Introduction to Deep Generative Modeling

Lecture #14

HY-673 – Computer Science Dep., University of Crete <u>Professors:</u> Yannis Pantazis, Yannis Stylianou <u>Teaching Assistant:</u> Michail Raptakis

Taxonomy of GMs

Recap: Forward Diffusion Process

The forward diffusion process:

Recap: Reverse Denoising Process

The formal definition of the reverse process in T steps:

Recap: Training and Sampling

Minimize a simplification of negative ELBO:

$$\mathbb{L}_{\text{simple}} = \mathbb{E}_{x_0 \sim p_d(x_0), \epsilon \sim \mathcal{N}(0, I_d), t \sim \mathcal{U}(1, T)} \left[\left| \left| \epsilon - \epsilon_\theta \left(\underbrace{\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon}_{x_t}, t \right) \right| \right|^2 \right].$$

Lecture #14

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat	1: $x_{\mathrm{T}} \sim \mathcal{N}(0, I_d)$
2: $x_0 \sim p_d(x_0)$	2: for $t = T,, 1$ do
3: $t \sim \text{Uniform}(1, \dots, T)$	3: $z \sim \mathcal{N}(0, I_d)$
4: $\epsilon \sim \mathcal{N}(0, I_d)$	4: $x_{t-1} = \frac{1}{\sqrt{1-\beta}} (x_t - \frac{\beta_t}{\sqrt{1-\bar{\beta}_t}} \epsilon_{\theta}(x_t, t)) + \sigma_t z$
5: Take gradient descent step on	5: end for
$\nabla_{\theta} \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) ^2$	6: return x_0

6: until converged

Forward Diffusion Process Limit

Lecture #14

Consider the limit of **many small steps:**

Data

Forward diffusion process (fixed)
The forward diffusion process (fixed)
The forward diffusion process (fixed)
Noise

$$\begin{array}{c} \mathbf{x}_{0} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{4} \\ \mathbf{x}_{4} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{5} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}$$

https://arxiv.org/abs/2011.13456

Forward Diffusion Process as an SDE

Consider the limit of **many small steps:**

Data

Stochastic Differential Equation (SDE)

describing the diffusion process in the infinitesimal limit

https://arxiv.org/abs/2011.13456

Forward Diffusion Process as an SDE

Lecture #14

https://arxiv.org/abs/2011.13456

Denoising Score Matching

Forward diffusion process (fixed) $i \to i$ $i \to i$ i

- Instead, diffuse individual data points x_0 . Conditional $q_t(x_t|x_0)$ is tractable!
- Denoising Score Matching:

$$\begin{array}{c} \min_{\theta} \underbrace{\mathbb{E}_{t \sim \mathcal{U}(0,T)}}_{\text{diffusion}} \underbrace{\mathbb{E}_{x_0 \sim q_0(x_0)}}_{\text{diffused}} \underbrace{\mathbb{E}_{x_t \sim q_t(x_t|x_0)}}_{\text{diffused}} || \underbrace{s_{\theta}(x_t,t)}_{\text{neural}} - \underbrace{\nabla_x \log q_t(x_t|x_0)}_{\text{score of diffused}} ||_2^2. \\ \text{score of diffused}_{\text{data } x_0} \underbrace{\text{diffused data}}_{\text{sample } x_t|x_0} \underbrace{\text{neural}}_{\text{network}} \underbrace{\text{score of diffused}}_{\text{data sample}} \\ \text{data sample} \\ \end{array}$$

After expectations, $s_{\theta}(x_t, t) \approx \nabla_x \log q_t(x_t)$!

Lecture #14

https://arxiv.org/abs/1907.05600 https://arxiv.org/abs/2011.13456

The Generative Learning Trilemma

- Naive acceleration methods: Reduce diffusion time steps in training every k-th time step in inference.
 Unfortunately, it leads to immediate worse performance.
- We need something more clever.
- Given a limited number of functional calls, usually much less than 1000, how to improve the performance?

Advanced Forward Process

• Does the noise schedule have to be predefined?

- Does it have to be a Markovian process?
- Is there any faster mixing diffusion process?

