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Lecture #14

Taxonomy of GMs

g N

Exact ~ Approximate ; Implicit

X » M x 0w

ARMs Flows VAEs  EBMs GANSs GGFs
(R)NADE Planar Vanilla Belief nets  diffusion Vanilla KALE
WaveNet Coupling B-VAE Boltzmann  denoising WGAN Lipschitz-reg.
WaveRNN MAFs/IAFs VQ-VAE machines score f-GAN

(f,T)-GAN



Recap: Forward Diffusion Process

The forward diffusion process:

Forward diffusion process (fixed)

Noise

Q(flft\fl?t—l) = N(xt; V1 — Bixi—1, 515[)
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Recap: Reverse Denoising Process

The formal definition of the reverse process in 1" steps:

Reverse Denoising Process (generative)

~ Noise

p(zr) = N(z7;0, I4)

pe(ﬂft—1|ﬂft) — N(ﬂft—l; Me(ﬂfta t)? U?Id) - pe(xozT) = p(CIJT) Hle pe(xt—ﬂxt)-
N——
Trainable network

(U-net, Denoising Autoencoder) ~ q(wi—1]|z¢) (true posterior; intractable)
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Recap: Training and Sampling

Minimize a simplification of negative ELBO:

Lsimple — ]Ewodi(xo),GNN(O,Id),tNU(laT) ||€ T 69(\\/ arxg + V1 — at9 t)||2 :

Lt
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: zp ~ N(0,1y)
2: xof\/pd(mo) 2: fort=1T,...,1do
3: t ~ Uniform(1,...,T) 3: 2~ N(0.1;)
4: € ~ N(0, I.d) 4: Ty = \/11_—5t (x¢ — \/%eg(a:t,t)) + 02
5. Take gradient descent step on 5. end Tor
6: return xg

VQHE — 69(\/ O_étﬂj() —+ \V 1 — C_l{tE,t)HQ

6: until converged




Forward Diffusion Process Limit

Consider the limit
of many small steps:
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Forward diffusion process (fixed)

Noise

Q(wt‘$t—1) = N(fljﬁ V1= Biri_1, 675])
Ty = /11— Bixi—1 + \/Ezt- (z¢ ~ N(0,1))

= /1 — B(t)Atxi_q + /B(t) Atz (B¢ := B(t)AL)
~ Ty — Bt)A) Ti_1 + \/Mzt- (Taylor expansion)

https://arxiv.org/abs/2011.13456 2



https://arxiv.org/abs/2011.13456
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Forward Diffusion Process as an SDE

Consider the limit Forward diffusion process (fixed)

»

of many small steps:

Data Noise

Stochastic Differential Equation (SDE)

describing the diffusion dr; = — % 5(75) redt + +/ 5(15)th W;: Weiner process

process in the infinitesimal limit

https://arxiv.org/abs/2011.13456
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Forward Diffusion Process as an SDE

Forward diffusion process (fixed)
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Forward Diffusion SDE: dxt __6 xtdt + ’\/ th

dr1ft term d1ffus1on term
injects noise)

(pulls towards mode) (

https://arxiv.org/abs/2011.13456



https://arxiv.org/abs/2011.13456

Denoising Score Matching

Forward diffusion process (fixed)

e Instead, diffuse individual data points xg. Conditional ¢;(x¢|zg) s tractable!

e Denoising Score Matching:

min By 3/(0.7) Bao~ao(ao) Baimas(alao) I 56(21: ) = Valog g (we|zo) [[5.

0 e ——— ~~ .
diffusion diffused  diffused data neural score of diffused
time ¢ data g  sample z4|zg  network data sample

https://ieeexplore.ieee.org/document/6795935

==» After expectations, sgp(z;.t) ~ V., lo 7)) https://arxiv.org/abs/1907.05600
p ’ 0( b ) T th( t) https://arxiv.org/abs/2011.13456
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How to Accelerate Diffusion Models

e Naive acceleration methods: Reduce diffusion time steps in training every k-th
time step in inference.
Unfortunately, it leads to immediate worse performance.

e We need something more clever.

e Given a limited number of functional calls, usually much less than 1000, how to
improve the performance?



Advanced Forward Process

e Does the noise schedule have to be predefined?

e Does it have to be a Markovian process?

e Is there any faster mixing diffusion process?



Variational Diffusion Models:
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Learnable Diffusion Process

e Given the forward process q(x;|xg) = N (x¢; Varxo, (1 — ap)l)):

e Directly parametrize the variance through a learned function

1 — oy = sigmoid(v,()).

e v,(t): A monotonic MLP.

— Strictly positive weights & monotonic activations
(e.g., sigmoid).

e Analogous to hierarchical VAE: unlike diffusion models using a
fixed encoder, we include learnable parameters in the encoder.



Variational Diffusion Models:

Lecture #14

New Parametrization of Training Objectives

e Optimizing variational upper bound of diffusion models can be simplified to the
following training objective:

T

L1 = SEug et [(exp(ry(t) = m(t = 1)) = Dlle = €o w1, 1)]]5]

— Learning noise schedule improves likelihood estimation of diffusion models,
given fewer diffusion steps.

Kingma et al., “Variational diffusion models”, NeurlIPS 2021.



Variational Diffusion Models:

Lecture #14

New Parametrization of Training Objectives

e Letting I' — oo leads to variational upper bound in continuous time:

1 d

Loo = 5Bapct [ylle = eolen, O3] V() = m(®).

— It is shown to be only related to the signa-to-noise ratio (SNR):

0%
1 — oy

SNR(t) = = exp(—7y(t)).

at endpoints, invariant to the noise schedule in-between.

— The continuous time noise schedule can be learned to minimize the variance
of the training objective for faster training.

Kingma et al., “Variational diffusion models”, NeurlIPS 2021.



Variational Diffusion Models:
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SOTA Likelihood Estimation

o Key factor: Appending Fourier features to the input of U-Net:

ff]k = sin (x; ;2" ), ng,k = cos (x; jk2"m), n=1,8.

e Good likelihoods require modeling all bits, even the ones corresponding to very
small changes in the input.

e But: Neural Networkds are usually bad at modeling small changes to the inputs.

e Significant improvements in log-likelihoods.

Kingma et al., “Variational diffusion models”, NeurlIPS 2021.



Variational Diffusion Models:

SOTA Likelihood Estimati
CIFAR-10 without data augmentation ImageNet 64x64
State-of-the-art models in each of the 5 past years State-of-the-art models in each of the 5 past years
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Kingma et al., “Variational diffusion models”, NeurlIPS 2021.



Advanced Reverse Process: Approximating transition
probabilities with more complicated distributions
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Reverse process maps noise back to data

where the diffusion model is trained

o

¢ |

e (Question: Is normal approximation of the reverse process still accurate
when there are less diffusion time steps?




Advanced Reverse Process:

Normal Assumption in Denoising Distribution Holds Lecture #14
Only for Small Step

e Denoising Process with unimodal normal distribution:

S i i S i S
A e & b A e~

Data

e Requires more complicated functional approximators!



Denoising Diffusion GANSs:
Approximating Reverse Process by Conditional GANs
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(o) [Dady (@(@e—1]@o)|[po(2e—1]z:))].

Compared to a one-shot
GAN generator:

e Both generator and discrim-

Real / Fake? @ inator are solving a much

O
2 simpler problem.
Posterior sampling S
CRERL © e Stronger mode coverage.
ot | e Better training stability.
/\




Advanced Modeling: Latent Space Modeling Lecture #14

e (): Can we lift the diffusion model to a latent space that is faster to diffuse?



Latent-Space Diffusion Models:
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Variational Autoencoder + Score-Based Prior

Datax Encoder p(zo) Latent Space Forward Diffusion p(z1)
' @
'Yo—_ 0o
Be— 2 e\
' -
leo—2—e/V
B e— 22—
Reconst, — <t , >
p(x|2z0) Decoder KL(q(zo|x)||p(z¢))  Latent Space Generative Denoising
- s - /
he g
Variational Autoencoder Denoising Diffusion Prior

_‘O"_ e Encoder maps the input data to an embedding space.

N\

~ e Denoising diffusion models are applied in the latent space.

4



Latent-Space Diffusion Models:
Variational Autoencoder + Score-Based Prior
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-
—e=~

Reconst. W , -
p(x|zo) ceoder KL(q(zo|x)||p(z¢))  Latent Space Generative Denoising
N J N J
Advant N N
® vantages: o o . ' .
& Variational Autoencoder Denoising Diffusion Prior

— The distribution of latent embeddings close to Normal distribution — Simpler
denoising and faster synthesis.

— Augmented latent space — More expressivity.

— Tailored Autoencoders — More expressivity, application to any data type, e.g.,
ographs, text, 3D data, etc.



