Introduction to Deep Generative Modeling

Lecture #15

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

Recap: Forward Diffusion Process

The forward diffusion process:

Recap: Reverse Denoising Process

The formal definition of the reverse process in T steps:

Noise

$$p(x_T) = \mathcal{N}(x_T; 0, I_d)$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \underline{\mu_{\theta}(x_t, t)}, \sigma_t^2 I_d) \longrightarrow p_{\theta}(x_{0:T}) = p(x_T) \prod_{t=1}^T p_{\theta}(x_{t-1}|x_t).$$
Trainable network
$$(\text{U-net, Denoising Autoencoder}) \approx q(x_{t-1}|x_t) \text{ (true posterior; intractable)}$$

Recap: Training and Sampling

Minimize a simplification of negative ELBO:

$$L_{\text{simple}} = \mathbb{E}_{x_0 \sim p_d(x_0), \epsilon \sim \mathcal{N}(0, I_d), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta} (\underbrace{\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon}_{x_t}, t)||^2 \right].$$

Algorithm 1 Training

- 1: repeat
- 2: $x_0 \sim p_d(x_0)$
- 3: $t \sim \text{Uniform}(1, \dots, T)$
- 4: $\epsilon \sim \mathcal{N}(0, I_d)$
- 5: Take gradient descent step on

$$\nabla_{\theta} ||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t)||^2$$

Algorithm 2 Sampling

- 1: $x_{\rm T} \sim \mathcal{N}(0, I_d)$
- 2: **for** t = T, ..., 1 **do**
- 3: $z \sim \mathcal{N}(0, I_d)$ 4: $x_{t-1} = \frac{1}{\sqrt{1-\beta_t}} (x_t \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_{\theta}(x_t, t)) + \sigma_t z$
- 5: end for
- 6: return x_0

6: **until** converged

Applications

- There are many successful applications of diffusion models (in constantly growing numbers):
 - Image generation, text-to-image generation, controllable generation.
 - Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness.
 - Discrete models, 3D generation, medical imaging, video synthesis.
- Key enabler by diffusion models: Perform high-resolution conditional generation!

Conditional Diffusion Models: Include Condition as Input to Reverse Process

• Reverse Process:

$$p_{\theta}(x_{0:T}|c) = p(x_T) = \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t,c), \ p_{\theta}(x_{t-1}|x_t,c) = \mathcal{N}(x_{t-1};\mu_{\theta}(x_t,t,c), \Sigma(x_t,t,c)).$$

• Variational Upper Bound:

$$L_{\theta}(x_0|c) = \mathbb{E}_q \lceil L_T(x_0) + \sum_{t>1} D_{\text{KL}} \left(q(x_{t-1}|x_t, x_0) || p(x_{t-1}|x_t, c) \right) - \log p_{\theta}(x_0|x_1, c) \rceil.$$

- Incorporate Conditions into U-Net:
 - Scalar conditioning: Encode scalar as a vector embedding, simple spatial addition or adaptive group normalization layers.
 - Image conditioning: Channel-wise concatenation of the conditional image.
 - Text conditioning: Single vector embedding spatial addition or adaptive group norm
 / a sequence of vector embeddings cross-attention.

Classifier-Guided Conditional Diffusion Models: Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0,\mathbf{I}) Score Model Classifier Gradient for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```


- For class-conditional modeling of $p(x_t|c)$, train an extra classifier $p(c|x_t)$.
- Mix its gradient with the diffusion/score model during sampling.

Classifier-Guided Conditional Diffusion Models: Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0,\mathbf{I}) Score Model Classifier Gradient for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```


- Sample with a modified score: $\nabla_{x_t} [\log p(x_t|c) + \omega \log p(c|x_t)].$
- Approximate samples from the distribution $\tilde{p}(x_t|c) \propto p(x_t|c)p(c|x_t)^{\omega}$.

Classifier-Free Conditional Diffusion Models: Guidance by Bayes' Rule on Conditional Diffusion Models

$$p(c|x_t) \propto \frac{p(x_t|c)}{p(x_t)}$$
. — Conditional Diffusion Model — Unconditional Diffusion Model

- In practice, compute $p(x_t|c)$ and $p(x_t)$ by randomly dropping the condition of the diffusion model at certain chance.
- The modified score with this implicit classifier included is:

$$\nabla_{x_t} \left[\log p(x_t|c) + \omega \log p(c|x_t) \right] = \nabla_{x_t} \left[\log p(x_t|c) + \omega (\log p(x_t|c) - \log p(x_t)) \right]$$
$$= \nabla_{x_t} \left[(1+\omega) \log p(x_t|c) - \omega \log p(x_t) \right].$$

Classifier-Free Conditional Diffusion Models: Trade-Off for Sample Quality and Sample Diversity

Large guidance weight ω usually leads to better individual sample quality but less sample diversity.

GLIDE, OpenAl

- A 64×64 base model + a $64 \times 64 \rightarrow 256 \times 256$ super-resolution model.
- Tried classifier-free and CLIP guidance. Classifier-free guidance works better than CLIP guidance.

"a hedgehog using a calculator"

"a corgi wearing a red bowtie and a purple party hat"

"robots meditating in a vipassana retreat"

"a fall landscape with a small cottage next to a lake"

Samples generated with classifier-free guidance (256×256) .

CLIP Guidance: What is a CLIP Model?

• Trained by contrastive cross-entropy loss:

$$-\log \frac{\exp(f(x_i) \cdot g(c_i)/\tau)}{\sum_k \exp(f(x_i) \cdot g(c_k)/\tau)}$$

• The optimizal value of $f(x) \cdot g(c)$ is:

$$\log \frac{p(x,c)}{p(x)p(c)} = \log p(c|x) - \log p(c).$$

CLIP Guidance: What is a CLIP Model?

• Sample with a modified score:

$$\nabla_{x_t} \left[\log p(x_t|c) + \omega \log p(c|x_t) \right]$$

$$= \nabla_{x_t} \left[\log p(x_t|c) + \omega \left(\underbrace{\log p(c|x_t) - \log p(c)}_{\text{CLIP Model}} \right) \right]$$

$$= \nabla_{x_t} \left[\log p(x_t|c) + \omega f(x_t) \cdot g(c) \right]$$

GLIDE, OpenAl

• Fine-tune the model especially for inpainting: feed randomly occluded images with an additional mask channel as the input.

"an old car in a snowy forest"

"a man wearing a white hat"

Text-conditional image inpainting examples.

DALL·E 2, OpenAl

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

 $1k \times 1k$ Text-to-Image generation. Outperforms DALL-E (autoregressive transformer).

DALL·E 2 Model Components

Prior: Produces CLIP image embeddings conditioned on the caption.

Decoder: Produces images conditioned on CLIP image embeddings and text.

DALL·E 2 Model Components: Prior Model

Why conditional on CLIP image embeddings?

CLIP image embeddings capture high-level semantic meaning; latents in the decoder model take care of the rest. The bipartite latent representation enables several text-guided image manipulation tasks.

DALL·E 2 Model Components: Decoder Model

Decoder: produces images conditioned on CLIP image embeddings (and text).

Cascaded diffusion models: 1 base model (64×64) , 2 super-resolution models $(64 \times 64 \rightarrow 256 \times 256, 256 \times 256 \rightarrow 1024 \times 1024)$. Largest super-resolution model is trained on patches and takes full-res inputs at inference time. Classifier-free guidance & noise conditioning augmentation are important.

DALL·E 2: Image Variations

- Fix the CLIP embedding z.
- Decode using different decoder latents x_T .

DALL·E 2: Image Interpolation

- Interpolate image CLIP embeddings z.
- Use different x_T to get different interpolations trajectories.

DALL·E 2: Text Diffs

a photo of a cat \rightarrow an anime drawing of a super saiyan cat, artstation

a photo of a victorian house \rightarrow a photo of a modern house

a photo of an adult lion \rightarrow a photo of lion cub

- Change the image CLIP embedding towards the difference of the text CLIP embeddings of two prompts.
- Decoder latent is kept constant.

Imagen: Google Research

- Input: text, Output: $1k \times 1k$ images.
- An unprecedented degree of photorealism.
 - SOTA automatic scores & human ratings.
- A deep level of language understanding.
- Extremely simple.
 - No latent space, no quantization.

Imagen: Google Research

A photo of a Shiba Inu dog with a backpack riding a bike. It is wearing sunglasses and a beach hat.

A dragon fruit wearing karate belt in the snow.