Variational Diffusion Models: Learnable Diffusion Process

- Given the forward process $q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 \bar{\alpha}_t)I))$:
- Directly parametrize the variance through a learned function

 $1 - \bar{\alpha}_t = \operatorname{sigmoid}(\gamma_\eta(t)).$

- $\gamma_{\eta}(t)$: A monotonic MLP.
 - Strictly positive weights & monotonic activations (e.g., sigmoid).
- Analogous to hierarchical VAE: unlike diffusion models using a fixed encoder, we include learnable parameters in the encoder.

• Optimizing variational upper bound of diffusion models can be simplified to the following training objective:

Lecture #14

$$\mathcal{L}_T = \frac{T}{2} \mathbb{E}_{x_0,\epsilon,t} \left[(\exp(\gamma_\eta(t) - \gamma_\eta(t-1)) - 1) ||\epsilon - \epsilon_\theta(x_t,t)||_2^2 \right]$$

 Learning noise schedule improves likelihood estimation of diffusion models, given fewer diffusion steps.

Kingma et al., "Variational diffusion models", NeurIPS 2021.

Variational Diffusion Models: New Parametrization of Training Objectives

• Letting $T \to \infty$ leads to variational upper bound in continuous time:

$$\mathcal{L}_{\infty} = \frac{1}{2} \mathbb{E}_{x_0,\epsilon,t} \left[\gamma'_{\eta} || \epsilon - \epsilon_{\theta}(x_t, t) ||_2^2 \right], \ \gamma'_{\eta}(t) = \frac{d}{dt} \gamma_{\eta}(t).$$

- It is shown to be only related to the signa-to-noise ratio (SNR):

$$SNR(t) = \frac{\bar{\alpha}_t}{1 - \bar{\alpha}_t} = \exp(-\gamma_\eta(t)).$$

Lecture #14

at endpoints, invariant to the noise schedule in-between.

 The continuous time noise schedule can be learned to minimize the variance of the training objective for faster training.

Kingma et al., "Variational diffusion models", NeurIPS 2021.

Variational Diffusion Models: SOTA Likelihood Estimation

Lecture #14

• Key factor: Appending Fourier features to the input of U-Net:

$$f_{i,j,k}^n = \sin(x_{i,j,k}2^n\pi), \ g_{i,j,k}^n = \cos(x_{i,j,k}2^n\pi), \ n = 7, 8.$$

- Good likelihoods require modeling all bits, even the ones corresponding to very small changes in the input.
- But: Neural Networkds are usually bad at modeling small changes to the inputs.
- Significant improvements in log-likelihoods.

Kingma et al., "Variational diffusion models", NeurIPS 2021.

Variational Diffusion Models: SOTA Likelihood Estimation

(a) CIFAR-10 without data augmentation Kingma et al., "Variational diffusion models", NeurIPS 2021. (b) ImageNet 64x64

Advanced Reverse Process: Approximating transition probabilities with more complicated distributions

Lecture #14

Reverse process maps noise back to data where the diffusion model is trained

• <u>Question</u>: Is normal approximation of the reverse process still accurate when there are less diffusion time steps?

Advanced Reverse Process: Normal Assumption in Denoising Distribution Holds Only for Small Step

• Denoising Process with unimodal normal distribution:

Lecture #14

• Requires more complicated functional approximators!

Denoising Diffusion GANs: Approximating Reverse Process by Conditional GANs

 $\min_{\theta} \sum_{t>1} \mathbb{E}_{q(x_t)} \left[D_{\text{adv}} \left(q(x_{t-1}|x_t) || p_{\theta}(x_{t-1}|x_t) \right) \right].$

Compared to a one-shot GAN generator:

- Both generator and discriminator are solving a much simpler problem.
- Stronger mode coverage.
- Better training stability.

Advanced Modeling: Latent Space Modeling

Lecture #14

• Q: Can we lift the diffusion model to a latent space that is faster to diffuse?

Latent-Space Diffusion Models: Variational Autoencoder + Score-Based Prior

Variational Autoencoder

Denoising Diffusion Prior

- Encoder maps the input data to an embedding space.
 - Denoising diffusion models are applied in the latent space.