Latent-Space Diffusion Models:
Variational Autoencoder + Score-Based Prior
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(1)

Reconst.

p(x|zo) Decoder KL(q(zo|x)||p(zo))  Latent Space Generative Denoising
\ J N Y,
e e
Variational Autoencoder Denoising Diffusion Prior

L(z,0,0,1) = Eqp(zo|2) [—10g Py (2|20)] + Dkr(ge(20]7)[[ps(20))
— EEQ¢(ZO|x) [— logp¢(m\zo)l+£Eq¢(zo|x) log q¢(zo\x)l+£Ep9(zo) [— log py (x]20)] -

_J/

v Vv ~\~
reconstruction term negative encoder entropy cross entropy



Applications Lecture #14

e There are many successful applications of diffusion models (in constantly grow-
ing numbers):
— Image generation, text-to-image generation, controllable generation.

— Image editing, image-to-image translation, super-resolution, segmentation,
adversarial robustness.

— Discrete models, 3D generation, medical imaging, video synthesis.

e Key enabler by diffusion models: Perform high-resolution conditional genera-
tion!



High Resolution Conditional Generation: ;
ecture #14

Impressive Text-to-Image Conditional Diffusion Models

“a propaganda poster depicting a cat dressed as “A photo of a raccoon wearing an astronaut hel-
french emperor napoleon holding a piece of cheese”  met, looking out of the window at night.”




High Resolution Conditional Generation:
Impressive Super-Resolution & Colorization Diffusion Mode

Lecture #14

Colorization

Super-Resolution Colorization



High Resolution Conditional Generation:
Lecture #14

Impressive Panorama Generation Diffusion Models

(Generated Input ~ Generated

—4 )
T



Conditional Diffusion Models:
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Include Condition as Input to Reverse Process

e Reverse Process:

po(xo.T|c) Hpe (Tt-1|me, ), po(wi—1]|ze,c) = N(26-15 po(1, ¢, €), 5(, , €)).

e Variational Upper Bound:

Lg(zo|c) = Eq| Lr(x0) + ZDKL (q(zt—1|ze, w0)||p(Tt-1|T1, €)) — log po(zo|T1,0)].
t>1

e Incorporate Conditions into U-Net:
— Scalar conditioning: Encode scalar as a vector embedding, simple spatial addition or
adaptive group normalization layers.
— Image conditioning: Channel-wise concatenation of the conditional image.

— Text conditioning: Single vector embedding — spatial addition or adaptive group norm
/ a sequence of vector embeddings - cross-attention.



Classifier-Guided Conditional Diffusion Models: Lecture #14

Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (g (x:), X (x+)), classi-
fier ps(y|z:), and gradient scale s.

Input: class label y, gradient scale s
xr < sample from N (0, I)
for all  from 7" to 1 do
p, 24— pg(e), g (2¢)
x1—1 < sample from NV (p + sX V,, log py(y|zt), 2)
end for
return x

O e For class-conditional modeling of p(x:|c), train an extra classifier p(c|z).

= = e Mix its gradient with the diffusion/score model during sampling.



Classifier-Guided Conditional Diffusion Models: Lecture #14

Using the Gradient of a Trained Classifier as Guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (g (x:), X (x+)), classi-
fier ps(y|z:), and gradient scale s.

Input: class label y, gradient scale s
xr < sample from N (0, I)
for all  from 7" to 1 do
p, 24— pg(e), g (2¢)
x1—1 < sample from NV (p + sX V,, log py(y|zt), 2)
end for
return x

sO'z e Sample with a modified score: V., [logp(z¢|c) + wlog p(c|xy)].

N\

< e Approximate samples from the distribution p(x:|c) o< p(a¢|c)p(c|ay)?.

V4



Classifier-Free Conditional Diffusion Models:
Lecture #14

Guidance by Bayes’ Rule on Conditional Diffusion Models

e Instead of training an additional classifier, get an “implicit classifier” by jointly training a
conditional and unconditional diffusion model:

p(xt ‘C) Conditional Diffusion Model

p (C|2Ut) X p(,ﬁlj‘t) . Unconditional Diffusion Model

e In practice, compute p(x;|c) and p(x;) by randomly dropping the condition of the diffusion
model at certain chance.

e The modified score with this implicit classifier included is:

Vi, log p(xi|c) + wlogp(clxy)] = Vg, [log p(xi|c) + w(log p(x¢|c) — log p(xy))]
=V, [(1 +w)logp(zi|c) — wlogp(ze)].



Classifier-Free Conditional Diffusion Models:

Trade-Off for Sample Quality and Sample Diversity
O ¢ LI GO ¢ BT (TR PP

SEENE D FERERE D HERERIEI0
I DRy PR G
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£ 4 STIEEE. . o ST
BRI = -"‘"ﬂ”?@”

Large guidance weight w usually leads to better individual sample quality but less sample diversity.
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