Introduction to Deep Generative Modeling

Lecture #17

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

Recap - GANs

• Training objective for both generator and discriminator:

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_Z}[\log(1 - D(G(x)))].$$

The joint optimum (G^*, D^*) is a saddle point.

Recap - GANs

• With the optimal discriminator D_G^* , we can see that a GAN minimizes a scaled and shifted Jensen-Shannon divergence:

$$\min_{G} 2D_{\text{JSD}} \left[p_{\text{data}}, p_{G} \right] - \log 4.$$

• Parametrize D by ϕ and G by θ . Prior distribution p(z):

$$\min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{z \sim p(z)} \left[\log \left(1 - D_{\phi}(G_{\theta}(z)) \right) \right].$$

• Likelihood-free training.

Recap - GAN Training Algorithm

- Sample minibatch of m training points $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ from \mathcal{D}
- Sample minibatch of m noise vectors $z^{(1)}, z^{(2)}, \ldots, z^{(m)}$ from p_Z
- Update the discriminator parameters ϕ by stochastic gradient **ascent**

$$\nabla_{\phi} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\phi} \sum_{i=1}^{m} \left[\log D_{\phi}(x^{(i)}) + \log(1 - D_{\phi}(G_{\theta}(z^{(i)}))) \right].$$

• Update the generator parameters θ by stochastic gradient **descent**

$$\nabla_{\theta} V(G_{\theta}, D_{\phi}) = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} \log(1 - D_{\phi}(G_{\theta}(z^{(i)}))).$$

• Repeat for fixed number of iterations

Recap – Optimization Challenges

- Optimization instabilities: the generator and discriminator loss keeps oscillating during GAN training; no stopping criterion in practice
- $\underline{Mode\ collapse:}$ the generator of a GAN collapses to one of few samples (dubbed as "modes")
- <u>Evaluation criteria</u>: no analog to log-lihelihood; has to define "new" metrics such as Inception Score (IS) and Frenchel Inception Distance (FID) for image generation

Today's Plan

- Rich class of likelihood-free objectives via f-GANS.
- Wasserstein GAN.
- Inferring latent representations via BiGAN.
- Application: Unpaired image-to-image translation via CycleGANs.

The GAN Zoo (list of all named GANs): https://github.com/hindupuravinash/the-gan-zoo

Beyond KL and Jensen-Shannon

$$x_i \sim P_{\text{data}}$$
 $i = 1, 2, \dots, n$

- What choices do we have for $d(\cdot, \cdot)$?
 - KL divergence: Autoregressive Models, Flow models.
 - Jensen-Shannon Divergence (scaled and shifted): Original GAN objective.

f - Divergences

 \bullet Given two densities p and q, the f-divergence is given by:

$$D_f(p||q) := \mathbb{E}_{x \sim q} \left[f\left(\frac{p(x)}{q(x)}\right) \right] = \int f\left(\frac{p(x)}{q(x)}\right) q(x) dx,$$

where f is any convex, lower-semicontinuous function with f(1) = 0.

- Convex: Line joining any two points is above the function.
- Lower-semicontinuous: Function value at any point x_0 is close to $f(x_0)$ or greater than $f(x_0)$.
- Jensen's Inequality: $\mathbb{E}_{x \sim q} \left[f(p(x)/q(x)) \right] \ge f\left(\mathbb{E}_{x \sim q} \left[p(x)/q(x) \right] \right) = f(1) = 0.$
- Example: KL divergence with $f(u) = u \log u$.

f - Divergences

• Many more f-divergences!

