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Recap: Forward Diffusion Process Lecture #14



Recap: Reverse Denoising Process Lecture #14



Recap: Training and Sampling Lecture #14



Forward Diffusion Process Limit Lecture #14

https://arxiv.org/abs/2011.13456 

https://arxiv.org/abs/2011.13456


Forward Diffusion Process as an SDE Lecture #14

https://arxiv.org/abs/2011.13456 

https://arxiv.org/abs/2011.13456


Forward Diffusion Process as an SDE Lecture #14

https://arxiv.org/abs/2011.13456 

https://arxiv.org/abs/2011.13456


Denoising Score Matching Lecture #14

https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600 
https://arxiv.org/abs/2011.13456  

min
θ

Et∼U(0,T )
︸ ︷︷ ︸

Ex0∼q0(x0)
︸ ︷︷ ︸

Ext∼qt(xt|x0)
︸ ︷︷ ︸

|| sθ(xt, t)
︸ ︷︷ ︸

−∇x log qt(xt|x0)
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||22.

https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456


The Generative Learning Trilemma Lecture #14



How to Accelerate Diffusion Models Lecture #14

• Naive acceleration methods: Reduce diffusion time steps in training every k-th
time step in inference.
Unfortunately, it leads to immediate worse performance.

• We need something more clever.

• Given a limited number of functional calls, usually much less than 1000, how to
improve the performance?



Advanced Forward Process Lecture #14



Variational Diffusion Models: 
Learnable Diffusion Process

Lecture #14

• Given the forward process q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)):

• Directly parametrize the variance through a learned function γη:

1− ᾱt = sigmoid(γη(t)).

• γη(t): A monotonic MLP.

– Strictly positive weights & monotonic activations
(e.g., sigmoid).

• Analogous to hierarchical VAE: unlike diffusion models using a
fixed encoder, we include learnable parameters in the encoder.



Variational Diffusion Models: 
New Parametrization of Training Objectives

Kingma et al., “Variational diffusion models”, NeurIPS 2021.

Lecture #14

• Optimizing variational upper bound of diffusion models can be simplified to the
following training objective:

LT =
T

2
Ex0,ϵ,t

[

(exp(γη(t)− γη(t− 1))− 1)||ϵ− ϵθ(xt, t)||
2

2

]

– Learning noise schedule improves likelihood estimation of diffusion models,
given fewer diffusion steps.



Variational Diffusion Models: 
New Parametrization of Training Objectives

Kingma et al., “Variational diffusion models”, NeurIPS 2021.
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Variational Diffusion Models: 
SOTA Likelihood Estimation

Kingma et al., “Variational diffusion models”, NeurIPS 2021.
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Variational Diffusion Models: 
SOTA Likelihood Estimation

Kingma et al., “Variational diffusion models”, NeurIPS 2021.
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Advanced Reverse Process: Approximating transition 
probabilities with more complicated distributions Lecture #14



Advanced Reverse Process:
Normal Assumption in Denoising Distribution Holds 
Only for Small Step
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Denoising Diffusion GANs:
Approximating Reverse Process by Conditional GANs
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Advanced Modeling: Latent Space Modeling
Lecture #15

HY-673

• Q: Can we lift the diffusion model to a latent space that is faster to diffuse?
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Latent-Space Diffusion Models:
Variational Autoencoder + Score-Based Prior

Lecture #15
HY-673
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• Encoder maps the input data to an embedding space.

• Denoising diffusion models are applied in the latent space.



Latent-Space Diffusion Models:
Variational Autoencoder + Score-Based Prior

Lecture #14



Latent-Space Diffusion Models:
Variational Autoencoder + Score-Based Prior Lecture #14



Applications Lecture #14

• There are many successful applications of diffusion models (in constantly grow-
ing numbers):

– Image generation, text-to-image generation, controllable generation.

– Image editing, image-to-image translation, super-resolution, segmentation,
adversarial robustness.

– Discrete models, 3D generation, medical imaging, video synthesis.

• Key enabler by diffusion models: Perform high-resolution conditional genera-
tion!



High Resolution Conditional Generation: 
Impressive Text-to-Image Conditional Diffusion Models 
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High Resolution Conditional Generation: 
Impressive Super-Resolution & Colorization Diffusion Models Lecture #14



High Resolution Conditional Generation: 
Impressive Panorama Generation Diffusion Models
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Conditional Diffusion Models:
Include Condition as Input to Reverse Process Lecture #14



Classifier-Guided Conditional Diffusion Models:
Using the Gradient of a Trained Classifier as Guidance

Score Model Classifier Gradient

Lecture #14

• For class-conditional modeling of p(xt|c), train an extra classifier p(c|xt).

• Mix its gradient with the diffusion/score model during sampling.



Classifier-Guided Conditional Diffusion Models:
Using the Gradient of a Trained Classifier as Guidance

Score Model Classifier Gradient
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• Sample with a modified score: ∇xt
[log p(xt|c) + ω log p(c|xt)].

• Approximate samples from the distribution p̃(xt|c) ∝ p(xt|c)p(c|xt)ω.



Classifier-Free Conditional Diffusion Models:
Guidance by Bayes’ Rule on Conditional Diffusion Models Lecture #14



Classifier-Free Conditional Diffusion Models:
Trade-Off for Sample Quality and Sample Diversity
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