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Taxonomy of GMs
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Generative Adversarial Networks
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e Generative Model families odel Family

e Autoregressive Models: pg(z) = [[;_, po(xilz<i).

e Variational Autoencoders: pg(z) = [ po(z, 2)dz.

e Normalizng Flow Models: px(z;0) = pz(f, ' (z))|det <8f9(;;(x)) |

e Diffusion Probabilistic Models: py(x) = po(z|x1) —[f:T po(xi—1|xe)p(xT).



Why Maximum Likelihood?
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e Optimal statistical efficiency

e Assume sufficient model capacity, such that there exists a unique 0* € M
that satisfies pg+ = Pgata-

e The convergence of 0 to 6* when n — oo is the “fastest” among all
statistical methods when using maximum likelihood training.

e Higher likelihood = better lossless compression.

e Is the likelihood a good indicator of the quality of samples generated by
the model?



Towards Likelihood-Free Learning

e Case 1: Optimal generative model will give best sample quality and
highest test log-likelihood.

e For imperfect models, achieving high log-likelihoods might not always
imply good sample quality, and vice-versa (Theis et al., 2016)

e Case 2: Great test log-likelihoods, poor samples. E.g., For a discrete
noise mixture model pg(x) = 0.01pgata(x) + 0.99pn0ise ()

e 99% of the samples are just noise

e Taking logs, we get a lower bound

log pg () = log [0.01pdata(x) 40.99D 10 ice (x)] > 102 0.01pgata (%) = 10€ Paata () —log 100
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Towards Likelihood-Free Learning

e For expected likelihoods, we know that

e [Lower bound

e Upper bound (via non-negativity of KL)

Epgare [10800(2)] > Epy,,, [ 108 Pdata ()] — log 100
Epdata [logpdata(xﬂ Z ]Epdata [logpg(ilﬁ)]

e As we increse the dimension of x, absolute value of log pgata () increases
proportionally but log 100 remains constant.
Hence, E,,... [ logpe(z)] =~ Ep,... | 10g Pdata(x)] in very high dimensions!



Towards Likelihood-Free Learning

e Case 3: Great samples, poor test log-likelihoods. E.g., Memorizing
training set

e Samples look exactly like the training set (cannot do better!)

e Test set will have zero probability assigned (cannot do worse!)

e The above cases suggest that it might be useful to disentangle likelihoods
and samples

e Likelihood-free learning consider objectives that do not depend di-
rectly on a likelihood function



Comparing Distributions via Samples Lecture #16

Si = {w~ P} S = {o~ Q)

e Given a finite set of samples from two distributions S; = {x ~ P} and
Sy = {x ~ Q}, how can we tell if these samples are from the same

distribution? (i.e., P = Q?)



Two-Sample Tests

e Given S;1 = {z ~ P} and Sy = {z ~ @}, a two-sample test considers
the following hypotheses

e Null hypothesis Hy : P = ()
e Alternative hypothesis H; : P # @)

e Test statistic T' compares S7 and S5 e.g., difference in means, variances of
the two sets of samples.

e If 1" is larger than a threshold «, then reject Hy otherwise we say Hy is
consistent with observation.

e Key observation: Test statistic is likelihood-free since it does not
involve the densities P or () (only samples)



Generative Modeling and Two-
Sample Tests
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Model Family

A priori we assume direct access to S1 =D = {x ~ pdata}

In addition, we have a model distribution pg
Assume that the model distribution permits efficient sampling (e.g., directed models).
Let So = {x ~ py}

Altrernative notion of distance between distributions: Train the generative model to
minimize a two-sample test objective between S7 and S



Two-Sample Test via a Discriminator

e Finding a two-sample test objective in high dimensions is hard

Two Gaussians with different means Two Gaussians with different variances Gaussian and Laplace densities

Prob. Density

X X
X

e In the generative model setup, we know that S; and S5 come from different
distributions pgat, and pg respectively

e Key idea: Learn a statistic that maximizes a suitable notion of distance
between the two sets of samples S; and S5



Two-Sample Test via a Discriminator
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s D¢($) = 1 when x ~ pgata
i Dy(x) =0 when x ~ pyg

e Two-Sample Test via a Discriminator

e Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model

e Maximizes the two-sample test objective (in support of the alternative
hypothesis paata 7 po)



Two-Sample Test via a Discriminator
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Two-Sample Test via a Discriminator

e Training objective for discriminator:

max V(D) =Esopy,.log D(z)] + Eppe [log(l — D(x))].

e For a fixed generator GG, the discriminator is performing binary
classification with the cross entropy objective:

e Assign probability 1 to true data points x ~ pgata

e Assign probability 0 to fake samples = ~ pg

. . .. * pdata(ﬂj)
e Optimal Discriminator: D~(x) = .
G( ) pdata(m) + PG (Qj)




Generative Adversarial Networks (GANEEE e s

e A two player minimax game between a generator and a discriminator

e (Generator

e Directed, latent variable model with a deterministic mapping between z
and x given by Gy

e Minimizes a two-sample test objective (in support of the null hypothesis
Pdata = p@)
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Example of GAN Objective

e Training objective for both generator and discriminator:

mén max V(G,D) =Ezpy..log D(x)] + E,up, [log(l — D(G(2)))].

D tries to make LA : * *
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D(x) tries to be G tries to make iS a Saddle p01nt )
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Example of GAN Objective

e For the optimal discriminator D (-) and fixed generator G(-), we have

pe () ]

pdata(x) + PG (.CE)
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Jenson-Shannon Divergence
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e Also called as the symmetric KL divergence

1 1 1
Djs(p,q) = 5 <DKL <P2(p + Q)> + Dk, <Q||2(P + CI)) > :
e Properties

e Djs(p,q) >0

® Dys(p,q) =0iff p=gq
e Djs(p,q) = Djs(q,p)
e \/Djs(p,q) satisfies triangle inequality = Jenson-Shannon Distance

e Optimal generator for the JSD/Negative Cross Entropy GAN PG* = Pdata

e For the optimal discriminator D}.. and generator G*, we have V(G*, Dg.) = — log4.



The GAN Training Algorithm

e Sample minibatch of m training points 1, 2 ... (™) from D

e Sample minibatch of m noise vectors z(1), 22 ... 2™ from py,

e Update the discriminator parameters ¢ by stochastic gradient ascent

1 ik . .
VoV (Go, Dy) = =V 3 | log Dy(?) +log(1 — Dy(Ga(=7)))].
i=1
e Update the generator parameters 6 by stochastic gradient descent

1 = |
VeV (Go, Dy) = —V ) “log(1 — Dy(Go(27))).
=1

e Repeat for fixed number of iterations



Alternating Optimization in GANs

mein max V(Go,Dy) = Eprpyo|log Dp(z)] + E.p, [log(l — Dy (Ga(2)))].
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Frontiers in GAN Research Lecture #16

2018
e GANSs have been successfully applied to several domains and tasks

e However, working with GANs can be very challenging in practice
e Unstable optimization e Mode collapse e Performance evaluation

e Many tricks have been proposed to successfully train GANs

Image Source: lan Goodfellow. Samples from
Goodfellow et al., 2014, Radford et al., 2015, Liu et
al., 2016, Karras et al., 2017, Karras et al., 2018
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Deep Convolutional GAN (DCGAN)

Key ideas:

* Replace FC hidden layers with
Generator Architecture Convolutions

* Generator: Fractional-Strided
convolutions

e Use Batch Normalization after
each layer

* Inside Generator
* Use RelU for hidden layers
CONV 3 64 * Use Tanh for the output layer

Stride 2 16 Stride 2

CONV 2

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



DCGAN Example — LSUN bedrooms il tecues

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv:1511.06434 (2015).



Conditional GAN

e GAN is too free. How to add some constraints?

* Add conditional variables y into G and D

min max V (D, G) = Egpnppu(a) 108 D ()] + Ep. () [log(1 — D(G(2)))].

G D

n}in max V(D,G) = Egnpyua(a) 108 D(z|y)] + Eznp, (2)[log(1 — D(G(2|y)))].

Mirza and Osindero 2016



Conditional GAN
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Conditional GAN - Examples

User edits Generated 1mages
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Conditional GAN - Examples

Labels to Facade

BW to Color

Labels to Street Scene

output
Edges to Photo

input

output

output input output input

Isola et al. 2016




Optimization Challenges ecture #16

e Theorem (informal): If the generator updates are made in function space and
discriminator is optimal at every step, then the generator is guaranteed to converge
to the data distribution

e Unrealistic assumptions!

e In practice, the generator and discriminator loss keeps oscillating during GAN training

e No robust stopping criteria in practice (unlike MLE)



Optimization Challenges
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Source: Mirantha Jayathilaka
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Mode Collapse

e GANSs are notorious for suffering from mode collapse

e Intuitively, this refers to the phenomena where the generator of a GAN collapses to one
of few samples (dubbed as “modes”)

= g

1.

Arjovsky et al., 2017



Lecture #16

Mode Collapse

e True distribution is a mixture of Gaussians

Target

e The generator distribution keeps oscillating between different modes

Step 0 Step 5k Step 10k Step 15k Step 20k
Source: Metzetal., 2017
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Mode Collapse
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Source: Metzetal., 2017

e Fixes to mode collapse are mostly empirically driven: alternative architectures,
alternative GAN loss, adding regularization terms, etc.

e How to Train a GAN? Tips and tricks to make GANs work by Soumith Chintala et al.
https://github.com/soumith /ganhacks



Beauty Lies in the Eyes of the Discriminato Lecture #16

GAN generated art auctioned at Christie’s.

Expected Price: $7,000 — $10, 000
True Price: $432, 500

Source: Robbie Barrat, Obvious
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