Name	$D_f(P Q)$	Generator $f(u)$
Total variation	$\frac{1}{2} \int p(x) - q(x) \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u-1)^2$
Neyman χ^2	$\int \frac{(p(x) - q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)}\right)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log\frac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} dx$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$
α -divergence ($\alpha \notin \{0,1\}$)	$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^{\alpha} - 1 \right] - \alpha(q(x) - p(x)) \right) dx$	$\frac{1}{\alpha(\alpha-1)}\left(u^{\alpha}-1-\alpha(u-1)\right)$

α - divergence: Mode covering vs mode seeking

• α -divergence:

$$D_{\alpha}(p||q) := \frac{1}{\alpha(1-\alpha)} \int \alpha p(x) + (1-\alpha)q(x) + p(x)^{\alpha} q(x)^{1-\alpha} dx$$

 $\bullet \ D_{\alpha}(p||q) = D_{1-\alpha}(q||p)$

- To use f-divergences as a two-sample test objective for likelihood-free learning, we need to be able to estimate it only via samples.
- Fenchel conjugate: For any function $f(\cdot)$, its convex conjugate is defined as:

$$f^*(t) = \sup_{u \in \text{dom}_f} (ut - f(u)).$$

- $f^{**} \leq f$.
- f^* is always convex and lower semi-continuous.
- Duality: $f^{**} = f$ when $f(\cdot)$ is convex, lower semi-continuous. Equivalently:

$$f(u) = f^{**}(u) = \sup_{t \in \text{dom}_{f^*}} (tu - f^*(t)).$$

f - GAN: Variational Divergence Minimization

• Fenchel conjugate (a.k.a. Legendre transform):

$$f^*(t) = \sup_{u \in \text{dom}_f} (ut - f(u)).$$

• We can obtain a lower bound to any f-divergence via its Fenchel conjugate:

$$D_{f}(p||q) = \mathbb{E}_{x \sim q} \left[f\left(\frac{p(x)}{q(x)}\right) \right]$$

$$= \mathbb{E}_{x \sim q} \left[\sup_{t \in \text{dom}_{f^*}} \left(t \frac{p(x)}{q(x)} - f^*(t) \right) \right]$$

$$:= \mathbb{E}_{x \sim q} \left[T^*(x) \frac{p(x)}{q(x)} - f^*(T^*(x)) \right]$$

$$= \int_{\mathcal{X}} \left[T^*(x) p(x) - f^*(T(x)) q(x) \right] dx$$

• We can obtain a lower bound to any f-divergence via its Fenchel conjugate:

$$D_f(p||q) = \sup_{T} \int_{\mathcal{X}} \left[T(x)p(x) - f^* \left(T(x) \right) q(x) \right] dx$$

$$\geq \sup_{T \in \mathcal{T}} \int_{\mathcal{X}} \left(T(x)p(x) - f^* \left(T(x) \right) q(x) \right) dx$$

$$= \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim p} [T(x)] - \mathbb{E}_{x \sim q} [f^* (T(x))] \right),$$

where $\mathcal{T} = \{T : \mathcal{X} \to \mathbb{R}\}$ is an arbitrary class of functions.

• Note: Lower bound is likelihood free w.r.t. p and q.

• Variational lower bound:

$$D_f(p||q) \ge \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{x \sim p}[T(x)] - \mathbb{E}_{x \sim q} \left[f^*(T(x)) \right] \right).$$

- \bullet Choose any f-divergence.
- Let $p = p_{\text{data}}$ and $q = p_G$.
- Parametrize T by ϕ and G by θ .

f - GAN: Variational Divergence Minimization

• Consider the following f-GAN objective:

$$\min_{\theta} \max_{\phi} F(\theta, \phi) = \mathbb{E}_{x \sim p_{\text{data}}} [T_{\phi}(x)] - \mathbb{E}_{x \sim p_{G_{\theta}}} [f^*(T_{\phi}(x))].$$

- Generator G_{θ} tries to minimize the divergence estimate.
- Discriminator T_{ϕ} tries to tighten the lower bound.
- Substitute any f-divergence and optimize the f-GAN objective.

Wasserstein GAN: Beyond f-Divergences

• The f-divergence is defined as:

$$D_f(p||q) = \mathbb{E}_{x \sim q} \left[f\left(\frac{p(x)}{q(x)}\right) \right].$$

• The support of q has to cover the support of p, otherwise infinity arises in f-divergences.