Latent-Space Diffusion Models: Variational Autoencoder + Score-Based Prior

• Advantages:

Variational Autoencoder

Denoising Diffusion Prior

- The distribution of latent embeddings close to Normal distribution \rightarrow Simpler denoising and faster synthesis.
- Augmented latent space \rightarrow More expressivity.
- Tailored Autoencoders \rightarrow More expressivity, application to any data type, e.g., graphs, text, 3D data, etc.

Latent-Space Diffusion Models: Variational Autoencoder + Score-Based Prior

Applications

- There are many successful applications of diffusion models (in constantly growing numbers):
 - Image generation, text-to-image generation, controllable generation.
 - Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness.
 - Discrete models, 3D generation, medical imaging, video synthesis.
- Key enabler by diffusion models: Perform high-resolution conditional generation!

High Resolution Conditional Generation: Impressive Text-to-Image Conditional Diffusion Models

"a propaganda poster depicting a cat dressed as french emperor napoleon holding a piece of cheese"

"A photo of a raccoon wearing an astronaut helmet, looking out of the window at night."

High Resolution Conditional Generation: Impressive Super-Resolution & Colorization Diffusion Mode

Lecture #14

Super-Resolution

Colorization

High Resolution Conditional Generation: Impressive Panorama Generation Diffusion Models

Conditional Diffusion Models: Include Condition as Input to Reverse Process

T

• Reverse Process:

$$p_{\theta}(x_{0:T}|c) = p(x_T) = \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t, c), \ p_{\theta}(x_{t-1}|x_t, c) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t, c), \Sigma(x_t, t, c)).$$

Lecture #14

• Variational Upper Bound:

$$L_{\theta}(x_0|c) = \mathbb{E}_q \left[L_T(x_0) + \sum_{t>1} D_{\mathrm{KL}} \left(q(x_{t-1}|x_t, x_0) || p(x_{t-1}|x_t, c) \right) - \log p_{\theta}(x_0|x_1, c) \right]$$

- Incorporate Conditions into U-Net:
 - Scalar conditioning: Encode scalar as a vector embedding, simple spatial addition or adaptive group normalization layers.
 - Image conditioning: Channel-wise concatenation of the conditional image.
 - Text conditioning: Single vector embedding spatial addition or adaptive group norm
 / a sequence of vector embeddings cross-attention.

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

For class-conditional modeling of p(x_t|c), train an extra classifier p(c|x_t).
Mix its gradient with the diffusion/score model during sampling.

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

• Sample with a modified score: $\nabla_{x_t} [\log p(x_t|c) + \omega \log p(c|x_t)].$ • Approximate samples from the distribution $\tilde{p}(x_t|c) \propto p(x_t|c)p(c|x_t)^{\omega}.$ • Instead of training an additional classifier, get an "implicit classifier" by jointly training a conditional and unconditional diffusion model:

$$p(c|x_t) \propto \frac{p(x_t|c)}{p(x_t)}$$
. — Conditional Diffusion Model — Unconditional Diffusion Model

- In practice, compute $p(x_t|c)$ and $p(x_t)$ by randomly dropping the condition of the diffusion model at certain chance.
- The modified score with this implicit classifier included is:

$$\nabla_{x_t} \left[\log p(x_t|c) + \omega \log p(c|x_t) \right] = \nabla_{x_t} \left[\log p(x_t|c) + \omega (\log p(x_t|c) - \log p(x_t)) \right]$$
$$= \nabla_{x_t} \left[(1+\omega) \log p(x_t|c) - \omega \log p(x_t) \right].$$

Classifier-Free Conditional Diffusion Models: Trade-Off for Sample Quality and Sample Diversity

Large guidance weight ω usually leads to better individual sample quality but less sample diversity.

Introduction to Deep Generative Modeling

Lecture #14

HY-673 – Computer Science Dep., University of Crete <u>Professors:</u> Yannis Pantazis, Yannis Stylianou <u>Teaching Assistant:</u> Michail Raptakis