
TReM: A Task Revocation Mechanism for GPUs
Manos Pavlidakis1,2, Stelios Mavridis1,2, Nikos Chrysos1, and Angelos Bilas1,2

1Institute of Computer Science, Foundation for Research and Technology - Hellas, Greece
2Computer Science Department, University of Crete, Greece

Abstract—GPUs in datacenters and cloud environments are
mainly offered in a dedicated manner to applications, which
leads to GPU under-utilization. Previous work has focused on
increasing utilization by sharing GPUs across batch and user-
facing tasks. With the presence of long-running tasks, scheduling
approaches without GPU preemption fail to meet the SLA of
user-facing tasks. Existing GPU preemption mechanisms intro-
duce variable delays up to several seconds, which is intolerable,
or require kernel source code, which is not always available.

In this paper, we design TReM, a GPU revocation mechanism
that stops a task at any point in its execution. TReM has a
constant latency, of about 5ms to stop the currently executing
kernel and about 17ms to start a new task. TReM does not
store the state of the revoked kernel to obviate transfer latencies.
We design and implement two scheduling policies, Priority and
Elastic, that prioritize user-facing over batch tasks and utilize
TReM to improve SLAs for user-facing tasks. To evaluate
TReM, we use a workload generator that creates workloads with
different characteristics, based on real traces. TReM reduces SLA
violations by up to 10% compared to baseline policies that do not
use a revocation mechanism. TReM incurs negligible overhead
for non-revoked tasks and wastes only 3% of computation due
to revocations for the workloads we examine.

Index Terms—GPGPUs, Scheduling, Multi-GPU Servers, Elas-
ticity, Task Revocation, Task Preemption

I. INTRODUCTION

Heterogeneous datacenters deploy accelerators, typically
GPUs and FPGAs, to process more data within the same power
budget. Although resources in cloud environments are shared,
most cloud providers offer accelerators in a dedicated manner.
This exclusive assignment improves the Quality of Service
(QoS) at the cost of accelerator under-utilization because
a single task is not always capable of fully utilizing the
accelerator [1].

Recently, there has been work [2]–[5] towards increasing
GPU utilization by sharing GPUs across user-facing and batch
processing tasks [6], [7]. User-facing tasks require tail latency
guarantees based on a Service Level Agreement (SLA) [2].
The execution time of user-facing tasks, e.g. inference in
machine learning models, ranges from several microseconds
to a few hundreds of milliseconds. Batch applications do not
have strict response-time requirements per task [6].

Previous scheduling policies for GPUs [2]–[4] ensure that
more than 95% of user-facing tasks meet their SLA (200ms)
in the presence of batch tasks with execution time shorter than
SLA. Under this assumption, one can afford to wait for such,
short-batch tasks to finish before launching a new, user-facing
task. However, batch tasks commonly have execution times
orders of magnitude longer than the tail latency for user-facing
tasks (i.e., ranging up to several minutes) [8], [9].

To guarantee that user-facing tasks will meet their SLA
in the presence of long running batch tasks, previous work
provides mechanisms that preempt the running batch task.
However, previous work on GPU preemption [8], [10]–[12]
does not provide bounded latency. Therefore, user-facing tasks
still incur high tail latencies. Additionally, approaches as
FLEP [10] and GPES [11] require the source code of the
kernel, while Pascal Compute Preemption [8] works only with
Pascal architecture NVIDIA GPUs.

A preemption mechanism [8], [10], [11] consists of three
parts; (1) stop the currently executing task, (2) save its state,
and (3) replay the task later. GPES [11], Sajjapongse et
al. [12], and FLEP [10] rely on existing CUDA thread blocks
or slice tasks to provide preemption points. This approach
introduce variable latency: Their overhead depends on thread
block size or sub-task granularity. Regarding the preempted
task state, this can be saved in the GPU or the host memory.
Saving the state in the GPU, as in Pascal’s preemption or
FLEP, can lead to memory monopolization for tasks with large
memory footprint. On the other hand, transferring the task state
to host memory introduces variable latency.

In this work, we design and implement TReM, a revocation
mechanism that overcomes the problems of existing preemp-
tion approaches. TReM stops a task by aborting its currently
executing kernel, without saving any state, and replays it later.
The first challenge is to stop the executing kernel at any point
of its execution, providing bounded latency. To achieve this,
TReM stops the kernel from inside the GPU. In particular, we
start the actual kernel from a wrapper kernel using CUDA
dynamic parallelism [13]. After issuing the actual kernel,
the wrapper kernel polls a revocation flag on CUDA unified
memory and calls asm(trap) to abort the execution of the
actual kernel when the host sets the revocation flag.

The second challenge is to eliminate the variable latency of
moving task state from GPU to host. TReM avoids saving any
state of the currently running task to host memory to reduce
overhead and latency. Instead, TReM replays revoked tasks.
To reduce the amount of replayed work in task granularity,
TReM selects to revoke tasks with the latest start time.

We design and implement a runtime scheduler that prior-
itizes user-facing over batch tasks, instructs TReM when to
revoke batch tasks, and is able to manage multiple GPUs
in a single node. We design and develop two scheduling
policies, Priority and Elastic. Priority tries to allocate a GPU
for every user-facing task. As a result, Priority+TReM may
revoke as many batch tasks as the number of newly arrived
user-facing tasks. Elastic dynamically computes a minimum

number of accelerators needed to sustain the SLA and de-
votes the remaining accelerators to batch tasks. Effectively,
Elastic+TReM results in fewer revocations i.e., less work to
be re-executed. If there is a need to limit the wasted work for
long-running applications, e.g. executing for days, TReM can
also be coupled with existing checkpointing mechanisms [14],
[15], as discussed in Section VII.

Our evaluation shows that TReM revokes an executing
kernel in 5ms, while the next kernel requires another 17ms to
start (22ms in total). As we explain in Section VI-A, the 22ms
depend on the CUDA runtime. TReM adds negligible overhead
to non-revoked tasks and consumes minimal resources in
modern GPUs, as discussed in Section VI-A. Our experimental
results from a real testbed and realistic workloads show that
using TReM allows us to meet the SLA for 98% of user-facing
tasks in the presence of long-running batch tasks under 89%
GPU utilization. Wasted work due to revocations is only 3%
of the total user-facing and batch execution time.

Our main contributions in this work are the following:
1) We design TReM, a task revocation mechanism that i)

exhibits constant and low overhead, independent of task
size and memory footprint, ii) avoids kernel recompila-
tion, iii) incurs zero overhead to non-revoked tasks, and
iv) can be deployed to all NVIDIA state-of-the-art GPU
architectures.

2) We evaluate TReM using two scheduling policies, Elas-
tic and Priority, in a real system with four (4) GPUs and
show the benefits of revoking batch tasks.

3) We use simulation to examine how our approach scales
with an increasing number of GPUs and how it behaves
under different revocation latencies.

The remainder of this paper is organized as follows. In
Section II, we discuss previous work and the problem state-
ment that motivate this work. In Section III we present our
revocation mechanism, and in Section IV our scheduling
policies that prioritize user-facing tasks. Then, Section V
presents the evaluation testbed and workloads, and Section VI
presents our results, including a detailed latency breakdown
of TReM. We conclude with discussions in Section VII and
summarize our findings in Section VIII.

II. RELATED WORK & MOTIVATION

Sharing a GPU across applications introduces difficulties in
providing latency guarantees to user-facing tasks. We catego-
rize previous approaches in scheduling and preemption.

A. SLA-based scheduling

Timegraph [3], Baymax [2], gVirt [16], and VGRIS [4]
implement sophisticated SLA-aware task scheduling policies.
These approaches consider only batch tasks with execution
time comparable to the SLA, in the order of tens or a
few hundreds milliseconds. Thus, they alleviate the priority
inversion problem, when a critical task waits for a batch task
to finish, only with short batch tasks.

With modern workloads, long-running batch tasks are be-
coming more common, as the complexity of the algorithms and

the amount of data they use increases. Long-running tasks can
monopolize the GPU [8], hence requiring a GPU preemption
or revocation mechanism. TReM is a task revocation mecha-
nism that can be coupled with suitable scheduling policies. A
scheduling policy will determine when a task has to be killed
and instruct TReM to kill it. In this paper, we show that TReM
coupled with two scheduling policies, Elastic and Priority, can
ensure the SLA for user-facing tasks in the presence of long-
running batch tasks.

B. State-saving preemption mechanisms

Operating systems can preempt a running process and give
the CPU to another process within a few microseconds. Such
low overhead preemption mechanisms are not available in
modern GPUs.

Chimera [17] is an effective preemption approach that
provides block context switching, draining, and flushing. How-
ever, Chimera is only implemented in a simulation environ-
ment and is not supported by existing GPUs. PEP [18] and
GPU snapshot [14] add incremental checkpoints to decrease
the overhead of saving the full context of a revoked or failed
kernel. These approaches are orthogonal to ours. TReM can be
integrated with Kyushick’s [14] approach to bound the amount
of wasted work to a single checkpoint interval at the cost of
additional memory usage at the GPU.

Sajjapongse et al. [12] rely on existing synchronization
points to preempt kernels. Their approach cannot provide
low response time to user-facing tasks when synchronization
points are rare. Moreover, they transfer both the state and data
of the preempted kernel to host memory, resulting in long
preemption latency for tasks with a large memory footprint.
GPES [11] splits the kernel statically into multiple sub-
kernels. Consequently, it avoids the problems implied from
synchronization points. However, GPES has to determine the
granularity of a slice. If the slices are too small, they introduce
runtime overhead, whereas if they are too large, they can not
provide low preemption latency. In contrast, TReM provides
low revocation latency because it can revoke a kernel at any
arbitrary point of its execution without saving any task state.

FLEP [10] uses asm(exit) to preempt kernels, as dis-
cussed in detail in Section III. To reduce the preemption
latency, FLEP splits the initial kernel into multiple smaller ker-
nels using persistent threads [19]. Thus it limits the number of
launched thread blocks in each kernel to the maximum number
of thread blocks that the GPU can simultaneously execute [19].
However, the preemption latency of FLEP depends on the
execution time of thread blocks. Additionally, FLEP does not
discuss how to free the GPU DRAM from preempted task data,
thus potentially inducing memory monopolization. Finally,
FLEP requires kernel source code to make it preemptible.
TReM is based on CUDA dynamic parallelism [13], so it
does not rely on kernel slicing and does not require kernel
source code. Furthermore, it can kill a kernel at any point
of its execution, with constant delay. TReM does not save
the state of the killed kernel in GPU memory; hence, it does

not prevent other high priority kernels from starting due to
memory shortage.

Fig. 1: Evaluating NVIDIA compute preemption. Increase in
the execution time of a user-facing task (y-axis), assigned to
a high priority stream, in the presence of a collocated batch
task, assigned to a low priority stream, with varying execution
time (x-axis).

NVIDIA Pascal GPUs, similarly to FLEP, provide a com-
pute preemption mechanism that allows CUDA kernels to be
interrupted at block-level granularity. According to CUDA
[5] the higher priority stream will preempt blocks already
executing in the low priority stream. We evaluate the com-
pute preemption of Quadro P1000 (Pascal architecture), using
streams with priorities [5]. In our experiment, we use a
benchmark with two kernels, one assigned to a low priority
stream (i.e. batch) and the other to a high priority stream (i.e.
user-facing). The two kernels consist of 1024 thread-blocks
with 512 threads per block to ensure that they will compete for
stream multiprocessors (SMs). These two kernels are identical,
iteratively copying one array to another. We first start the low
priority kernel, and we measure the latency of the high priority
kernel. Figure 1 shows that the execution time of the high-
priority kernel increases linearly with the execution time of the
low priority kernel, even though the high priority kernel size
stays fixed. Therefore, the preemption latency is variable and
depends on the low priority kernel’s thread block execution
time.

TABLE I: TReM and prior state-of-the-art approaches.