Let
$$p(x) = \begin{cases} 1, & x = 0 \\ 0, & x \neq 0 \end{cases}$$
, and $q_{\theta}(x) = \begin{cases} 1, & x = \theta \\ 0, & x \neq \theta \end{cases}$, then:

$$D_{\mathrm{KL}}(p, p_{\theta}) = \begin{cases} 0, \ \theta = 0 \\ \infty, \ \theta \neq 0 \end{cases}, \quad D_{\mathrm{JS}}(p, q_{\theta}) = \begin{cases} 0, \ \theta = 0 \\ \log 2, \ \theta \neq 0 \end{cases}.$$

• We need a "smoother" distance D(p,q) that is defined when p and q have disjoint supports

Wasserstein (Earth-Mover) Distance

• Wasserstein distance (of order 1):

$$D_W(p,q) = \inf_{\gamma \in \Pi(p,q)} \mathbb{E}_{(x,y) \sim \gamma} \left[||x - y||_1 \right],$$

where $\Pi(p,q)$ contains all joint distributions of (x,y) where the marginal of x is p(x), and the marginal of y is q(y).

• $\gamma(y|x)$: a probabilistric earth moving plan that warps p(x) to q(y).

Wasserstein (Earth-Mover) Distance

• Wasserstein distance:

$$D_W(p,q) = \inf_{\gamma \in \Pi(p,q)} \mathbb{E}_{(x,y) \sim \gamma} \left[||x - y||_1 \right],$$

Let
$$p(x) = \begin{cases} 1, & x = 0 \\ 0, & x \neq 0 \end{cases}$$
, and $q_{\theta}(x) = \begin{cases} 1, & x = \theta \\ 0, & x \neq \theta \end{cases}$, then:

• $D_W(p, q_\theta) = |\theta|$.

Wasserstein GAN (WGAN)

• Kantorovich-Rubinstein duality:

$$D_W(p,q) = \sup_{||g||_L \le 1} \mathbb{E}_{x \sim p}[g(x)] - \mathbb{E}_{x \sim q}[g(x)],$$

where $||g||_L \leq 1$ means the Lipschitz constant of g(x) is 1. Technically:

$$\forall x, y : |g(x) - g(y)| \le ||x - y||.$$

• WGAN with discriminator $D_{\phi}(x)$ and generator $G_{\theta}(z)$:

$$\min_{\theta} \max_{\phi} \mathbb{E}_{x \sim p_{\text{data}}}[D_{\phi}(x)] - \mathbb{E}_{z \sim p(z)}[D_{\phi}(G_{\theta}(z))].$$

• Lipschitzness of $D_{\phi}(x)$ is enforced through weight clipping or gradient penalty.

Wasserstein GAN (WGAN)

- More training stability.
- Less mode collapse.
- Via discriminator constraining.

Inferring Latent Representations in GANs

- The generator of a GAN is typically a directed, latent variable model with latent variables z and observed variables x. How can we infer the latent feature representations in a GAN?
- Unlike a normalizing flow model, the mapping $G: z \to x$ is not necessarily invertible.
- Unlike a variational autoencoder, there is no inference network $q(\cdot|x)$ which can learn a variational posterior over latent variables.
- Solution 1: For any point x, use the activations of the prefinal layer of a discriminator as a feature representation.
- Intuition: Similar to supervised deep neural networks, the discriminator would have learned useful representations for x while distinguishing real and fake x's.

Inferring Latent Representations in GANs

- If we want to directly infer the latent variables z of the generator, we need a different learning algorithm.
- \bullet A regular GAN optimizes a two-sample test objective that compares samples of x from the generator and the data distribution.
- Solution 2: To infer latent representations, we will compare samples of (x, z) from the joint distributions of observed and latent variables as per the model and the data distribution.
- For any x generated via the model, we have access to z (sampled from a simple prior p(z)).
- For any x from the data distribution, the z is however unobserved (latent).

Bidirectional Generative Adversarial Networks (BiGANs)

Lecture #17

- In a BiGAN, we introduce an encoder network E in addition to the generator network G.
- E only observes $x \sim p_{\text{data}}(x)$ during training to learn a mapping $E: x \to z$.
- As before, G only observes the samples from the prior $z \sim p(z)$ during training to learn a mapping $G: z \to x$.

Bidirectional Generative Adversarial Networks (BiGANs)

- D observes samples from G, i.e., (z, G(z)) pairs, and from the encoding distribution (E(x), x).
- The goal of D is to maximize the two-sample test objective between (z, G(z)), and (E(x), x).
- After training is complete, new samples are generated via G and latent representations are inferred via E.

Translating Across Domains

- Image-to-image translation: We are given images from two domains, \mathcal{X} and \mathcal{Y} .
- Paired vs. unpaired examples:
- Paired examples can be expensive to obtain. Can we translate from $\mathcal{X} \leftrightarrow \mathcal{Y}$ in an unsupervised manner?

CycleGAN: Adversarial Training Across Two Domains

- To match the two distributions, we learn two parameterized conditional generative models $G: \mathcal{X} \leftrightarrow \mathcal{Y}$ and $F: \mathcal{Y} \leftrightarrow \mathcal{X}$
- G maps an element of \mathcal{X} to an element of \mathcal{Y} . A discriminator $D_{\mathcal{Y}}$ compares the observed dataset Y and the generated samples $\hat{Y} = G(X)$.
- Similarly, F maps an element of \mathcal{Y} to an element of \mathcal{X} . A discriminator $D_{\mathcal{X}}$ compares the observed dataset X and the generated samples $\hat{X} = F(Y)$.

CycleGAN: Cycle Consistency Across Domains

- Cycle Consistency: If we can go form X to \hat{Y} via G, then it should also be possible to go from \hat{Y} back to X via F:
 - $F(G(X)) \approx X$.
 - Similarly, vice versa: $G(F(Y)) \approx Y$.
 - Overall loss function:

$$\min_{F,G,D_{\mathcal{X}},D_{\mathcal{Y}}} \mathcal{L}_{GAN}(G,D_{\mathcal{Y}},X,Y) + \mathcal{L}_{GAN}(F,D_{\mathcal{X}},X,Y) + \lambda \left(\mathbb{E}_{X} \left[||F(G(X)) - X||_{1} \right] + \mathbb{E}_{Y} \left[||G(F(Y)) - Y||_{1} \right] \right).$$
cycle consistency

CycleGAN in Practice

AlignFlow (Grover et al.)

- What if G is a flow model?
- No need to parametrize F separately: $F = G^{-1}$.
- Can train via MLE and/or adversarial learning.
- Exactly cycle consistent: F(G(X)) = X, G(F(Y)) = Y.

• Unlike CycleGAN, AlignFlow specifies a single invertible $G_{A\to Z} = G_{Z\to A}^{-1}$ mapping $G_{A\to Z} \circ G_{B\to Z}^{-1}$ that is exactly cycle-consistent, represents a shared latent space Z between the two domains, and can be trained via both adversarial training and exact MLE. Doubleheaded arrows denote invertible mappings. Y_A and Y_B are r.v.s denoting the output of the critics used for adversarial training.

StarGAN (Choi et al.)

• What if there are multiple domains?

Method	Classification error	# of parameters
DIAT	4.10	$52.6M \times 7$
CycleGAN	5.99	$52.6M \times 14$
IcGAN	8.07	$67.8M \times 1$
StarGAN	2.12	$53.2M \times 1$
Real images	0.45	-

(a)	Cross-d	lomai	in m	odel	S

StarGAN (Choi et al.)

StarGAN (Choi et al.)

Summary of GANs

- Key observation: Samples and likelihoods are not correlated in practice.
- Two-sample test objectives allow for learning generative models only via samples (likelihood-free).
- Wide range of two-sample test objectives covering f-divergences and Wasserstein distances (and more).
- Latent representations can be inferred via BiGAN.
- Cycle-consistent domain translations via CycleGAN and StarGAN.

References

- 1. https://deepgenerativemodels.github.io
- 2. Nowozin et al., "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization", 2016, NeurIPS.
- 3. Zhu et al., "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", 2019, AAAI Conference on Artificial Intelligence 34(04):4028-4035.
- 4. Choi et al., "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation", 2017, IEEE Conference on Computer Vision and Pattern Recognition.

Introduction to Deep Generative Modeling

Lecture #17

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis