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Taxonomy of GMs
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Recap: Forward Diffusion Process

The forward diffusion process:

Forward diffusion process (fixed)

Noise

Q(flft\fl?t—l) = N(xt; V1 — Bixi—1, 515[)
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Recap: Reverse Denoising Process

The formal definition of the reverse process in 1" steps:

Reverse Denoising Process (generative)

~ Noise

p(zr) = N(z7;0, I4)

pe(ﬂft—1|ﬂft) — N(ﬂft—l; Me(ﬂfta t)? U?Id) - pe(xozT) = p(CIJT) Hle pe(xt—ﬂxt)-
N——
Trainable network

(U-net, Denoising Autoencoder) ~ q(wi—1]|z¢) (true posterior; intractable)
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Recap: Training and Sampling

Minimize a simplification of negative ELBO:

Lsimple — ]Ewodi(xo),GNN(O,Id),tNU(laT) ||€ T 69(\\/ arxg + V1 — at9 t)||2 :

Lt
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: zp ~ N(0,1y)
2: xof\/pd(mo) 2: fort=1T,...,1do
3: t ~ Uniform(1,...,T) 3: 2~ N(0.1;)
4: € ~ N(0, I.d) 4: Ty = \/11_—5t (x¢ — \/%eg(a:t,t)) + 02
5. Take gradient descent step on 5. end Tor
6: return xg

VQHE — 69(\/ O_étﬂj() —+ \V 1 — C_l{tE,t)HQ

6: until converged




Applications

e There are many successful applications of diffusion models (in constantly grow-
ing numbers):

— Image generation, text-to-image generation, controllable genera-
tion.

— Image editing, image-to-image translation, super-resolution, segmentation,
adversarial robustness.

— Discrete models, 3D generation, medical imaging, video synthesis.

e Key enabler by diffusion models: Perform high-resolution conditional genera-
tion!



Conditional Diffusion Models:

_ Lecture #15
Include Condition as Input to Reverse Process

e Reverse Process:

po(xo.T|c) Hpe (Tt-1|me, ), po(wi—1]|ze,c) = N(26-15 po(1, ¢, €), 5(, , €)).

e Variational Upper Bound:

Lg(zo|c) = Eq| Lr(x0) + ZDKL (q(zt—1|ze, w0)||p(Tt-1|T1, €)) — log po(zo|T1,0)].
t>1

e Incorporate Conditions into U-Net:
— Scalar conditioning: Encode scalar as a vector embedding, simple spatial addition or
adaptive group normalization layers.
— Image conditioning: Channel-wise concatenation of the conditional image.

— Text conditioning: Single vector embedding — spatial addition or adaptive group norm
/ a sequence of vector embeddings - cross-attention.



Classifier-Guided Conditional Diffusion Models: Lecture #15

Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (g (x:), X (x+)), classi-
fier ps(y|z:), and gradient scale s.

Input: class label y, gradient scale s
xr < sample from N (0, I)
for all  from 7" to 1 do
p, 24— pg(e), g (2¢)
x1—1 < sample from NV (p + sX V,, log py(y|zt), 2)
end for
return x

O e For class-conditional modeling of p(x:|c), train an extra classifier p(c|z).

= = e Mix its gradient with the diffusion/score model during sampling.



Classifier-Guided Conditional Diffusion Models: Lecture #15

Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (g (x:), X (x+)), classi-
fier ps(y|z:), and gradient scale s.

Input: class label y, gradient scale s
xr < sample from N (0, I)
for all  from 7" to 1 do
p, 24— pg(e), g (2¢)
x1—1 < sample from NV (p + sX V,, log py(y|zt), 2)
end for
return x

O e Sample with a modified score: V., [logp(z¢|c) + wlog p(c|xy)].

N\

< e Approximate samples from the distribution p(x|c) o< p(a¢|c)p(c|as)?.

V4



Classifier-Free Conditional Diffusion Models:

Lecture #15

Guidance by Bayes’ Rule on Conditional Diffusion Models

p(.Tt ‘C) Conditional Diffusion Model

p (C|£U t) X p( T t) . Unconditional Diffusion Model

e In practice, compute p(x;|c) and p(x;) by randomly dropping the condition of the diffusion
model at certain chance.

e The modified score with this implicit classifier included is:

Vi, log p(xi|c) + wlogp(clxy)] = Vg, [log p(xi|c) + w(log p(x¢|c) — log p(xy))]
=V, [(1 +w)logp(zi|c) — wlogp(ze)].



Classifier-Free Conditional Diffusion Models: S
Trade-Off for Sample Quality and Sample Diversity
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Large guidance weight w usually leads to better individual sample quality but less sample diversity.
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GLIDE, OpenAl

e A 64 x 64 base model + a 64 x 64 — 256 x 256 super-resolution model.

e Tried classifier-free and CLIP guidance. Classifier-free guidance works better than CLIP

guidance.

f
¥, ©

.

p4

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

Samples generated with classifier-free guidance (256 x 256).



CLIP Guidance: What is a CLIP Model?

e Trained by contrastive cross-entropy loss:

_log exp(f(zi) - g(ci)/7)
> o exp(f(z;) - g(ex)/T)

Pepper the |
pp. - ]

SSSSSS Pup ||| Encader
e The optimzal value of f(x) - g(c) is: A S IO I
p(ZU, C) o — > N 1T, | 1T, | 1,1
log p(x)p(c) T log p(C’ZIj) 1ng(c) I LT, [ LT T
Elr?::i%‘;r L 3 I 13T, | I3T, | T I3-1
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CLIP Guidance: What is a CLIP Model?

Lecture #15

e Sample with a modified score:

Ve, [log p(z:|c) + wlogp(cfzs)]

= V., |logp(xi|c) +w logp(c\xt) — logp(cz b ﬁ
Pepp(?r the Toxt
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GLIDE, OpenAl ecture #15

e Fine-tune the model especially for inpainting: feed randomly occluded images with an addi-
tional mask channel as the input.

“an old car in a snowy forest” “a man wearing a white hat”

Text-conditional image inpainting examples.



DALLE 2, OpenAl Lecture #15

1k x 1k Text-to-Image generation.
Outperforms DALL-E
(autoregressive transformer).

a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it



DALL-E 2 Model Components

Lecture #15

B CLIP objective — |img
™ ™ [ |encoder
text H |

encoder | H _ —
| e L
= OO000O ]

— - > >
--------------------------------------- — : —_— -» -»> —— :

prior decoder
Prior: Produces CLIP image embeddings conditioned on the caption.

Decoder: Produces images conditioned on CLIP image embeddings and text.



DALL-E 2 Model Components:

Lecture #15

Prior Model

_ N CLIP objective m img
0 - > ; encoder
B N
= - — Why conditional
text " on CLIP image em-
encoder | H _ = beddings?
- = C eddings!
B OO000O
] ] > >
---------------------------------- — : B -> -> — ]
prior decoder

CLIP image embeddings capture high-level semantic meaning; latents in the decoder model take care
of the rest. The bipartite latent representation‘ enables several text-guided image manipulation tasks.



DALL-E 2 Model Components:

Lecture #15

Decoder Model

0 ]
_ CLIP objective — |img
E - ™ [ |encoder
—_— B | —————— Decoder: produces im-
encoder| H B 3 ages conditioned on CLIP
5 M — (sx s H image embeddings (and text).
““““““““““““““““““““““ — B —10+0+0l—» B
prior decoder

Cascaded diffusion models: 1 base model (64 x 64), 2 super-resolution models (64 x 64 — 256 x
256,256 x 256 — 1024 x 1024). Largest super-resolution model is trained on patches and takes full-res
inputs at inference time. Classifier-free guidance & noise conditioning augmentation are important.



DALL-E 2: Image Variations

e Fix the CLIP embedding z.

e Decode using different decoder latents xp.



DALL-E 2: Image Interpolation ecture #15

e Interpolate image CLIP embeddings z.

e Use different x1 to get different interpolations trajectories.




DALL-E 2: Text Diffs Lecture #15

Y

0 7‘# .\

o AL L "e ' s -~ -
a photo of an adult lion — a photo of lion cub

e Change the image CLIP embedding towards the difference of the text CLIP embeddings of two prompts.

e Decoder latent is kept constant.



Imagen: Google Research

e Input: text, Output: 1k x 1k images.

e An unprecedented degree of photorealism.

— SOTA automatic scores & human ratings.
e A deep level of language understanding.
e [ixtremely simple.

— No latent space, no quantization.



Imagen: Google Research

A photo of a Shiba Inu dog with a backpack riding a
bike. It is wearing sunglasses and a beach hat. A dragon fruit wearing karate belt in the snow.



Imagen: Google Research Lecture #15

.

Imagen

A relaxed garlic with a blindfold reading a newspaper
while floating in a pool of tomato soup.

Imagen
“A cute hand-knitted koala wearing a sweater with
“CVPR” written on it.”



Imagen Key COmponentS Lecture #15

“A Golden Retriever dog wearing a blue

Texy checkered beret and red dotted turtleneck.”

o Key modeling components: lTenEmbeddmg

A

: . o
— (Cascaded diffusion models. A
lGl x 64 Image

— C(Classifier-free guidance and dynamic thresh- p
olding. B A‘%é

— Frozen large pretrained language models
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Figure A .4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64 x 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.



Imagen Key Observations

“A Golden Retriever dog wearing a blue

') Key Observations: Ti“ checkered beret and red dotted turtleneck.”
— Beneficial to use text conditioning for all
Super_res modelS. chxtEmbedding
Y
— Noise conditioning augmentation weakens iyl <
information from low-res models, thus needs lm —
text conditioning as extra information in- @
put. "
— Scaling text encoder is extremely efficient. i
256 x 256 Image
— More important than scaling diffusion model
size. , \i 2
L xU[“‘k'lTI\’\'\.‘.\I'ILI.1>‘-1!L - ‘
— Human raters prefer T5-XXL as the text e a
encoder over CLIP encoder on DrawBench. l o

1024 x 1024 Image

Figure A .4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64 x 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.
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Imagen Evaluations

e Imagen got SOTA automatic evaluation scores on COCO dataset:

Zero-shot
Model FID-30K FID-30K
AttnGAN [76] 35.49
DM-GAN [83] 32.64
DF-GAN [69] 21.42
DM-GAN + CL [78] 20.79
XMC-GAN [81] 9.33
LAFITE [82] 8.12
Make-A-Scene [22] 755
DALL-E [53] 17.89
LAFITE [82] 26.94
GLIDE [41] 12.24
DALL-E 2 [54] 10.39

Imagen (Our Work) 7.27




Imagen Evaluations

e Imagen is preferred over recent work by human raters in sample quality & image-text
alignment on DrawBench:

D Imagen D DALL-E 2 || Imagen ] GLIDE j Imagen D VQGAN+CLIP j Imagen D Latent Diffusion
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Applications

e There are many successful applications of diffusion models (in constantly grow-
ing numbers):
— Image generation, text-to-image generation,controllable generation.

— Image editing, image-to-image translation, super-resolution, seg-
mentation, adversarial robustness.

— Discrete models, 3D generation, medical imaging, video synthesis.

e Key enabler by diffusion models: Perform high-resolution conditional genera-
tion!



Super-Resolution via Repeated Refinement Lecture #15

e Image super-resolution can be considered as training p(z|y) where y is a low-resolution
image and x is the corresponding high-resolution image.

e Train a score model for z conditioned on y using:

n]

S yllen N (0,1) 1t

eo(antiy) — €|l

e The conditional score is simply a U-Net with x; and y (resolution image) concatenated:




Super-Resolution via Repeated Refinement Lecture #15

Natural Image Super-Resolution 64 x64 — 256 <256

Bicubic Regression SR3 (ours) Reference




Image-to-Image Translation:

Lecture #15

Palette: Image-to-Image Diffusion Models

e Many image-to-image translation applications can be considered as training p(x|y)
where y is the input image.

e For example, for colorization, x is a colored image and y is a gray-level image.
e Train a score model for x conditioned on y using: Ey ,Ec a0, Eelleo (e, t5y) — €D,

e The conditional score is simply a U-Net with x; and y concatenated:




Image-to-Image Translation:
Palette: Image-to-Image Diffusion Models

Lecture #15

Uncropping

Colorization

Inpainting

JPEG restoration




Semantic Segmentation: Label-Efficient Semantic

Segmentation with Diffusion Models Lecture #15

e Can we use representation learned from diffusion models for downstream applications
such as semantic segmentation?

€o(zy,t) Feature maps

_]‘ -‘I:O
0 Pixel representation

! q(z¢|zp) .
N \ Lt L) & 1 1 ' 1 f f '
] & : . X ﬂl " '! " e e T 1
¥ » i
- v ™ A A ¢ = Pixel classifiers
_" Bl AN O P\ / R,,,,J,,,i,. \
- Linear

Upsample

Upsample [ Un ]
—

Upsample 1




Semantic Segmentation: Label-Efficient Semantic L v
ecture

Segmentation with Diffusion Models

e The experimental results show that the proposed method outperforms Masked Au-
toencoders, GAN and VAE-based models.

FFHQ
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Adversarial Robustness:

Lecture #15

Diffusion Models for Adversarial Purification

Purified im@

“Panda”

@/ersaﬁal image

e Diffused image

C:
Adversarial o' DiffPure Q’ e —> “Panda” —
- HRsge Classifier
S > . --» “Gibbon”

I Adversarial attack (Backpropagation through SDE)




Adversarial Robustness:
Diffusion Models for Adversarial Purification

Lecture #15

57 | ] 100
. e Laidlaw et al. 2021
901 Dolatabadi et al. 2021
80 B DiffPure (Ours)

t=0.15

(a) Smiling

Accuracy (%)

20°

Clean e {5 StAcfv

Unseen threat models

Comparison with state-of-the-art defense methods against un-
seen threat models (including AutoAttack /.., AutoAttack ¢o, and
StdAdv) on ResNet-50 for CIFAR-10.

t=0.15
(b) Eyeglasses

Adversarial



Open Problems

e Diffusion models are a special form of VAEs and continuous normalizing flows:

— Why do diffusion models perform so much better than these models?

— How can we improve VAEs and normalizing flows with lessons learned from dif-
fusion models?

e Sampling from diffusion models is still slow especially for interactive applications:

— The best we could reach is 4-10 steps. How can we have one step samplers?

— Do we need new diffusion processes?



Open Problems

e Diffusion models can be considered as latent variable models, but their latent space
lacks semantics:

— How can we do latent-space semantic manipulations in diffusion models?
e How can diffusion models help with discriminative applications?

— Representation learning (high-level vs low-level).
— Uncertainty estimation.

— Joint discriminator-generator training.



Lecture #15

Open Problems

e What are the best network architectures for diffusion models?

— Can we go beyond existing U-Nets?
— How can we feed the time input and other conditioning?

— How can we improve the sampling efficiency using better network designs?
e How can we apply diffusion models to other data types?

— 3D data (e.g., distance functions, meshes, voxels, volumetric representations),
video, text, graphs, etc.

— How should we change diffusion models for these modalities?



Lecture #15

Open Problems

e Compositional and controllable generation:

— How can we go beyond images and generate scenes?

— How can we have more fine-grained control in generation?
e Diffusion models for X:

— Can we better solve applications that were previously addressed by GANs and
other generative models?

— Which applications will benefit most from diffusion models?
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