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Taxonomy of GMs
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Recap - GANs

e Training objective for both generator and discriminator:
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Recap - GANs

e With the optimal discriminator DF,, we can see that a GAN minimizes a scaled and shifted
Jensen-Shannon divergence:

mén 2ZDJSD [pdataapG] - log 4.

e Parametrize D by ¢ and G by 6. Prior distribution p(z):

min Xy, (108 D (2)] + B log (1= Do(Go(2)))].

e Likelihood-free training.



Recap - GAN Training Algorithm

e Sample minibatch of m training points z(), () ... (™ from D
e Sample minibatch of m noise vectors z(1, 2(2) ... 20" from py,

e Update the discriminator parameters ¢ by stochastic gradient ascent

VoV (Go, Dy) = -V, >~ | log Do ™) + log(1 — Do(Go ("))

e Update the generator parameters 6 by stochastic gradient descent
|
VoV (Go, Dy) = —Vo > log(1 — Dy(Ge(2D))).
0V (G0, De) = 90 log(1 = Do(Golz)

e Repeat for fixed number of iterations



Recap — Optimization Challenges

o Optimization instabilities: the generator and discriminator loss keeps oscillating

during GAN training; no stopping criterion in practice

o Mode collapse: the generator of a GAN collapses to one of few samples (dubbed
as “modes”)

o Fwaluation criteria: no analog to log-lihelihood; has to define “new” metrics
such as Inception Score (IS) and Frenchel Inception Distance (FID) for image
generation




Today’s Plan

e Rich class of likelihood-free objectives via f-GANS.
e Wasserstein GAN.
e Inferring latent representations via BiGAN.

e Application: Unpaired image-to-image translation via CycleGANSs.

The GAN Zoo (list of all named GANSs):
https://github.com /hindupuravinash /the-gan-zoo



Beyond KL and Jensen-Shannon

Po) 0 c M

d(Pdataa

Model Family

e What choices do we have for d(-,-)?

— KL divergence: Autoregressive Models, Flow models.

— Jensen-Shannon Divergence (scaled and shifted): Original GAN objective.



f - Divergences

e Given two densities p and ¢, the f-divergence is given by:

D¢ (pllg) :=Esnyg [f (%)] = /f (%) q(x)dz,

where f is any convex, lower-semicontinuous function with f(1) = 0. \\//\

e Convex: Line joining any two points is above the function. X K

e Lower-semicontinuous: Function value at any point zg is close to f(z() or greater than

f (o).
e Jensen’s Inequality: E,, [f(p(z)/q(x))] > f (Exqlp(x)/q(x)]) = f(1) = 0.

e Example: KL divergence with f(u) = ulogu.



f - Divergences

e Many more f-divergences!

Lecture #17

Name D¢ (P ||Q) Generator f(u)
Total variation : [ Ip(z )| dx tlu—1]
Kullback-Leibler f p(z log ot ( ) dx ulogu
Reverse Kullback-Leibler [ ¢(z)log 2 pgz% dx —logu
Pearson 2 | (Q(T’) p(a’)) dx (u —1)2
Neyman y? [ (I)q (;f)(x)) dx %
Squared Hellinger (\/7 Va(z) ) (Vu — 1)2
Jeffrey [ (p(z) — q(z)) log (%) dr (u—1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (o ¢ {0,1})

5 [ p(x)log 520 + q(w) log Ao da

(z) (z)
J p(z)mlog wp(m)+p(1—7r)q(x) + (1 —m)g(z)log wp(z)+q(1—7r)q(fc) dz

[ p(z 1ogW<;m + q(z) log = 21D dz — log(4)

1) 208 p@)+a(@)
i/ (@) [(43) - 1] - ale(@) - p(2)) ) da

—(u+ 1) log % + ulogu
mulogu — (1 — 7 + 7u) log(1l — 7 + 7u)
ulogu — (u+ 1) log(u+ 1)

—a(al—l) (u* —1—a(u—1))




o - divergence: Mode covering vs
. Lecture #17
mode seeking t

e «-divergence:

Da(plla) i= —

e Du(pllg) = Di—a(ql|p)




f - GAN: Variational Divergence
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Minimization
e To use f-divergences as a two-sample test objective for likelihood-free learning,

we need to be able to estimate it only via samples.

e Fenchel conjugate: For any function f(-), its convex conjugate is defined as:

fr(t) = _sup (ut — f(u)).

o« [T
e f* is always convex and lower semi-continuous.

e Duality: f** = f when f(-) is convex, lower semi-continuous. Equivalently:

flu) = f"(u) = sup (tu— f*(t)).