FLEP
[10]

GPES
[11]

Pascal
Preemption

[8]

Chimera
[17]

Baymax
[2]

TReM
+

Elastic
Revocation/Preemption + + + + - +
Provides Low & Const-
ant preemption latency - - Not Known + - +

Handles tasks with
large memory footprint - - + + + +

Does not need kernel
source code - - - - - +

Supports all NVIDIA
GPUs (*CC≥3) + + - + + +

Provides SLA aware
scheduling policy - - - - + +

*Compute Capability
Table I compares our work with previous state-of-the-art

approaches. To the best of our knowledge, Elastic+TReM is
the only SLA-aware scheduling solution that deals with long-
running batch tasks, using a revocation mechanism that: (i)

provides low and constant latency; (ii) handles tasks with large
memory footprint avoiding to store or transfer large amounts
of state and merely restarting the task; (iii) does not require
GPU kernel source code; and (iv) works with all NVIDIA
GPUs (Compute Capability (C.C.) ≥ 3) that exist in today
and future datacenters.

III. TREM REVOCATION MECHANISM

TReM revokes the currently executing task by killing its
kernel and replays it later using the information maintained at
the host. A task consists of a set of kernels with their input
and output data.

TABLE II: Latency of different methods to revoke/preempt a
kernel running on a GPU.

Latency (ms)Kernel
dimensions

Total
Threads Process kill asm(exit) TReM

kernel <16, 16> 256 3000 130 22
kernel <32, 32> 1024 3000 195 22
kernel <64, 64> 4096 3000 600 22

kernel <128, 128> 16384 3000 1430 22

There are three ways to stop the execution of a running
kernel; (1) Kill the issuing process on the host, (2) use
asm(exit), and (3) use asm(trap). Each host process
that performs a CUDA call is associated with a CUDA
context. When killing the host process, option (1), the NVIDIA
driver clears the killed kernel context and prepares the CUDA
environment to be functional. We evaluate this approach while
designing TReM, and we find that killing a process introduces
a delay of up to 3s to the next kernel (Table II).

Option (2) is to use asm(exit), which is normally called
when a kernel uses return, terminating the execution of the
current thread. We measure the performance of asm(exit)
for a varying number of kernel dimensions, i.e., threads and
blocks. Table II shows that when the number of threads
increases, the latency of asm(exit) increases significantly.
This is because the GPU must wait for all threads of the kernel
to exit. Typical kernels launch thousands of thread blocks with
hundreds of threads each [10], which can incur a delay of
several seconds. For instance, Table II shows that for a kernel
dimension of <128, 128> the latency of this mechanism is
almost 1.5s. Consequently, asm(exit) cannot be used to
provide low revocation latency. For Table II, we run each
experiment 20 times with the same setup as in Section V-A.
To measure the revocation/preemption latency, we start a timer
when a kernel is issued and stop it when the next kernel (the
kernel after the revoked/preempted kernel) starts its execution
in the GPU.

TReM uses asm(trap), option (3), to abort the kernel
execution. Commonly, asm(trap) is called when a kernel-
code assertion fails, and the CUDA context of the issuing
process is unusable, thus it cannot be used for any subse-
quent CUDA calls. Calling asm(trap) results in immediate
termination of the kernel, with constant latency as we discuss
next.

GPU

TReM

wrapper
kernel

actual kernel

5.issue

GPU memory

Scheduler p1

 p2

4.launch

Unified Memory

revoke flag
context

p1

Host memory

Process
pool

Host

1.push 3.send

Task
queues

6.pollC C C C

C C C C

2.pop

context
p2

A
p
p
lic

a
ti

o
n
s

(a) Start a CUDA kernel

GPU

TReM

wrapper
kernel

actual kernel

3.asm(trap)

Scheduler p1

 p2
7.la

unch

Unified Memory

revoke flag
context

p1

Host memory

Process
pool

Host

push

new task
6.send6.send

Task
queues

A
p
p
lic

a
ti

o
n
s

C C C C

C C C C

pop 4a.kill

4b.u
nusa

ble
GPU memory

context
p2

context
p2

1.set

new w
ra

pper

5.detect kernel stop

2.detect

(b) Stop a CUDA kernel

CUDA cores Scheduler threadC

Fig. 2: TReM overview.

A. Revoking a kernel with TReM

Figure 2 shows an overview of TReM. Applications use task
queues to issue tasks to the scheduler. This scheduler runs in a
different process context from the applications and manages a
GPU using a scheduler thread. In case that there are multiple
GPUs in a node, the scheduler spawns multiple scheduler
threads, as explained in Section IV. A scheduler thread is
responsible for dequeuing tasks from a selected queue and
issues task kernel to its GPU, based on a policy. Moreover, the
scheduler thread checks the status of tasks (killed or finished)
and reissues them if needed. A GPU is time-shared among
applications, serving tasks from multiple task queues. Next,
we describe TReM, our revocation mechanism, in detail.

ALGORITHM 1
Poll mechanism in the kernel wrapper.

1: function WRAPPER KERNEL(,)
2: cudaLaunchKernel(actual_kernel);
3: while (1) do
4: if (revoke_kernel == true) then
5: asm(trap);
6: end if
7: end while
8: end function

As shown in Figure 2(a), TReM encapsulates each CUDA
kernel in a CUDA wrapper kernel. The wrapper uses one
thread and one thread block i.e., wrapper <1,1>. The
wrapper then issues the actual kernel, using CUDA dynamic
parallelism [13]. With CUDA dynamic parallelism, a parent
grid (in our case, the wrapper) launches kernels called child
grids (in our case, the actual kernel). Thus, TReM does
not require kernel source code. Subsequently, the wrapper
polls a revoke flag, which is set when the host runtime
scheduler decides to kill a kernel running on the GPU. This
revoke flag is allocated in unified memory since it has to be
accessible from both the host and GPU. Using cudaMemcpy
or cudaMemcpyAsync cannot fulfill our purpose because all
CUDA calls in the same context are executed in issue order.
Algorithm 1 presents the code of the wrapper kernel.

Figure 2(b) shows the procedure of stopping a kernel.
When the revoke flag is set, the wrapper kernel executes
asm(trap) to stop the running (i.e., actual) kernel. The
NVIDIA driver detects that the asm(trap) command is
called and marks the context of the issuing host process
as unusable. As a result, this process can not execute any
other CUDA calls. To launch a new kernel, we use a new
process with a new context (p2 in Fig. 2(b)). The process with
the unusable context will be removed later from the process
pool. To detect that kernel execution has stopped, we check
the return value of a CUDA call. If this value is false, the
wrapper kernel has called the asm(trap) and has stopped
its execution.

Figure 3 shows the timing of TReM (see Section VI-A).
To revoke a running kernel, the scheduler sets the revoke
flag, and the wrapper executes asm(trap)), which requires
5ms. However, the next task will start its execution with an
additional delay of 17ms (in total 22ms) because of the first
CUDA call. Due to asm(trap), the CUDA context of the
issuing host process becomes unusable, clearing the CUDA
context introduces a delay of 60ms. In the case of user-facing
tasks, it is important to avoid this extra delay. For this purpose,
we defer clearing the unusable GPU context, as discussed
below.

time

batch user-facing

Native

TReM

Revoke
batch

Start
user-facing

22ms 60ms

Clear
context

Replenish
process

15ms

time

Native

TReM
22ms 60ms 15ms

retry batch

Restart
batch

Fig. 3: The timing of TReM compared to native execution.
Batch execution time is in the range of seconds.

Initiating the CUDA runtime from a process takes ap-
proximately 15ms. To avoid this latency, we use a pool of
processes with pre-initialized CUDA environments. We use
only the pool’s head process to issue task kernel (p1 in
Figure 2(a)). When the active process becomes unusable after
an asm(trap), it is removed from the pool, and the next
process becomes the pool head (p2 in Figure 2(b)), which can

Scheduler

A
p
p
lic
a
ti
o
n
s

Host

send

Task
queues

send

sendpop

pop

pop
TReM

GPU p1

TReM

TReM

GPU p1

GPU p1

(a) Resource estimation is U=2.

TReM

GPU p1

TReM

TReM

GPU p1

GPU p2

Scheduler

Host

Task
queues

pop

pop

pop

send

send

sendA
p
p
lic
a
ti
o
n
s

(b) Load increases and new estimation for U=3. Scheduler instructs
TReM to revoke a batch task and provide this GPU to user-facing tasks.

user-facing batch Scheduler thread

Fig. 4: TReM + Elastic in multi-GPU setups.

be used to execute kernels immediately.
After an asm(trap), we have an additional unusable GPU

context and one process less in the pool. We need to always
have at least two processes in the pool to fulfill the case that
a batch is executed and we decide to kill it and immediately
serve user-facing tasks. For this purpose, we clear the unusable
GPU contexts and replenish the process pool when we spawn
a batch task. In this manner, the latency of these operations,
60ms + 15ms in our experiments, affects only a subsequent
batch task.

TReM is capable of handling tasks that utilize all the GPU
DRAM since it does not store any state of the task that is
going to be killed, either in the Host or GPU memory. The
GPU context of the killed kernel contains useless data and will
be removed when we clear the GPU context. If the available
GPU DRAM is not sufficient to hold the data of a new task, we
immediately pay the penalty of 60ms to free all GPU DRAM.

IV. REDUCING SLA VIOLATIONS OF USER-FACING TASKS

In multi-GPU setups, our scheduler spawns multiple
threads, one for each GPU in the system, as Figure 4 shows.
Multiple GPUs can serve independent tasks from the same
queue (application) in parallel. The mapping of task queues
to GPUs is controlled by the scheduler that prioritizes user-
facing tasks to reduce SLA violations. TReM runs in each
GPU, and the scheduler thread mapped to that particular GPU
is responsible for sending tasks to the active process and set
the revoke flag when a task has to be revoked.

Our scheduler prioritizes queues with user-facing tasks over
queues with batch tasks. We implement two policies, Priority
and Elastic, which differ in multi-GPU setups. In particular,
Priority maps all GPUs to all task queues. For instance, when
a burst of new user-facing tasks arrives, Priority will spread
them to all available GPUs. On the other hand, Elastic exploits
the capability to meet the SLA for user-facing tasks using a
subset of the GPUs, as described in Section IV-A.

A. Elastic policy

Elastic prioritizes user-facing tasks over batch tasks, similar
to Priority. However, it dynamically adjusts the number of

GPUs allocated for user-facing tasks such that all outstanding
user-facing tasks meet their SLA target. The remaining GPUs
are used to serve batch tasks. We recalculate the number
of GPUs for user-facing tasks every 100ms or when a task
finishes.

We use the following procedure to estimate the number of
GPUs needed to satisfy the current user-facing load. At time t,
we first compute the maximum latency among all outstanding
tasks in the system using Equation 1.

Lmax(t) = le(t) · q(t) (1)

where le(t) is our current estimate of the average execution
time for user-facing tasks and q(t) denote the number of
outstanding user-facing tasks. To compute le(t), we monitor
previously executed user-facing tasks’ execution time. Our
algorithm then estimates the number of GPUs (U) needed
to serve the currently outstanding user-facing tasks without
violating their SLA according to the Equation 2.

U(t) =

⌈
Lmax(t)

SLA

⌉
(2)

In Figure 4(a), Elastic assigns two GPUs to user-facing
tasks. According to its resource estimation, two GPUs (U=2)
are sufficient to execute all outstanding user-facing tasks under
the SLA. On the other hand, Priority will use all the GPUs to
serve the three outstanding tasks and postpone the execution
of the batch tasks.

B. Using TReM with Priority and Elastic

In Figure 4(b) the load increases, hence Elastic estimates
that user-facing tasks require more resources (U=3) to meet
their SLA. However, the third GPU executes a batch task.
Without TReM, newly arriving user-facing tasks will wait for
this batch task to finish its execution and miss their SLA. To
overcome this priority inversion problem, we integrate Priority
and Elastic with TReM to revoke the batch task executing in
the third GPU and assign this GPU to user-facing tasks.

After the arrival of a burst of user-facing tasks, Priority
will try to spread the new tasks on multiple GPUs. Being

aware of the SLAs, Elastic time-multiplexes user-facing tasks
on a reduced number of GPUs, as described in Section IV-A.
Consequently, Elastic minimizes the number of revocations
and, thus, the loss of useful work.

When we need to include more GPUs to serve user-facing
tasks, both Priority and Elastic choose to revoke the batch task
that has started most recently. Additionally, Elastic checks
if the remaining time (predicted by the task execution time
minus the task elapsed time) of the task that is going to
be revoked is less than the task revocation latency. As a
result, Elastic minimizes further the loss of useful work,
compared to Priority. To avoid starvation, we use a revocation
counter/threshold, as explained in the Discussion section.

V. EXPERIMENTAL METHODOLOGY

In this section, we describe the platform and the workloads
that we use to evaluate TReM.

A. Multi-GPU server configuration and memory affinity

The server in our testbed consists of an Intel(R) Xeon(R)
CPU E5-2630 v3 running at 2.40GHz (CentOS 7). The server
is equipped with four (4) NVIDIA Quadro P1000 GPU
cards (Pascal architecture), with 4GB of GDDR5 and 640
CUDA cores, each. We use CUDA 9.0 to implement TReM
and NVSMI to measure GPU utilization. NVSMI utilization
represents the time the GPU is busy and not the amount of
GPU resources actually used.

Every P1000 GPU requires a PCIe gen3 x16 port. Our four
GPU setup needs a total of 64 PCIe lanes. Our dual-socket
motherboard provides 32 lanes for each socket, therefore we
attach two GPUs in each socket.

In a multi-GPU configuration, there are significant memory
affinity issues: the throughput of memory transfers depends on
whether the path connecting the memory with the target GPU
pass through the QPI bus between the two sockets. Using
microbenchmarks, we find that the throughput of transfers
to different GPUs can interfere with each other, degrading
performance from 2x up to 4x. To eliminate this issue, we
enforce each host thread (Fig. 4) to run in the same socket
with its corresponding GPU.

B. Workloads

We evaluate our system using batch and user-facing tasks
with execution times reported in Table III. The tasks used
in our evaluation originate from the Rodinia3.2 benchmark
suite [20] and from NVIDIA SDK of CUDA toolkit 9. The
execution time is the interval between the time a task is issued
until the issuer receives the result back. Thus it includes the
transfers to and from the accelerator and the execution time
of its kernel(s) on the GPU. The execution time of batch tasks
ranges from tens of seconds up to two minutes, whereas the
execution time of user-facing tasks ranges from 1 up to 170ms.
We consider the SLA for user-facing tasks to be 200ms, as in
Baymax [2]. The response time contains queuing delay implied
from other outstanding tasks that exist in the system.

TABLE III: Average task execution time (ms).

Tasks
Average

task execution
time (ms)

Memory
footprint

(MB)

Task
type

Particle Filter 1 12 user-facing
Euclid 8 24 user-facing
NW 38 44 user-facing
BFS 50 48 user-facing
Black&Scholes 60 112 user-facing
Pathfinder 68 74 user-facing
Hot Spot 3D 81 32 user-facing
Monte Carlo 150 68 user-facing
Darkgray 170 200 user-facing
Lava MD 46000 1069 batch
Hot Spot 130696 423 batch
Gaussian 311000 1120 batch

Each user-facing task can have more than one CUDA
kernels, as in machine learning inference stages, with the
corresponding input and output data. On the other hand, every
batch task consists of a single large kernel because this stresses
the scheduler more.

In our evaluation we use the following workloads:
• Micro-benchmarks, with a few tasks, to measure the

responsiveness and the overheads of our mechanisms.
• A datacenter-inspired synthetic workload, with thousands

of tasks, mixing user-facing with batch jobs.
To generate the datacenter-inspired workload mix, we im-

plement a workload generator that mimics traces from Google
[21] and Alibaba [22]. Our workload generator takes three
parameters; (a) the job duration, (b) the job inter-arrival time,
and (c) the user-facing to batch job ratio.

After analyzing Google and Alibaba traces, we found that
job duration follows a Pareto distribution. Consequently, to
generate a job, we choose the job duration first using a Pareto
distribution, with different mean values for batch and user-
facing jobs, as presented in Table IV. The mean values for
user-facing and batch job duration is again extracted from the
traces above. Each application/job consists of identical tasks,
taken randomly from Table III.

We use two different values for the ratio between user-
facing and batch jobs, 50:50 (according to Alibaba) and
80:20 (according to Google). Job inter-arrival time follows
exponential distribution, with a base mean value selected to
utilize all four GPUs fully. To emulate different loads, we use
a scaling factor on the base inter-arrival mean value ranging
from 0.25 to 2.0. Effectively, the scaling factor modifies the
density of job arrivals, and as a result, the load and the
burstiness of the workload. As a result, we can generate from
low load, with job inter-arrival 2 (named load 0.25), to over-
subscription, with job inter-arrival 0.25 (named load 2).

We limit the number of outstanding tasks coming from
the same job to eight tasks [2]. We have selected this value
empirically to ensure that the majority of tasks in a user-
facing job will meet their SLA if run alone. There will
be multiple user-facing jobs present concurrently at runtime,
which increases the system load, as described above. The
response time that we report and compare with the SLA counts
only for outstanding tasks. Table IV summarizes the workloads

TABLE IV: Workload configurations.

Workload specification W1 W2
User-facing to batch ratio 50:50 80:20

Experiment duration 1.5h 1.1h
User-facing job duration (mean) 5s 5s

Batch job duration (mean) 600s 600s
Total number of jobs 30 30
Total number of tasks 1560 1520

Number of user-facing tasks 925 1191
Number of batch tasks 635 329

used for our evaluation. We repeat each experiment five times
using different random seeds for each distribution.

VI. EXPERIMENTAL EVALUATION

In this section, we first present the overheads of TReM and
then we evaluate the effectiveness of TReM to improve the
QoS of user-facing tasks in the presence of long-running batch
tasks.