Imagen: Google Research

A relaxed garlic with a blindfold reading a newspaper while floating in a pool of tomato soup.

"A cute hand-knitted koala wearing a sweater with "CVPR" written on it."

Imagen Key Components

- Key modeling components:
 - Cascaded diffusion models.
 - Classifier-free guidance and dynamic thresholding.
 - Frozen large pretrained language models as text encoders (T5-XXL).

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text into text embeddings. A conditional diffusion model maps the text embedding into a 64×64 image. Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image, first $64 \times 64 \rightarrow 256 \times 256$, and then $256 \times 256 \rightarrow 1024 \times 1024$.

Imagen Key Observations

• Key Observations:

- Beneficial to use text conditioning for all super-res models.
- Noise conditioning augmentation weakens information from low-res models, thus needs text conditioning as extra information input.
- Scaling text encoder is extremely efficient.
- More important than scaling diffusion model size.
- Human raters prefer T5-XXL as the text encoder over CLIP encoder on DrawBench.

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text into text embeddings. A conditional diffusion model maps the text embedding into a 64×64 image. Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image, first $64 \times 64 \rightarrow 256 \times 256$, and then $256 \times 256 \rightarrow 1024 \times 1024$.

Imagen Evaluations

• Imagen got SOTA automatic evaluation scores on COCO dataset:

Model	FID-30K	Zero-shot FID-30K
AttnGAN [76]	35.49	
DM-GAN [83]	32.64	
DF-GAN [69]	21.42	
DM- $GAN + CL [78]$	20.79	
XMC-GAN [81]	9.33	
LAFITE [82]	8.12	
Make-A-Scene [22]	7.55	
DALL-E [53]		17.89
LAFITE [82]		26.94
GLIDE [41]		12.24
DALL-E 2 [54]		10.39
Imagen (Our Work)		7.27

Imagen Evaluations

• Imagen is preferred over recent work by human raters in sample quality & image-text alignment on DrawBench:

Applications

- There are many successful applications of diffusion models (in constantly growing numbers):
 - Image generation, text-to-image generation, controllable generation.
 - Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness.
 - Discrete models, 3D generation, medical imaging, video synthesis.
- Key enabler by diffusion models: Perform high-resolution conditional generation!

Super-Resolution via Repeated Refinement

- Image super-resolution can be considered as training p(x|y) where y is a low-resolution image and x is the corresponding high-resolution image.
- Train a score model for x conditioned on y using:

$$\mathbb{E}_{x,y}\mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)}\mathbb{E}_t||\epsilon_{\theta}(x_t,t;y) - \epsilon||_p^p.$$

• The conditional score is simply a U-Net with x_t and y (resolution image) concatenated:

Super-Resolution via Repeated Refinement

Natural Image Super-Resolution $64 \times 64 \rightarrow 256 \times 256$

Image-to-Image Translation: Palette: Image-to-Image Diffusion Models

- Many image-to-image translation applications can be considered as training p(x|y) where y is the input image.
- \bullet For example, for colorization, x is a colored image and y is a gray-level image.
- Train a score model for x conditioned on y using: $\mathbb{E}_{x,y}\mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)}\mathbb{E}_t||\epsilon_{\theta}(x_t,t;y)-\epsilon||_p^p$.
- The conditional score is simply a U-Net with x_t and y concatenated:

Image-to-Image Translation: Palette: Image-to-Image Diffusion Models

Semantic Segmentation: Label-Efficient Semantic Segmentation with Diffusion Models

• Can we use representation learned from diffusion models for downstream applications such as semantic segmentation?

Semantic Segmentation: Label-Efficient Semantic Segmentation with Diffusion Models

• The experimental results show that the proposed method outperforms Masked Autoencoders, GAN and VAE-based models.

Adversarial Robustness: Diffusion Models for Adversarial Purification

Adversarial Robustness: Diffusion Models for Adversarial Purification

Comparison with state-of-the-art defense methods against unseen threat models (including AutoAttack ℓ_{∞} , AutoAttack ℓ_{2} , and StdAdv) on ResNet-50 for CIFAR-10.

- Diffusion models are a special form of VAEs and continuous normalizing flows:
 - Why do diffusion models perform so much better than these models?
 - How can we improve VAEs and normalizing flows with lessons learned from diffusion models?
- Sampling from diffusion models is still slow especially for interactive applications:
 - The best we could reach is 4-10 steps. How can we have one step samplers?
 - Do we need new diffusion processes?

- Diffusion models can be considered as latent variable models, but their latent space lacks semantics:
 - How can we do latent-space semantic manipulations in diffusion models?
- How can diffusion models help with discriminative applications?
 - Representation learning (high-level vs low-level).
 - Uncertainty estimation.
 - Joint discriminator-generator training.

- What are the best network architectures for diffusion models?
 - Can we go beyond existing U-Nets?
 - How can we feed the time input and other conditioning?
 - How can we improve the sampling efficiency using better network designs?
- How can we apply diffusion models to other data types?
 - 3D data (e.g., distance functions, meshes, voxels, volumetric representations), video, text, graphs, etc.
 - How should we change diffusion models for these modalities?

- Compositional and controllable generation:
 - How can we go beyond images and generate scenes?
 - How can we have more fine-grained control in generation?
- \bullet Diffusion models for X:
 - Can we better solve applications that were previously addressed by GANs and other generative models?
 - Which applications will benefit most from diffusion models?

References (1/5)

- 1. Xiao et al., "Tackling the Generative Learning Trilemma with Denoising Diffusion GANs", ICLR 2022.
- 2. Kingma et al., "Variational Diffusion Models", NeurIPS 2021.
- 3. Vahdat & Kautz, "NVAE: A Deep Hierarchical Variational Autoencoder", NeurIPS 2020.
- 4. Song et al., "Denoising Diffusion Implicit Models", ICLR 2021.
- 5. Karras et al., "Elucidating the Design Space of Diffusion-Based Generative Models", arXiv 2022.
- 6. Salimans & Ho, "Progressive Distillation for Fast Sampling of Diffusion Models", ICLR 2022.
- 7. Dockhorn et al., "Score-Based Generative Modeling with Critically-Damped Langevin Diffusion", ICLR 2022.

References (2/5)

- 8. Gao et al., "Learning energy-based models by diffusion recovery likelihood", ICLR 2021.
- 9. Vahdat et al., "Score-Based Generative Modeling in Latent Space", NeurIPS 2021.
- 10. Rombach et al., "High-Resolution Image Synthesis with Latent Diffusion Models", CVPR 2022.
- 11. Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022.
- 12. Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", arXiv 2022.
- 13. Saharia et al., "Palette: Image-to-Image Diffusion Models", arXiv 2021.
- 14. Dhariwal and Nichol, "Diffusion models beat GANs on image synthesis", NeurIPS 2021.

References (3/5)

- 15. Ho & Salimans, "Classifier-Free Diffusion Guidance", NeurIPS 2021.
- 16. Ho et al., "Cascaded Diffusion Models for High Fidelity Image Generation", JMLR 2022.
- 17. Nichol et al., "GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models", ICML 2021.
- 18. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", 2021.
- 19. Ramesh et al., "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022.
- 20. Saharia et al., "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding", arXiv 2022.

References (4/5)

- 21. Preechakul et al., "Diffusion Autoencoders: Toward a Meaningful and Decodable Representation", CVPR 2022.
- 22. Saharia et al., "Image Super-Resolution via Iterative Refinement", 2021.
- 23. Saharia et al., "Palette: Image-to-Image Diffusion Models", 2022.
- 24. Choi et al., ILVR: "Conditioning Method for Denoising Diffusion Probabilistic Models", ICCV 2021.
- 25. Baranchuk et al., "Label-Efficient Semantic Segmentation with Diffusion Models", ICLR 2022.
- 26. Meng et al., SDEdit: "Guided Image Synthesis and Editing with Stochastic Differential Equations", ICLR 2022.
- 27. Nie et al., "Diffusion Models for Adversarial Purification", ICML 2022.

References (5/5)

Based on:

• Kreis, Gao & Vahdat, Tutorial on Denoising Diffusion-based Generative Modeling: Foundations and Applications, CVPR 2022.

```
https://cvpr2022-tutorial-diffusion-models.github.io/
```

Newer tutorial:

• Song, Meng & Vahdat, Denoising Diffusion Models: A Generative Learning Big Bang, CVPR 2023.

```
https://cvpr2023-tutorial-diffusion-models.github.io/
```

Introduction to Deep Generative Modeling

Lecture #15

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis