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ABSTRACT

In this paper, we explore the possibility of using the WaveNet
architecture as a statistical vocoder. In that case, the gen-
eration of speech waveforms is locally conditioned only by
acoustic features. Focusing on the single speaker case at the
moment, we investigate the impact of the local conditions as
well as that of the amount of data available for training. Fur-
thermore, variations of the WaveNet architecture are consid-
ered and discussed in the context of our work. We compare
our work against a very recent work which also used WaveNet
architecture as a speech vocoder using the same speech data.
More specifically, we used two female and two male speakers
from the CMU-ARCTIC database to contrast the use of cep-
strum coefficients and filter-bank features as local condition-
ers with the goal to improve the overall quality for both male
and female speakers. In the paper we also discuss the impact
of the size of the training data. Objective metrics for quality
and intelligibility of the generated by the WaveNet speech as
well as subjective tests support our suggestions.

Index Terms— WaveNet, filter-bank features, vocoder,
autoregressive model, correlated conditioning.

1. INTRODUCTION

Speech analysis and reconstruction usually involve the de-
velopment of a mathematical representation of speech pro-
duction mechanism. Parameters of such representation are
estimated by minimizing an error criterion (usually a mean
squared error) between the original speech and the mathemat-
ical model. Most of the mathematical representations sug-
gested in the literature are based on the assumption of the
source-filter theory for the production of speech. Sometimes
the models are simplistic for modeling source and filter [1]
or more elaborating [2, 3]. Speech models have found appli-
cations in speech coding as well as speech synthesis (text-
to-speech). The capability to change the parameters of the
model was found to be useful in modifying pitch, the time-
scale of the signal [4–6], or even in modifying the identity of
the speaker, like in voice conversion [7, 8]. Thus, these mod-
els have been found to be useful in various ways to synthesize
speech: from diphone synthesizers to high-quality Unit Se-
lection, or Hybrid, based speech synthesis systems as well

for statistical based speech synthesis systems using HMM or
DNN [9–12].

For all above applications of speech models, we usually
consider between analysis and reconstruction steps, an inter-
mediate step that of transformation of the parameters of the
model. For speech coding that includes coding, transmission,
decoding. In text-to-speech, that includes modification of
model parameters. For example, in Unit-Selection based sys-
tems, for smoothing discontinuities during unit transitions. In
Statistical approaches, for reconstructing/generating speech
waveform from acoustic features predicted by linguistic in-
formation. Speech models are then classified as good or bad
depending on their capability for being robust against these
transformations, modifications, or predictions. For the two
last cases, we expect speech models to generate speech that
is as natural as possible, while in the first case (speech cod-
ing) we expect speech models to reconstruct speech as close
as possible to the original speech.

From a machine learning point of view, speech models
(although it depends on their degrees of freedom) provide an
over fitting solution. Thus, slight modifications in the anal-
ysis parameters may generate artifacts during the reconstruc-
tion of the signal. For example, in voice conversion when
a speech model uses the predicted acoustic features of the
target speaker given those from a source speaker, the output
quality has artifacts like buzziness. The same quality is also
observed when the acoustic features are predicted from the
linguistic information in the case of statistical text-to-speech
systems. Recently, WaveNet [13] has been suggested for text-
to-speech synthesis showing that a non-linear autoregressive
system can mimic speech generation very well, while if it is
appropriately locally conditioned with linguistic information,
a high-quality text-to-speech synthesis system is obtained. If
the local conditioning changes from linguistic information to
acoustic information, then the WaveNet system is mainly a
(statistical) vocoder [14]. The latter case has many applica-
tions for example in speech enhancement, speech modifica-
tions, voice Conversion [15–17] etc.

Inspired by these latest developments of WaveNet as a
(statistical) vocoder, in this paper we are exploring the impact
of conditioning as well as that of the amount of training data,
in the quality of generated speech by WaveNet. To accelerate
the speech training procedure, we consider a modified ver-



sion of the WaveNet as it was used in [14]. Using the same
speech data as in [14] and with objective and subjective tests,
we show that the choice of acoustic features as local condi-
tioning affects the quality of the generated by the WaveNet
speech.
The paper is organized as follows: In Section 2, details of
WaveNet architecture explored in our work is explained. In
Section 3, details our exploration of WaveNet architecture us-
ing mel-cesptrum coefficients and mel-filter-bank features as
local conditioning is described. The experimental evaluations
demonstrating the effectiveness of local conditioning and data
variation experiments are presented in Section 4. Finally, the
paper is concluded in Section 5.

2. WAVENET ARCHITECTURE

WaveNet is capable of synthesizing natural sounding speech
especially if natural prosody is used [13]. The basic WaveNet
is an autoregressive network, which generates a probability
distribution of the next sample given some segment of previ-
ous samples. The next sample is produced by sampling from
this distribution. An entire sequence of samples is produced
by feeding previously generated samples back into the model.
In order to make the training and generation tasks computa-
tionally tractable the discrete softmax is chosen as the proba-
bility distribution. Additionally, the dynamic range of speech
samples are compressed via µ-law transformation and then
quantized using 8-bits. The basic WaveNet produces babbling
noise, which sounds like human speech if no conditioning
is applied. In order to convey verbal and prosodic informa-
tion the WaveNet is conditioned on linguistic and prosodic
features [13, 14]. The local conditioning features are upsam-
pled to the desired sampling frequency and fed into the basic
WaveNet through a conditioning network. Let r be the recep-
tive field of WaveNet, x = {x1, x2, . . . , xn} be a sequence of
quantized speech samples and h = {h1, h2, . . . , hn} be the
corresponding sequence of upsampled conditioning features.
Assuming that n > r, the output of the conditioned WaveNet
is described by the following conditional probability distribu-
tion.

P (xn|xn−1, xn−2..., xn−r, hn) (1)

In this paper we consider using as local conditioning
acoustic features in order to use WaveNet as statistical
vocoder (Fig. 1). WaveNet is implemented as a stack of
residual blocks, where each block contains expert and gate
one-dimensional dilated causal convolutions. The output of
the expert and the gate are combined via element-wise multi-
plication. A block, i, computes a hidden state vector z(i), and
then (due to the residual connections between layers) this is
added to its input x(i−1) to generate its final output x(i):

z(i) = tanh(W
(i)
f ∗x(i−1) +L

(i)
f )�σ(W (i)
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g ) (2)
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In ((2)), L(i)
f and L(i)

g are the outputs for block i of the con-
ditioning network when it is fed with h. Symbol ∗ denotes
convolution and symbol � denotes element-wise multiplica-
tion. Fig. 2 depicts the integration of acoustic features in the
WaveNet architecture. The acoustic features, which are com-
puted framewise, are of low sampling frequency (i.e., 100Hz)
and are up-sampled to the frequency of the raw waveform
(i.e., 16kHz).
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Fig. 2. Local conditioning using acoustic features

3. CONDITIONING WAVENET USING ACOUSTIC
FEATURES

Speech is a non-stationary process and produced due to non-
linear interaction between the various speech articulators
during speech production. Conventional speech vocoders
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Fig. 3. 2nd log Mel-filter-bank energy computed from an original speech waveform (solid line), and from synthesized speech us-
ing MCEPs+BAP+F0 (dotted line) and MFBANK+F0 (dash-dotted line) local conditioning in the WaveNet statistical vocoder.

fail to observe these characteristics (Fig. 1(a)). In contrast,
WaveNet architecture can be more accurate in representing
the speech production mechanism (Fig. 1(b)). The recent
work by Tamamori et al. [14] showed that WaveNet can
indeed be used as a (statistical) vocoder by avoiding vari-
ous assumption involved in a conventional speech vocoder.
They have used WaveNet as vocoder by local condition-
ing using acoustic features like mel-cesptrum coefficients
(MCEP) along with band aperiodicity (BAP) and fundamen-
tal frequency (F0) features. Note that these features are
commonly used in the HMM or DNN based speech synthesis
systems. MCEPs are coefficients of mel-log spectral approx-
imation (MLSA) filter, computed from frequency warped
spectrum [14].

In our work, we used mel-filterbank features (MFBANK)
computed computed via Fourier Transform of the time-
domain speech samples. To the limit that filter-bank band-
widths are equal to the frequency bins of the Fourier trans-
form (magnitude spectrum) then WaveNet is expected to real-
ize the inverse Fourier transform of the magnitude spectrum
to generate the speech waveforms. Since the target however
is not the minimum phase part of the speech waveform but
actually the waveform itself, then WaveNet can also be seen
as a mixed phase recovery mechanism. MCEPs have been
used in [14] (along with BAP and F0) as acoustic features
for conditioning the WaveNet. In that work, it was observed
that voice of females speakers was not as well reproduced as
that for male speakers. Additionally, we think that BAP fea-
tures might not be necessary in case features correlated with
the speech magnitude spectrum are used. Therefore, in our
work we suggest to contrast MCEPs+BAP+F0 (as in [14])
with a more compact representation MFBANK+F0 with the
goal to improve the overall quality of the generated speech,
especially for the female speakers.

As a motivation for the discussion using MCEPs+BAP

or just MFBANK, we have plotted log-filter-bank energy
computed for both conditioning methods. Fig. 3 shows
the comparison of the 2nd coefficient of log Mel-filter-
bank energy computed from original, synthesized speech
from WaveNet vocoder using MCEPs+BAP+F0 and MF-
BANK+F0 conditioning for one sentence taken from the
ARCTIC database [18]. The contour obtained using MF-
BANK+F0 is closer to that from the original speech compared
to that one obtained using MCEPs+BAP+F0 (as in [14]).

4. EXPERIMENTAL SETUP AND EVALUATION

We used four speakers from CMU-ARCTIC database [18];
SLT, BDL, CLB, and RMS for evaluation, where SLT and
CLB are female and BDL and RMS are male. The sampling
frequency is set to 16 kHz. Please note that thse are the same
speakers as those used in [14]. The total number of utterances
is 1,132 per speaker, and the total utterance duration is about
1 hour per speaker. We used 1050 sentences for training, 50
sentences for validation, and remaining 32 sentences were
used for testing.
We have implemented a WaveNet architecture similar to
the ones suggested by Deep-Voice [19] as well that one
described in [14]. The differences between both the two ar-
chitectures are shown in Table 1. We have found the first
one faster compared to the second one for training purposes
(however, no major advantages in terms of time used for
waveform generation were observed). After conditioned
both WaveNet architectures with the acoustic features used
in [14] (MCEPs+BAP+F0), we have not noticed perceptual
differences in the generated by the two architectures speech
waveforms. Since the first architecture was faster in training,
we used that one for all the subsequent experiments described
below.
Acoustic features were extracted every 5ms after applying



a window of 25ms. We have used continuous F0 and voic-
ing decision computed from the STRAIGHT analysis [5].
MCEPs (60 coefficients) and 1 BAP feature were computed
using Merlin toolkit [20]. Using standard short-time Fourier
magnitude spectrum, we computed 40 MFBANK features.
All these features were up-sampled to the same sampling rate
of the speech (16kHz).

Table 1. Details of WaveNet architectures
Architecture Proposed Tamamori et al. [14]

Dilation Layers 50 30
Residual channels 64 256

Skip channels 256 2048
Training time 13 hr 15 hr

To find the amount of data required to train WaveNet
vocoder, we have varied the number of sentences in training
from 80 to 1050 sentences (80, 160, 320, 640, and 1050 sen-
tences) only for SLT speaker. Data variation experiments are
evaluated using two types of objective measure: a) short-time
objective intelligibility (STOI) [21], and b) perceptual evalu-
ation of speech quality (PESQ) [22]. STOI and PESQ results
for SLT speaker with MFBANK+F0 conditioning is shown in
Table 2. We have found that even with 80 sentences WaveNet
vocoder gives intelligible speech but with noisy quality. Us-
ing more than 320 sentences, noise is considerably reduced.
As expected, more data helps WaveNet to build a better
model, which is reflected in the observed increase in STOI
and PESQ scores. Note in some of the synthesized files click
sounds were present. In order to remove that, acoustic fea-
tures are smoothed using overlap-add method with a window
size of 25 ms with a shift of 5 ms. examples of synthesized
waveforms from our experiments on local conditioning as
well as on data size variations can be found in 1.

Table 2. Data size variation experiments
Sentences 80 160 320 640 1050

STOI 0.64±0.04 0.67±0.05 0.72±0.04 0.78±0.06 0.86±0.03
PESQ 1.34±0.13 1.35±0.11 1.44±0.12 1.48±0.08 1.66±0.16

To know the effectiveness of acoustic features as local
conditioning on WaveNet, both STOI and PESQ objective
measures are computed for all testing (32 sentences) data
from the 4 speakers mentioned above. Objective results are
shown in Table 3. We see that MFBANK+F0 improve both
STOI and PESQ when compared to the features used in [14]
(MCEPs+BAP+F0).

We also evaluated the sound quality of the synthesized
speech using a comparative mean opinion score (CMOS). The
subjects rated sound quality of the synthesized speech using a
5-point scale: “5” for perfect, “4” for very good, “3” for good,

1http://www.csd.uoc.gr/˜nagaraj/

Table 3. Acoustic features local conditioning experiments
Condition (a) STOI: Intelligibility test

SLT BDL CLB RMS
MCEPs+BAP+F0 0.74±0.07 0.65±0.03 0.61±0.06 0.71±0.02

MFBANK+F0 0.86±0.03 0.81±0.03 0.85±0.04 0.88±0.02
(b) PESQ: Speech quality test

MCEPs+BAP+F0 1.34±0.11 1.35±0.17 1.33±0.11 1.37±0.13
MFBANK+F0 1.66±0.16 1.44±0.05 1.48±0.05 1.61±0.12

“2” for bad, and “1” for very bad. Eighteen subjects partici-
pated in the listening experiment. The number of evaluation
sentences for each subject was 40. Fig. 4 indicates the results
of the CMOS test for sound quality. The error bar represents
95% confidence interval. From the figure, we first observe
that indeed a more compact conditioning of the WaveNet us-
ing MFBANK+F0, as suggested in this work, provides signif-
icantly higher quality scores compared to MCEPs+BAP+F0
as it was used in [14]. Moreover, we observe that the sound
quality in our case is about the same for both male and fe-
male speakers. This is not the case of samples produced us-
ing MCEPs+BAP+F0. This might be attributed to the fact
that MFBANK features better represent the acoustic features
for both males and females compared to MCEPs (+BAP).
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Fig. 4. Subjective listening test (CMOS).

5. CONCLUSION

In this paper, we have explored the WaveNet architecture
as a speaker dependent statistical vocoder by using acoustic
features as local conditioning. In that case, only 1 hour of
training data are enough for producing very good quality of
speech. We showed that filter-bank features are providing
better local conditioning than cepstrum coefficients, allowing
to produce good quality of speech for both male and female
speakers. Our work was supported from objective metrics
of intelligibility and sound quality as well as subjective lis-
tening tests. Future works include modeling vocoder using
multi-speaker data towards effective voice conversion.

http://www.csd.uoc.gr/~nagaraj/
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