A. Overhead of TReM revocation

In this section, we first present the overheads of TReM and
then evaluate the effectiveness of TReM to improve the QoS of
user-facing tasks in the presence of long-running batch tasks.

60ms

Clear GPU context
Fork new
process

Start new
task

Kill
task

15ms 17ms 5
ms

Book-keeping hidden in front
of next batch

Revocation
time

Fig. 5: TReM overhead breakdown.

1) Duration breakdown of TReM: As shown in Figure 3,
there are multiple operations involved when deciding to kill a
task. Two of them are in the critical path, affecting the latency
of waiting for user-facing tasks: kill a task and start a new task
using a process from the process pool. Figure 5 shows that
these two operations require 5ms (kill) and 17ms (new task),
for a total of 22ms. By breaking down the ”start new task”
operation, we find that 17ms are spent in the first CUDA call,
even though we have pre-initialized the CUDA runtime. Note
that during normal conditions, i.e., not after a kill operation,
this CUDA call typically takes less than 2ms.

Killing the currently executing kernel requires 5ms. In
particular, the revoke flag is allocated in the unified memory
and is set by the host process and read by the GPU. When
either side accesses a page that is not resident to its memory, a
page fault occurs. The memory system holding the requested
page will unmap it from its page table, and the page will
be migrated to the faulting process. In our measurements,
the process above has almost 1.2 millisecond latency. The
remaining time (i.e., 3.8ms) is due to the CUDA call that we
use to detect that the wrapper kernel has stopped (i.e., called
asm(trap)) by checking its return value. As a result, the
22ms revocation overhead is dominated by the CUDA runtime.

TReM needs to clear the GPU context, which costs another
60ms, and replenish the process pool, which requires 15ms.

These 15ms are spent creating a new process and executing
a CUDA call to warm up the CUDA runtime, creating a
context in the GPU for the new process. However, as discussed
already, TReM hides the latency of these last two operations
by invoking them before the start of a new batch task.

2) TReM does not incur overhead for non revoked tasks:
TReM does not add any new code to executing kernels, thus it
does not introduce overhead during task execution. To verify
this, we run each task in Table III one thousand times with
and without TReM. The results are virtually the same with
less than 100µs discrepancies, which is at most 0.01% of the
execution time.

3) TReM consumes less than 1% of cores on state-of-the-
art GPUs: The wrapper kernel used by TReM to execute
the actual kernel is spawned with one thread block using
one thread. The NVIDIA runtime starts the wrapper kernel
in a warp (32 CUDA cores). In our evaluation, Pascal P1000
has 640 CUDA cores in total, hence TReM requires 5% of
NVIDIA P1000’s CUDA cores. However, the percentage of
resources consumed by TReM decreases to 0.625% with more
recent GPUs, such as Volta that provide thousands of CUDA
cores i.e., V100 has 5120 CUDA cores.

(a) Without TReM (b) With TReM

Fig. 6: Normalized response time of user-facing tasks over
their stand-alone execution in the presence of batch tasks with
different duration (Bd).

4) Resolving priority inversion: Figure 6 depicts the nor-
malized response time of different user-facing tasks over their
stand-alone execution when they time-share a GPU with long-
running batch tasks. In this experiment, we first start a batch
task, whose duration varies along the x-axis, and we record
the latency of a subsequent user-facing task.

Without TReM, the response time of user-facing tasks
increases linearly with batch task execution time (Figure 6(a)).
In particular, it increases to orders of magnitude higher than
task execution time itself. On the contrary, TReM results in
constant response time for all user-facing tasks, independent
of the batch task duration (Figure 6(b)). Their execution time
is at most 3x the execution time of the standalone user-facing
task in our experiments.

B. Effectiveness of TReM with long-running batch tasks

1) SLA violations: We use workloads W1 and W2 to ex-
amine how TReM reduces SLA violations. Figure 7 shows the
percentage of user-facing tasks that meet their SLA (200ms)
with increasing load. As mentioned, W1 and W2 differ in the
ratio of user-facing to batch jobs.

The x-axis is incoming load, from low (0.25) to high (1.0)
and oversubscribed (2.0). A load of 0.25 suffices to fully utilize
one GPU (i.e., job inter-arrival 2). A load of 1.0 can fully
utilize all four GPUs (i.e., job inter-arrival 1). A load of 2.0
over-subscribes our system by 2x (i.e. job inter-arrival 0.25).
As we see, at low load, more than 99% of the tasks meet their
SLA, irrespectively of the policy (Priority, Elastic), and the
workload (W1, W2).

Fig. 7: Percentage of tasks that meet their SLA (y-axis) at
increasing GPU load (x-axis), for workloads W1 (left) and
W2 (right).

At a higher load, we see that W1 (Figure7(a)), with 50:50
ratio of user-facing to batch jobs, incurs more violations and
the efficiency of Priority and Elastic drops to 93% at load 1.0
and 92% at 2.0. On the other hand, using TReM, both policies
can tolerate the load increase with a much lower impact on
efficiency, meeting the SLA for 99% of tasks at load 1.0 and
98% at load 2.0.

If we increase the number of user-facing tasks, using a ratio
of 80:20 in W2 instead of 50:50 in W1, the advantages of
TReM are more pronounced (Figure 7(b)). Without TReM,
Priority and Elastic meet the SLA for 90% of the tasks at
load 1.0, whereas, using TReM, we achieve 98% at load 1.0
and 96% at load 2.0. Therefore, fast revocations is an effective
ingredient to maintain the SLA in the presence of long-running
batch tasks.

At load 1.0, both Priority+TReM and Elastic+TReM achieve
89% GPU utilization. Priority and Elastic achieve 91% GPU
utilization but with much more SLA violations.

Comparing Priority with Elastic, we can observe that Elastic
leads to less than 0.6% more SLA violations on average com-
pared to Priority. This is expected because Priority utilizes all
GPUs to handle user-facing load, which results in significantly
more revocations, as we discuss next. On the other hand,
Elastic aims to decrease the number of revocations without
increasing SLA violations.

0.25 0.5 1.0 2
Load

0

10

20

30

40

50

Re
vo

ca
tio

ns
 (#

)

(a) Number of revocations

0.25 0.5 1.0 2
Load

0

1

2

3

W
as
te
d
tim

e
pe

rc
en

ta
ge

 (%
)

(b) Wasted compute time

Fig. 8: Revocations overhead: (a) Number of task revocations;
(b) Wasted compute time due to revocations.

2) Lost work due to revocations: Figure 8(a) depicts the
overhead of task revocations using TReM. We see that Elas-
tic+TReM performs fewer revocations compared to Prior-
ity+TReM. Elastic uses a minimum number of GPUs to satisfy
the SLA, packing when possible multiple user-facing task
on the same GPU. Effectively, it triggers considerably fewer
revocations. Under low load i.e., 0.25, Priority performs 33%
more revocations than Elastic, 27% at load 0.5, and 14% at
load 2.0. As the load increases, Elastic requires the same
number of GPUs as Priority, thus the difference in revocations
diminishes.

Figure 8(b) shows the percentage of lost work due to
revocations. We measure total lost work as the elapsed time
between the start and kill for each task. The percentage of
lost work is computed as the ratio of the total work discarded
over the total useful computation time in the workload. At
low load (0.25), the wasted time percentage for both Elastic
and Priority is below 2%, while at load 2.0 it reaches 3%.
Both policies minimize wasted work by preferring to revoke
the most recently started batch tasks. As discussed previously,
Elastic outperforms Priority because it packs user-facing tasks
in the same GPU and also because it will revoke a batch task
only if its remaining time is less than the revocation overhead.
Priority does not have the notion of SLA; it just prioritizes
user-facing over batch tasks, hence it cannot measure the task
remaining time.

3) Batch job duration percentiles: To examine in more
detail the effect of our policies on batch jobs, Figure 9
depicts time to completion for batch jobs. As expected, time
to completion of batch jobs increases with TReM because
tasks are revoked and replayed. We should note, however, that
without TReM, these batch jobs would typically wait for all
user-facing tasks to complete or would need to execute on
additional GPUs. Elastic reduces the impact on completion
time from 4% up to 50% compared to Priority. In particular,
for 50% of the jobs, Priority+TReM has 1.6x higher time
to completion than Priority, whereas Elastic+TReM exhibits
only 1.3x increase compared to Elastic. The effect of TReM

becomes more pronounced on higher percentiles of batch jobs,
and reaches 3.2x for Priority and 2.1x for Elastic.

Fig. 9: Time to completion for batch jobs under different
scheduling policies, for load 2.0.

4) Dynamic GPU partitioning with Elastic: Figure 10
shows how Elastic partitions the number of GPUs between
user-facing and batch tasks over time. The upper part of the
figure shows the number of GPUs allocated to user-facing
tasks and the number of GPUs used to run batch tasks. The
lower part of the figure depicts the actual latency of user-facing
tasks over time. When user-facing tasks arrive (red crosses in
the lower part), Elastic allocates more GPUs to user-facing
tasks to avoid SLA violations. We see that Elastic estimates
accurately the GPU requirements of user-facing tasks.

0

1

2

3

4

5

0 100000 200000 300000 400000 500000 600000 700000 800000

N
um

be
r o

f G
PU

s GPUs busy serving batch tasks
GPUs allocated for user-facing tasks

0
50

100
150
200
250

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0

Ta
sk

 la
te

nc
y

(m
s)

Time (s)

User-facing task latency (ms)
Service Level Agreement (SLA)

Fig. 10: Dynamic GPU allocation in Elastic and impact on
SLA violations.

C. Scalability of TReM
To evaluate our system with more than four GPUs and

different revocation latencies, we implement a simulator. Our
simulator models our policies (Priority, Elastic) and TReM,
without modelling the GPU internals. It takes as parameters
(1) the task execution time, reported in Table III, (2) the
workloads, described in Table IV, and (3) the revocation
latency. The simulator runs W1 and W2 with the timings
provided from Table III.

Simulation results are a superset of our testbed results in
terms of; (a) number of GPUs and (b) revocation latency.

Moreover, the simulator and the testbed results are very
close. In particular, the violations of our simulator results
for four GPUs and load 1.0 are 1% (Figure 11), while for
the testbed the violations are 1.3% (Figure 7). Consequently,
the difference between the simulator and the testbed results
is 0.3%, when trends between policies (in Figure 7 with and
without TReM) are in the order of 10%.

In Figure 11, the simulator runs the datacenter workloads,
W1 and W2, for load 1.0. and reports their average results. Fig-
ure 11(a) shows task violations for Elastic and Elastic+TReM
with load 1.0 and a varying number of GPUs. The positive
effects of TReM are more pronounced with 2-8 GPUs. We
see that using TReM we achieve less than 1% violations with
4 GPUs, whereas without TReM we need 16 (4x) GPUs to
achieve the same target.

Figure 11(b) evaluates the percentage of violations with
varying revocation latency, between 10 and 1000ms. The per-
centage of violations increases proportionally with revocation
latency. Consequently, other mechanisms such as asm(exit)
and process kill (Section III) that introduce more latency
can meet SLA for only 94% of user-facing tasks. To ensure
SLA for more than 99% of user-facing tasks, we require a
revocation mechanism with 10ms latency.

1 2 4 8 16 32
Number of GPUs

0
2
4
6
8

10
12
14
16
18

Ta
sk
s v

io
la
tin

g
SL

A
(%

) Elastic+TReM
Elastic

(a) Varying number of GPUs

Revocation

(b) Varying revocation latency

Fig. 11: SLA violations for W1 and W2 under load 1.0; (a)
varying the number of GPUs (revocation latency 22ms); (b)
varying the revocation latency (4 GPUs).

VII. DISCUSSION

Bounding the amount of wasted work: Figure 8(b)
shows that TReM wastes only 3% of the total work due to
revocations. However, it is possible that TReM kills a batch
job (i.e., training in Machine Learning) after minutes or even
hours of computation. In this case, the percentage of lost
work can increase significantly. By incorporating a checkpoint
mechanism, as GPU Snapshot [14] or Gandiva [15], to TReM,
we can bound the wasted work at a single checkpoint interval.
Both checkpoint mechanisms [14], [15] do not require changes
in the kernel code, hence they can be integrated with TReM.
Additionally, the checkpointing overhead for both approaches
is less than 100ms, hence the increase in SLA violations will
be minimal.