tEdOITlf*



f - GAN: Variational Divergence
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Minimization

e Fenchel conjugate (a.k.a. Legendre transform):

A

(1) = supyeqom, (ut — f(w).  \




f- GAN: Variational Divergence .
Minimization

e We can obtain a lower bound to any f-divergence via its Fenchel conjugate:

D¢(pllg) = Ezng :f (@H

: q() _
~Eeey | s (B 10)




f - GAN: Variational Divergence
Minimization S

e We can obtain a lower bound to any f-divergence via its Fenchel conjugate:

Ds(pllg) = sup | [T(alp(e) - 1 (T(@) ala) do

X

> sup /X (T(@)p(z) — f* (T(2)) q(x)) da

TeT

— ;16117)— (Ex,\,p T(x)] — Equ[f*(T(x))]) ;

where T = {T : X — R} is an arbitrary class of functions.

e Note: Lower bound is likelihood free w.r.t. p and q.



f - GAN: Variational Divergence
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Minimization
e Variational lower bound:

Dy (pllg) = sup (Bgnp[T(2)] = Eong [f7(T(2))])

e Choose any f-divergence.

e Let p = pgata and ¢ = pg-
e Parametrize 1" by ¢ and G by 6.



f - GAN: Variational Divergence
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Minimization

e Consider the following f~-GAN objective:

minmax F (0, 6) = Eanpy,r, [T5(@)] = Empe, 1 (To(x))]

e Generator GGy tries to minimize the divergence estimate.
e Discriminator Ty tries to tighten the lower bound.

e Substitute any f-divergence and optimize the f-GAN objective.



Wasserstein GAN:
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Beyond f-Divergences

e The f-divergence is defined as:
p(z)
Dy(pllg) = Eang [f ( )] -

e The support of ¢ has to cover the support of p, otherwise infinity arises in f-divergences.

Let p(x) =< r=0 , and gp(z) =< v , then :
0, = #£0) 0, x #6
D ) — ’ ) ‘D ) —
KL (D, Do) {oo, 00 15(D; go) {logQ, 00

e We need a “smoother” distance D(p, q) that is defined when p and ¢ have disjoint supports



Wasserstein (Earth-Mover)
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Distance

LW = i

e Wasserstein distance (of order 1):

D = inf E. .\~ — )
W(p7Q) Welfﬁp,q) (z,y) 'y[”x yHl]

where II(p, q) contains all joint distributions of (x,y) where the marginal of x is p(x), and
the marginal of y is q(y).

e Y(y|x) : a probabilistric earth moving plan that warps p(zx) to q(y).



Wasserstein (Earth-Mover)
Dista nce Lecture #17

q

e Wasserstein distance:

D ,q) = inf E. .\~ — :
W(p Q) vé%ﬁp,q) (z,y) ’ymx yHl]

1 — p—
Let p(x) = {O’ g } 8) , and gg(x) = {(1)’ g #Z , then :
y L s L

o DW(p7 qe) — ‘(9|



Wasserstein GAN (WGAN)

e Kantorovich-Rubinstein duality:

[%VQ%Q):n|?ﬂllEx~prﬁﬂ—-Exwdgﬁwh

where ||g||r < 1 means the Lipschitz constant of g(x) is 1. Technically:
va,y o lg(@) —gw)| < e —yll.
e WGAN with discriminator Dy (x) and generator Gg(2):

min X Ey ., [D6(2)] — B D (Go(2))]

e Lipschitzness of Dy(x) is enforced through weight clipping or gradient penalty.
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Wasserstein GAN (WGAN)

1.0 : : - [ T T .
e More training stability. — Density of real
08l —— Density of fake |
e Less mode collapse. —  GAN Discriminator
WGAN Critic
0.6

e Via discriminator constraining.

-0.2 Vanishing gradients
in regular GAN

-8 -6 -4 =2 0 2 4 6 8



Inferring Latent Representations in
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GANSs

e The generator of a GAN is typically a directed, latent variable model with latent variables
z and observed variables x. How can we infer the latent feature representations in a GAN?

e Unlike a normalizing flow model, the mapping G : 2 — x is not necessarily invertible.

e Unlike a variational autoencoder, there is no inference network ¢(-|z) which can learn a
variational posterior over latent variables.

e Solution 1: For any point x, use the activations of the prefinal layer of a discriminator
as a feature representation.

e Intuition: Similar to supervised deep neural networks, the discriminator would have
learned useful representations for  while distinguishing real and fake x’s.



Inferring Latent Representations in
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GANSs

o If we want to directly infer the latent variables z of the generator, we need a different
learning algorithm.

e A regular GAN optimizes a two-sample test objective that compares samples of x from
the generator and the data distribution.

e Solution 2: To infer latent representations, we will compare samples of (x,z) from
the joint distributions of observed and latent variables as per the model and the data
distribution.

e For any x generated via the model, we have access to z (sampled from a simple prior

p(z)).

e For any x from the data distribution, the z is however unobserved (latent).



Bidirectional Generative Adversarial
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Networks (BiGANS)

features data

B> £

e e
D
ST

e In a BiGAN, we introduce an encoder network FE in addition to the generator network G.

e F only observes & ~ pgata(x) during training to learn a mapping F : © — 2.

e As before, G only observes the samples from the prior z ~ p(z) during training to learn a
mapping G : z — .



Bidirectional Generative Adversarial
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Networks (BiGANS)

features data

> £
N <8 - e

e D observes samples from G, i.e., (z, G(z)) pairs, and from the encoding distribution (E(x),z).

e The goal of D is to maximize the two-sample test objective between (z, G(2)), and (E(x),x).

e After training is complete, new samples are generated via G and latent representations are
inferred via FE.



Translating Across Domains

Paired | Unpaired
Xy Yi f

Y
%

e Image-to-image translation: We are given .
e
3 N

images from two domains, X and Y.

e Paired vs. unpaired examples:

e Paired examples can be expensive to ob-
tain. Can we translate from X < ) in
an unsupervised manner?




CycleGAN: Adversarial Training
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Across Two Domains

e To match the two distributions, we learn two parameterized conditional generative models
G: X< Yand F: Y& X

e (G maps an element of X to an elementA of Y. A discriminator Dy, compares the observed
dataset Y and the generated samples Y = G(X).

e Similarly, F' maps an element of J to an element of X'. A discriminator Dy compares the
observed dataset X and the generated samples X = F(Y).

N
~___—




CycleGAN: Cycle Consistency Across

. Lecture #17
Domains
e Cycle Consistency: If we can go form X to Y via G, then it Should also be possible to
go from Y back to X via F: o Dy Dx
e F(G(X)) ~ X. . Y N 2] Y [~ X Y
F F
e Similarly, vice versa: G(F(Y)) =~ Y. X vl  [x Y| oteconsitoncs
cycle-consistency e %.x """ loss (
e Overall loss function: . S\ —°
(0) | (c)
min _~ Loan(G, Dy, X,Y) + Laoan(F, Dy, X,Y)
FaGaDX 7D37

A (Ex [IF(G0)) = XIh] + By IGEY) - YIL]).

-~

cycle consistency



CycleGAN in Practice

Photos Summer _ Winter

P
Monet T Zebras T > Horses

htgraph N an Gogh 7 Cezanne .



AlignFlow (Grover et al.)

e What if G is a flow model?
e No need to parametrize F separately: F' = G~ 1.

e Can train via MLE and/or adversarial learning,

e Exactly cycle consistent: F(G(X)) =X, G(F(Y)) =Y.

e Unlike CycleGAN, AlignFlow specifies a single invertible Ga-z =Gz 4 Gz = Gz B
mapping G A_, ZOG§1_> » that is exactly cycle-consistent, rep-
resents a shared latent space Z between the two domains,
and can be trained via both adversarial training and exact
MLE. Doubleheaded arrows denote invertible mappings. Y4
and Yp are r.v.s denoting the output of the critics used for
adversarial training.
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StarGAN (Choi et al.)

. . . Method Classificati # of ‘
e What if there are multiple domains? e e
CycleGAN 5.99 52.6M x 14
IcGAN 8.07 67.8M x 1
(a) Cross-domain models (b) StarGAN ~_SwGAN 2.12 53.2M x 1
Real images 0.45 -

P

ome




StarGAN (Choi et al.)
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Input Blond hair Gender Aged Pale skin

[nput Angry Happy Fearful




StarGAN (Choi et al.)

(a) Training the discriminator (b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator
Depth-wise concatenation

Eak Fak Original K
Real image Fake image ake image ake image domain Fake image

%] EE}' s @-

Domain Reconstructed Domaln
Real / Fake dlassification [ Input image ] — Real / Fake

Depth-wise concatenation
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Summary of GANs

e Key observation: Samples and likelihoods are not correlated in practice.

e Two-sample test objectives allow for learning generative models only via samples
(likelihood-free).

e Wide range of two-sample test objectives covering f-divergences and Wasserstein dis-
tances (and more).

e Latent representations can be inferred via BiGAN.

e Cycle-consistent domain translations via CycleGAN and StarGAN.
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