchronized with periodic events and the desired size (1 period,2 periods or 3 periods)
and hop(overlap) of one second,setting for segment. For segmentation the following 2 libraries were used:

• Soundfile: This library is used for reading audio waveforms from sound files.

• Numpy: Numpy is a fundamental library for numerical operations in Python, and it is used for various
array manipulations and calculations in the code.

Subsequent processing procedures were conducted on the PCG (Phonocardiogram) signals. Initially, the
PCG waveforms were subdivided into smaller time intervals. A Tukey window was subsequently applied to
each of these segments to ensure uniform sizing. Tukey window is a mathematical function that is zero-valued
outside of some chosen interval, normally symmetric around the middle of the interval, usually approaching a
maximum in the middle, and usually tapering away from the middle [51]. These segments were then either
truncated or adjusted to conform to a predefined maximum length, measured in milliseconds. Subsequently, the
amplitude spectrum of each segment was computed.In order to achieve further processing of PCG in addition
to the two previous libraries, two more libraries were used:

• Spectrum: a library which is used to create a Tukey window

• Matplotlib.pyplot: a library which is used to create visualizations in python.

4.1.2 Features Extraction

For feature extraction is used two parameters: ”timeDim” and ”freqDim”.The timeDim parameter, set to
32, dictates the number of time-based bins or frames into which each data segment is divided during extrac-
tion.Conversely, freqDim, set to 16, determines the number of frequency-based bins used to capture spectral
characteristics within each time frame.

4.1.3 Data Splitting

Data splitting ensures that the model is trained on one set of data, validated on another set to tune hyperpa-
rameters, and finally tested on a separate set to evaluate its performance. In this study the ratios are defined
as follows:

• Training set:65%.This set is used to train the machine learning model.

• Validation set:15%.The validation set is used during the training process to tune hyperparameters, monitor
the model’s performance, and prevent overfitting. It helps in selecting the best model from different
training epochs.

29

30 CHAPTER 4. EXPERIMENTS

• Test set:20%. The test set is not used during model training or hyperparameter tuning. Instead, it is used
to evaluate the final model’s performance. It provides an estimate of how well the model will perform.

4.1.4 Data Augmentation

Regarding augmentation, we abstained from implementing it due to the inadequacy of our graphics card re-
sources.

4.2 Recommended Architecture and Results

In the initial phase of experimentation with the uocSeq2 model, a systematic investigation was undertaken to
evaluate the effects of removing activation functions from all convolutional layers.As a pivotal step, a Batch-
Normalization layer was meticulously integrated into the model configuration. This BatchNormalization layer
was meticulously configured with a momentum parameter assigned a value of 0.999. The primary objective
of this addition was to instill stability into the training process and expedite the convergence of the model
during the optimization phase. In a subsequent step, an activation layer was judiciously re-introduced into the
architecture. Specifically, the ReLU activation function, which had been previously employed within the model,
was reinstated. This particular activation layer was employed with the purpose of reinstating non-linearity to
the model’s computations. The subsequent phase of our experimentation involved the application of a cus-
tom model, extensively elucidated in Section 2.1.4 of this study. This custom model, meticulously detailed
and described therein, was employed to further assess and validate its performance characteristics within the
experimental framework.

First of all, our proposed model differs in the number of filters compared to previous models. By starting
with 16 filters and progressively increasing to 32 and then 64, the model is designed to learn hierarchical
representations of features. This approach allows the network to gradually build more abstract and higher-level
representations of the input data.Furthermore,the number of filters in each layer impacts the computational
complexity of the model. Using a relatively small number of filters in the initial layers helps keep the model
computationally efficient, making it suitable for training on standard hardware. As the process moves deeper
into the network, where feature maps are typically smaller due to max-pooling layers, it can afford to increase
the number of filters to capture more complex patterns.Using fewer filters in earlier layers can also contribute
to regularization, as it reduces the model’s capacity to memorize training data.Finally, this number of filters
provideσ a good balance between model complexity and performance through experimentation.

Then, we changed the padding from ’valid ’ to ’same’ in all convolutional layers. In this way we preserve
the spatial dimensions (height and width) of feature maps after applying convolution.The convolution operation
includes zero-padding to the input feature map such that the output feature map has the same spatial dimensions
as the input. So,we maintain a consistent spatial resolution throughout the network. Moreover this technique
helps the network learn and retain fine details and local patterns in the data. Also,the receptive field (the area
in the input image that influences a particular output feature) of each layer remains consistent. This can be
beneficial to capture features at a specific scale throughout the network.

Also,we reduced the dropout rate from 0.5 to 0.25. A dropout rate of 0.25 means that during training,
approximately 25% of neurons in the dropout layer are randomly set to zero during each forward and backward
pass. This is a more moderate level of regularization compared to a dropout rate of 0.5. A lower dropout
rate still introduces regularization but to a lesser extent than a higher dropout rate. This provide a balance
between preventing overfitting and allowing the model to learn more from the training data. Lower dropout
rates leads to faster convergence because the model is less likely to discard useful information during training.
So, it requires fewer training epochs to reach a good result. Generally, our code relies on dropout regularization.

In our code kernel regularization (L1 regularization) is applied to only one of the dense layers (the second
dense layer with a regularization strength of 0.0002). The other dense layers do not have explicit kernel
regularization. Specifically, these layers are not explicitly encouraged to have sparse weights. Sparsity implies
that some weights could become exactly zero, effectively reducing the complexity of the model.

In order to improve the performance of our model we changed the optimization. Adam adapts learning
rates for each parameter individually. In particular, it adjusts the learning rates during training, potentially
leading to faster convergence. In addiction, Adam incorporates bias correction, which helps in the early stages
of training when the moving averages are biased towards zero. This leads to more stable training and improved
convergence.

The aforementioned modifications implemented in the code, pertaining to the primary models, have signif-
icantly enhanced the effectiveness of our model. These improvements are substantiated by the results we have
obtained. Each test generates five repetitions of the identical experiment. The results of each test we applied
are shown in the tables and graphs below.

In the realm of experimental research, it is common practice to gather and assess data at both the file level

4.2. RECOMMENDED ARCHITECTURE AND RESULTS 31

and frame level. This methodology involves the acquisition of metrics or data points pertaining to individual
files or units of analysis, as well as the collection and analysis of fine-grained measurements at the level of dis-
crete frames . File-level measures serve to furnish a summarized perspective of the overarching characteristics or
attributes of individual files, while frame-level measures are employed to capture nuanced variations, patterns,
or features that manifest over sequential frames or time intervals. In classification tasks, file-level measures
are pivotal for evaluating the performance of a model.These measures include accuracy, which assesses overall
correctness; precision, which focuses on the accuracy of positive classifications; sensitivity, measuring the ability
to identify all relevant positive documents; and the F1-Score, a balanced metric combining precision and sensi-
tivity. Specificity is crucial for minimizing false positives, while ROC provide comprehensive assessments of a
model’s ability to distinguish between classes. Additionally, the confusion matrix offers a detailed breakdown
of true positives, true negatives, false positives, and false negatives, enabling the calculation of these file-level
measures. MFCC (Mel-Frequency Cepstral Coefficients) score is also used as a file-level measure to represent
the spectral characteristics of audio files. On the other hand, frame-level measures is used to evaluate how well
a classification model detects specific events or patterns within each frame.

Figure 4.1 and Figure 4.2 are the results tables for the file-level measures and for the frame-level measures.
The observation reveals that the sensitivity value in our proposed model is significantly elevated.So our

proposed model is is better at correctly identifying positive cases relative to the total number of actual positive
cases in the dataset. Moreover, a higher sensitivity means fewer false negatives. The increased specificity has
been duly observed.Our model seems to be better at correctly identifying negative cases relative to the total
number of actual negative cases in the dataset. It minimizes the chances of falsely accusing something as
positive when it’s not,something that is very important in our study.The higher accuracy of our model ensures
that the model is more effective at making correct predictions across all classes or categories. Achieving a
balance between precision and sensitivity in our model is superior to merely ensuring it through a higher F1
score. Finally, MCC score is better at evaluating the performance particularly when dealing with imbalanced
datasets. The MCC takes into account both sensitivity and specificity (true negative rate) and aims to provide
a balanced assessment of the model’s performance, considering both types of errors (false positives and false
negatives). Generally, MCC score indicates better discrimination between classes, robustness to imbalanced
data, and balanced performance.

Below are the diagrams derived from the five repetitions of each experiment. These diagrams encompass
accuracy, loss, and ROC curves, where Results 0 corresponds to the original code (OC), Results 1 corresponds
to the CNN after the addition of the batch normalization layer (CNN-BN) and Results 2 corresponds to our
proposed three-layer CNN model (3L-CNN).

32 CHAPTER 4. EXPERIMENTS

Figure 4.1: Tables of metrics for all five replicates of each experiment. Results 0: OC,Results 1:CNN-BN,Results 2:3L-
CNN.

4.2. RECOMMENDED ARCHITECTURE AND RESULTS 33

Figure 4.2: Tables of sensitivity and specificity for all five replicates of each experiment. Results 0: OC,Results 1:CNN-
BN,Results 2:3L-CNN.

Figure 4.3: OC Figure 4.4: CNN-BN Figure 4.5: 3L-CNN

Figure 4.6: Accuracy in the first repetition.

34 CHAPTER 4. EXPERIMENTS

Figure 4.7: OC Figure 4.8: CNN-BN Figure 4.9: 3L-CNN

Figure 4.10: ROC-Curve in the first repetition.

Figure 4.11: OC Figure 4.12: CNN-BN Figure 4.13: 3L-CNN

Figure 4.14: Accuracy in the second repetition.

Figure 4.15: OC Figure 4.16: CNN-BN Figure 4.17: 3L-CNN

Figure 4.18: ROC-Curve in the second repetition.

Figure 4.19: OC Figure 4.20: CNN-BN Figure 4.21: 3L-CNN

Figure 4.22: Accuracy in the third repetition.

4.2. RECOMMENDED ARCHITECTURE AND RESULTS 35

Figure 4.23: OC Figure 4.24: CNN-BN Figure 4.25: 3L-CNN

Figure 4.26: ROC-Curve in the third repetition.

Figure 4.27: OC Figure 4.28: CNN-BN Figure 4.29: 3L-CNN

Figure 4.30: Accuracy in the fourth repetition.

Figure 4.31: OC Figure 4.32: CNN-BL Figure 4.33: 3L-CNN

Figure 4.34: ROC-Curve in the fourth repetition.

Figure 4.35: OC Figure 4.36: CNN-BN Figure 4.37: 3L-CNN

Figure 4.38: Accuracy in the fifth repetition.

36 CHAPTER 4. EXPERIMENTS

Figure 4.39: OC Figure 4.40: CNN-BN Figure 4.41: 3L-CNN

Figure 4.42: ROC-Curve in the fifth repetition.

Chapter 5

Conclusion and Future Work

5.1 Results

According to the results obtained, we see an obvious improvement of all metrics in all five experiments. More
specifically, as far as the file-level measures for the metric sensitivity are concerned, 3L-CNN shows an increase
of ≈ 25.2% compared to OC. On the other hand, CNN-BN compared to OC sensitivity shows a very small
increase of ≈ 5.5% while in the fourth repetition of the experiment it decreased by ≈ 9%. In terms of specificity,
3L-CNN shows an increase of about ≈ 6.75% compared to OC and CNN-BN ≈ 5%. However, the first repetition
of the CNN-BN experiment reduces specificity by 4% and the third by 7.7%. We then observe that 3L-CNN
increases the accuracy by ≈ 14.98% compared to OC. As for the comparison between CNN-BN and OC in the
first, third and fourth repetition we have a ≈ 2% decrease in accuracy while in the second and fifth repetition we
have a ≈ 5.5% increase. F1 score is increased by an average of 17.32% and Matthews CC by 37.32% in 3L-CNN
model. In the CNN-BN model in the first, third, and fourth repetition the F1 score decreases by ≈ 1.8% while
in the second and fifth it increases by ≈ 6.5%. Similarly the Matthews CC decreases in the same repetitions by
≈ 9% while it increases by ≈ 15.5%.

As for the frame level measures we had two metrics; sensitivity and specificity. For sensitivity, we first
compared the OC with the CNN-BN and observed in the first and third repetition an increase of ≈ 3% while
in the second and fourth a small decrease of ≈ 2% is observed, in the fifth repetition no change is observed.
In the comparison of OC with 3L-CNN, sensitivity generally increased by 9% while in the second repetition
it decreased by 9%. The specificity in 3L-CNN increased by 10%, while in CNN-BN in the first and third
repetitions it decreased by 8.5% and in the remaining repetitions it increased by 8.6%

In conclusion, our model outperforms in multiple aspects of classification accuracy and balance. The model
is achieving better overall performance compared to the other models. That makes our model more robust
and reliable in various situations and across different threshold settings. It’s not overly biased towards either
precision or sensitivity.

In all instances of evaluating model performance, a notably elevated accuracy, converging closely to unity,
has been attained. Furthermore, a concordance between the training and validation sets has been observed,
indicating a model that is exhibiting competence not only on its training data but also on hitherto unseen
data. Of particular note is the observation that ”result 1,” in comparison to alternative outcomes, manifests
a superior outcome in terms of minimizing the loss function across both the training and validation datasets.
Additionally, it is noteworthy that the ROC curve, a metric of classification model performance, converges to a
value of one within a shorter span of training epochs, suggesting expedited convergence.

5.2 Future Work

In our study, we have identified several avenues for future research to enhance the efficacy of our PCG (Phono-
cardiogram) classification system. Firstly, there is a need to investigate more sophisticated data augmentation
techniques that consider the intrinsic physical constraints of the heart’s cardiac cycles, moving beyond the
current uniform resampling approach. Secondly, a comprehensive analysis of the sub-band filtering process,
optimizing parameters for Gammatone filter banks, could lead to improved performance. Additionally, ex-
ploring alternative fusion methods for frame-level classification results, such as majority voting, should be
considered. Further research could also focus on parameter optimization to fine-tune our PCG classification
system. Moreover, the integration of multi-sensor signal processing techniques, including noise cancellation us-
ing multi-channel PCG recordings and joint analysis with other modalities like Ballistocardiography (BCG) and
Electrocardiography (ECG), holds promise for enhancing the screening applications. Ultimately, building and
testing end-products in real-life scenarios should be a pivotal direction for our research community to pursue.

37

38 CHAPTER 5. CONCLUSION AND FUTURE WORK

References

[1]Phonocardiography

[2] Baris Bozkurt, Ioannis Germanakis, Yannis Stylianou (2018) A study of time-frequency features for CNN-
based automatic heart sound classification for pathology detection.

[3] Reller M.D., Strickland M.J., Riehle-Colarusso T., Mahle W.T., Correa A. Prevalence of congenital heart
defects in metropolitan Atlanta (1998–2005).

[4] Suyi Li,Feng Li,Shijie Tang,Wenji Xiong (2020).A Review of Computer-Aided Heart Sound Detection Tech-
niques.

[5] Wei Chen, Qiang Sun, Xiaomin Chen, Gangcai Xie, Huiqun Wu, and Chen Xu,Deep Learning Methods for
Heart Sounds Classification: A Systematic Review (2021)

[6] Abbas K. Abbas, Rasha Bassam. Phonocardiography Signal Processing

[7] Ganesh R. Naik,Wellington Pinheiro dos Santos. Biomedical Signal Processing: A Modern Approach (2023)

[8] Praharsh Ivaturi, Matteo Gadeleta, Amitabh C.Pandey, Michael Pazzani, Steven R.Steinhubl, Giorgio Quer.
A Comprehensive Explanation Framework for Biomedical Time Series Classification (2021)

[9] Han Li, Xinpei Wang, Changchun Liu,Qiang Zeng, Yansong Zheng,Xi Chu, Lianke Yao,Jikuo Wang, Yu
Jiao,Chandan Karmakar. A fusion framework based on multi-domain features and deep learning features of
phonocardiogram for coronary artery disease detection.(2020)

[10] Sean Dornbush, Andre E. Turnquest.Physiology, Heart Sounds (2023)

[11] Jithendra Vepa. Classification of heart murmurs using cepstral features and support vector machines

[12] D Kumar ,P Carvalho, M Antunes, R P Paiva, J Henriques,Heart murmur classification with feature
selection

[13] Ahmed Ali Dawud, Thamineni Bheema Lingaiah, Towfik Jemal. Classification of heart sounds associated
with murmur for diagnosis of cardiac valve disorders(2022)

[14] Si-ji Ding, Hao Ding, Meng-fei Kan, Yi Zhuang, Dong-yang Xia, Shi-meng Sheng,Xin-ru Xu.A Computer-
Aided Heart Valve Disease Diagnosis System Based on Machine Learning (2023)

[15] Qaisar Abbas, Ayyaz Hussain, Abdul Rauf Baig. Automatic Detection and Classification of Cardiovascular
Disorders Using Phonocardiogram and Convolutional Vision Transformers (2022)

[16] Guang Yang, Qinghao Ye, Jun Xia. Unbox the black-box for the medical explainable AI via multi-modal
and multi-centre data fusion: A mini-review, two showcases and beyond (2020)

[17] Yogesh Kumar, Apeksha Koul, Ruchi Singla, and Muhammad Fazal Ijaz.Artificial intelligence in disease
diagnosis: a systematic literature review, synthesizing framework and future research agenda (2022)

[18] Seth L. Thomas, Joseph Heaton, Amgad N. Makaryus. Physiology, Cardiovascular Murmurs (2023)

[19] Juan P Dominguez-Morales, Angel F Jimenez-Fernandez, Manuel J Dominguez-Morales, Gabriel Jimenez-
Moreno.Deep Neural Networks for the Recognition and Classification of Heart Murmurs Using Neuromorphic
Auditory Sensors (2017)

39

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471732877.emd203

40 CHAPTER 5. CONCLUSION AND FUTURE WORK

[20] Mohanad Alkhodari, Luay Fraiwan. Convolutional and recurrent neural networks for the detection of
valvular heart diseases in phonocardiogram recordings (2021)

[21] Robinson Spencer, Fadi Thabtah, Neda Abdelhamid, Michael Thompson. Exploring feature selection and
classification methods for predicting heart disease (2020)

[22] Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning (Adaptive Computation and Machine
Learning series) (2022)

[23] What is a neural network

[24] Neural.

[25] Neural Networks.

[26] Hidden Layer

[27] Output Layer.

[28] Neural Networks and Machine Learning.

[29] Mayank Mishra.Convolutional Neural Networks, Explained (2020)

[30] What are convolutional neural networks?

[31] Number of filters

[32] Padding

[33] Pooling

[34] Saul Dobilas. Convolutional Neural Networks Explained — How To Successfully Classify Images in Python
(2022)

[35] Hyperparameter.

[36] ReLu Activation.

[37] Softmax.

[38] Nagesh Singh Chauhan.Optimization Algorithms in Neural Networks (2020)

[39] Adam optimizer

[40] EPHNOGRAM

[41] SUFHSDB

[42] MIMIC-IV-ECG

[43] Brno University of Technology ECG Signal Database with Annotations of P Wave (BUT PDB)

[44] Norwegian Endurance Athlete ECG Database

[45] ECG-ID Database

[46] Lobachevsky University Electrocardiography Database

[47] MIT-BIH ECG Compression Test Database

[48] Physionet

[49] Cristhian Potes, Saman Parvaneh, Asif Rahman, Bryan Conroy (2016) Ensemble of feature-based and deep
learning-based classifiers for detection of abnormal heart sounds.

[50] Jonathan Rubin, Rui Abreu, Anurag Ganguli, Saigopal Nelaturi, Ion Matei, Kumar Sricharan (2016) Clas-

https://aws.amazon.com/what-is/neural-network/
http://kelifos.physics.auth.gr/COURSES/neural/K1.pdf
https://bigblue.academy/gr/neuronika-diktua
https://www.techopedia.com/definition/33264/hidden-layer-neural-networks
https://www.techopedia.com/definition/33263/output-layer-neural-networks
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://www.ibm.com/topics/convolutional-neural-networks
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://www.knowledgehut.com/blog/data-science/padding-in-cnn
https://towardsai.net/p/l/introduction-to-pooling-layers-in-cnn
https://www.ibm.com/docs/en/wmla/1.2.3?topic=features-hyperparameter-tuning
 https://builtin.com/machine-learning/relu-activation-function
https://en.wikipedia.org/wiki/Softmax_function
https://www.extrica.com/article/22271
https://physionet.org/content/ephnogram/1.0.0/
https://physionet.org/content/sufhsdb/1.0.1/
https://physionet.org/content/mimic-iv-ecg/0.3/
https://physionet.org/content/but-pdb/1.0.0/
https://physionet.org/content/norwegian-athlete-ecg/1.0.0/
https://physionet.org/content/ecgiddb/1.0.0/
https://physionet.org/content/ludb/1.0.1/
https://physionet.org/content/cdb/1.0.0/
https://physionet.org/content/challenge-2016/1.0.0/papers/challenge2016.pdf

5.2. FUTURE WORK 41

sifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients.

[51] Tukey Window

https://en.wikipedia.org/wiki/Window_function

	Abstract
	Introduction
	Biosignal Interaction: PCG, Mel-Spectroscopy, Signal Processing
	Automatic PCG classification
	Basics of cardiac auscultation
	Automatic heart sound classification
	Time-frequency features and neural networks for automatic heart sound classification

	Proposed Model
	Outline

	General principles of Convolutional Neural Network (CNN)
	Convolutional Neural Network
	Convolution Layer
	Pooling Layer
	Fully-Connected Layer (FC)

	Hyperparameters
	Learning Rate
	Batch Size
	Number of Epochs
	Activation Functions
	Sigmoid Function
	Tanh Function (Hyperbolic Tangent)
	ReLU (Rectified Linear Unit)

	SoftMax
	Optimization
	Gradient Descent (GD)
	Stochastic Gradient Descent (SGD)
	Mini Batch Stochastic Gradient Descent (MB-SGD)
	SGD with momentum
	Nesterov Accelerated Gradient (NAG)
	Adaptive Moment Estimation (Adam)

	Forward Propagation
	Backpropagation
	Overfitting
	Cross Validation
	Dropout
	L1/L2 Regularization
	 Performance Metrics
	Accuracy
	Sensitivity
	Specificity
	Precision
	F1 Score
	Matthews Correlation Coefficient (MCC)
	ROC Curve

	Convolutional Neural Network (CNN) in our study
	Feature Extraction
	Period Marking And Segmentation
	Computing time-frequency features
	Sub-band envelopes as a time-frequency feature

	Machine Learning
	Model With Single Convolutional Layer
	Model With Two Convolutional Layers (uocseq1)
	Model With Four Convolutional Layers (uocseq2)
	Our proposal

	Databases
	EPHNOGRAM
	SUFHSDB
	MIMIC-IV-ECG
	Brno University of Technology ECG Signal Database with Annotations of P Wave (BUT PDB)
	Norwegian Endurance Athlete ECG Database
	ECG-ID Database
	Lobachevsky University Electrocardiography Database
	MIT-BIH ECG Compression Test Database
	Databases for our classification
	University of Crete, PCGs with murmur (UoC-murmur) database
	PhysioNet-2016 database

	Experiments
	Preprocessing
	Segmentation
	Features Extraction
	Data Splitting
	Data Augmentation

	Recommended Architecture and Results

	Conclusion and Future Work
	Results
	Future Work

	References