Repeated revocations & starvation: TReM revokes the
batch task that has performed the least amount of work so
far. If, however, user-facing tasks arrive periodically (e.g., a
user-facing arrives every time a batch task has just started),
TReM may starve a batch task by killing it repeatedly. To avoid
this, TReM can maintain a revocation counter and inform the
cluster scheduler to reassign the load across servers when the
revocation counter exceeds a certain value.

CUDA streams: TReM uses asm(trap) to revoke a
kernel. Effectively, TReM destroys the CUDA context of the
issuing process. With CUDA streams, all concurrently running
kernels belong to a single CUDA context. In case that user-
facing kernels run concurrently with batch, user-facing kernels
will be revoked as well. TReM+Elastic addresses this by
allowing only kernels of the same type, i.e., only batch or
user-facing, to run concurrently in a GPU.

VIII. CONCLUSIONS

In this paper, we design and implement TReM, a mechanism
that revokes batch tasks running in a GPU and starts the next
task within 22ms. TReM, in contrast to previous approaches,
can revoke a task at any point of its execution using CUDA
dynamic parallelism. TReM does not require kernel source
code and is supported by almost all NVIDIA GPUs, except
the outdated Fermi architecture that does not support dynamic
parallelism. We implement two scheduling policies, Priority
and Elastic, that aim to meet SLA for user-facing tasks when
sharing a GPU with long running batch tasks. We then use
TReM to enhance both policies and reduce SLA violations.

We evaluate TReM with two workloads derived from real
datacenter traces. We show that Priority+TReM and Elas-
tic+TReM ensure SLAs for 98% of user-facing tasks when
collocated with long-running batch tasks, at high load with
89% GPU utilization. On the contrary, scheduling policies
Priority and Elastic (without TReM) ensure SLA for 88.8%
of tasks under high load. Additionally, Elastic+TReM reduces
the number of revocations and the corresponding loss of useful
work compared to Priority+TReM to only 3% of the total
workload.

IX. ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European
Commission under the Horizon 2020 Framework Program for
Research and Innovation through the EVOLVE (H2020-ICT-
825061) project. Furthermore, we thank Yannis Sfakianakis
and Christi Symeonidou who provided insight and expertise
to generate datacenter-inspired workloads.

REFERENCES

[1] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13, 2013.

[2] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” in Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’16, 2016.

[3] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in Proceed-
ings of the 2011 USENIX Annual Technical Conference, ser. USENIX
ATC’11, 2011.

[4] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan, “Vgris:
virtualized gpu resource isolation and scheduling in cloud gaming,”
in Proceedings of 2013 High-Performance Parallel and Distributed
Computing, ser. HPDC ’13, 2013.

[5] J. Luitjens, “Cuda streams: Best practices and common pitfalls,” in GPU
Techonology Conference, 2015.

[6] P. Garefalakis, K. Karanasos, and P. Pietzuch, “Neptune: Scheduling
suspendable tasks for unified stream/batch applications,” in Proceedings
of the ACM Symposium on Cloud Computing, ser. SoCC ’19, 2019.

[7] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines, second
edition,” Synthesis Lectures on Computer Architecture, 2013.

[8] NVIDIA, “Whitepaper pascal compute preemption,” https://images.
nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.
pdf, 2016, online; accessed 25 July 2016.

[9] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz,
B. Grimmer, I. T. Foster, and I. Raicu, “Design and evaluation of the
gemtc framework for gpu-enabled many-task computing,” in Proceed-
ings of the 23rd International Symposium on High-performance Parallel
and Distributed Computing, ser. HPDC ’14, 2014.

[10] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and
efficient preemption on gpus,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17, 2017.

[11] H. Zhou, G. Tong, and C. Liu, “Gpes: A preemptive execution system for
gpgpu computing,” in Proceedings of 21st IEEE Real-Time & Embedded
Technology and Applications Symposium, ser. RTAS ’15, 2015.

[12] K. Sajjapongse, X. Wang, and M. Becchi, “A preemption-based runtime
to efficiently schedule multi-process applications on heterogeneous clus-
ters with gpus,” in Proceedings of the 22nd International Symposium on
High-Performance Parallel & Distributed Computing, ser. HPDC ’13,
2013.

[13] S. Jones, “Introduction to dynamic parallelism,” in GPU Technology
Conference Presentation S, vol. 338, 2012, p. 2012.

[14] K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler, and
M. Erez, “Gpu snapshot: Checkpoint offloading for gpu-dense systems,”
in Proceedings of the ACM International Conference on Supercomput-
ing, ser. ICS ’19, 2019.

[15] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous gpu clusters for
deep learning,” in Proceedings of the Fifteenth European Conference on
Computer Systems, ser. EuroSys ’20, 2020.

[16] K. Tian, Y. Dong, and D. Cowperthwaite, “A full gpu virtualization
solution with mediated pass-through,” in Proceedings of the USENIX
Annual Technical Conference, ser. USENIX ATC’14, 2014.

[17] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemp-
tion for multitasking on a shared gpu,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15, 2015.

[18] C. Li, A. Zigerelli, J. Yang, and Y. Guo, “Pep: proactive checkpointing
for efficient preemption on gpus,” in Proceedings of the 55th Annual
Design Automation Conference, ser. DAC ’18, 2018.

[19] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in 2012 Innovative
Parallel Computing, ser. InPar ’12, 2012.

[20] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International Symposium on Workload
Characterization, ser. IISWC ’09, 2009.

[21] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proceedings of the Third ACM Symposium on Cloud Computing,
ser. SoCC ’12, 2012.

[22] C. Lu, K. Ye, G. Xu, C. Z. Xu, and T. Bai, “Imbalance in the cloud:
An analysis on alibaba cluster trace,” in Proceedings of 2017 IEEE
International Conference on Big Data, ser. IEEE Big Data ’17, 2017.

