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Taxonomy of GMs
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ARMs Flows VAEs  EBMs GANSs GGFs
(R)NADE Planar Vanilla Belief nets  diffusion Vanilla KALE
WaveNet Coupling B-VAE Boltzmann  denoising WGAN Lipschitz-reg.
WaveRNN MAFs/IAFs VQ-VAE machines score f-GAN
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Denoising Diffusion Models

Emerging as powerful generative models, outperforming GANs

https://arxiv.org/abs/2105.05233 https://arxiv.org/abs/2106.15282



https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2106.15282

Image Super-resolution

Successful applications - SR3 Mode

https://arxiv.org/abs/2104.07636
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Text-to-Image Generation

DALL-E 2 Imagen

“A group of teddy bears in suit in a corporate office celebrating

44 : : 2
a teddy bear on a skateboard in times square the birthday of their friend. There is a pizza cake on the desk”.

https://arxiv.org/abs/2204.06125 https://arxiv.org/abs/2205.11487
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Denoising Diffusion Models

Learning to generate by denoising
Denoising diffusion models consist of two processes:

e Forward diffusion process that gradually adds noise to input

e Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

v

Data Noise

A

Reverse denoising process (generative)

https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/1503.03585
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Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

g(xexi 1) = N(x6;v/T = Bexe1, 5I) g(xrrlx0) = [T—; ¢(%elx%i-1).  (joint)
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Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

—_— T — — 1~ — (Diffusion Kernel)

Define a; = [T_y(1—8:) W q(xe[x0) = N (x5 /a@rxo, (1 — ax)I)).

For sampling: x; = v/aixo + /(1 —a¢)e  where € ~ N(0,1)

B; values schedule (i.e., the noise schedule) is designed such that at — 0 and ¢(x1|x¢) =~ N (xT;0,1))



What happens to a distribution in
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the forward diffusion?

So far, we discussed the diffusion kernel ¢(x;|x¢) but what about g(x;) ?

Diffused Data Distributions

Data Noise
Q<Xt> = fQ(XOaxt) dxg = fQ(Xo) C](Xt\Xo)dXO-
N—— N —’ N N’
Diffused Joint Input  Diffusion
data dist. dist. data dist. kernel
Xt
The diffusion kernel is Gaussian convolution.
CI(ZUO) Q(xl) Q($2) (J(flfs) Q(ZCT)

We can sample x; ~ q(x¢) by first sampling xo ~ ¢(xg) and then sampling x; ~ ¢(x¢|xg) (i.e., ancestral sampling).
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Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(xr)~ N(x1;0,I)

Generation: Diffused Data Distributions
Sample x1 ~ N (xr;0,1) |
[teratively sample x;_1 ~ q(x;_1|x¢) ™ ) X
N’ & X X X
True Denoising Dist.
q(ro) q(z1) qlza) q(x3) e q(zT)

In general, q(x¢_1|x;) o¢ q(x¢|x;_1) is intractable. ~— ~— ~— ~— ~ —

a(xglx,) q(x,[x,) a(x;x;) a(x;zlxs)  q(xqlxr)

Can we approximate q(x;—1|x¢) 7 Yes, we can use a Normal distribution if §; is small in each forward diffusion step.



Reverse Denoising Process

The formal definition of the reverse process in T steps:

Reverse Denoising Process (generative)

Data Noise

p(xr) = N(xt;0,1)

pH(Xt—l‘Xt> = N(Xt—l; M(Xta t)? U?I)
N——

Trainable network
(U-net, Denoising Autoencoder)
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For training, we can form variational upper bound that is commonly used for training variational autoencoders:

p9<XO:T) :| —. 1,

By (x0) { — log pg (Xo)} < By o) g1 1x0) [_ log g(x1:7|%0)

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurlPs 2020 show that:

L =E,

PKL(Q(XT\XO) \ \p(XT)Z-l- ZPKL(C](Xt—l |Xt, Xo) | \pe(Xt—1 |Xt))A— IOgPG(XoXQ} :

Lt Lo

where q(x;_1|x¢,Xg) is the tractable posterior distribution:

C](Xt—l\xt,Xo) — N(Xt—1§ ﬁt(XtaxO)a Btl%
STy 4 BBty and 1= L,

- T—ay

where [it(X¢,Xq) =

Sohl-Dickstein et al. ICML 2015: https://arxiv.org/abs/1503.03585
Ho et al. NeurlPs 2020: ttps://arxiv.org/abs/2006.11239



https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239

Parameterizing the Denoising Model Lecture #13

Since both q(x;_1|x:,X0) and pg(x;_1|x¢) are Normal distributions, the KL divergence has a simple form:

1
— [ (x4, X0) — o (x¢, )| |

C
207 -

Li—1 = Dkr(q(xt-1]t, %0)||po (x:-1|x¢)) = E,

Recall that x; = v/a;xo + /(1 — a;)e . Ho et al. NeurIPS 2020 observe that:

i (X¢, X0) = ! Xt — b €
7 V1— [ l—a

They propose to represent the mean of the denoising model using a noise-prediction network:

po(xy,t) = ﬁ(xt— \/%eg(xt,t)>

With this parameterization:
2

: le—eo(v/arxo +v1 — aye, t)||°

207 (1 — Be)(1 — o) e

Li1 = ]Exowq(xo),ewN(O,I)

https://arxiv.org/abs/2006.11239 Xt
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Training Objective Weighting

Trading likelihood for perceptual quality

2

370 )04 ”9(@Xo+me,t>2] |

7

Li—1 = ]Exowq(xo),eNN(O,I)

The time dependent \; ensures that the training objective is weighted properly for the maximum data likelihood training.

However, this weight is often very large for small ¢’s.

Ho et al. NeurIPS 2020 observer that simply setting A; = 1 improves sample quality. So, they propose to use:

Lsimple — ]Exowq(xo),eNN(O,I),tNZ/{(l,T) HE — €9 (@XO +v1- @tgv t)Hz .

Xt

For more advanced weighting see Choi et al., Perception Prioritized Training
of Diffusion Models, CVPR, 2022 (https://arxiv.org/abs/2204.00227)

https://arxiv.org/abs/2204.00227
https://arxiv.org/abs/2006.11239



https://arxiv.org/abs/2204.00227
https://arxiv.org/abs/2006.11239

Lecture #13

Summary

Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
1: repeat I X7 NN(O,I)
2: X~ Q<X0> — pdata<x0> 5. f - T 1 d
3: t ~ Uniform(1,...,T) - lori=4,...,100
1 e~ N(0,1) 3 z~N 1 1
5: Take gradient descent step on 4: Xi_1 = NG (Xt — %69(&, t)) + 0+Z
= - 5: end for
Volle —les(v/arxo + V1 — el 1)
6: return X

6: until converged
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Implementation Considerations

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €g(xy, 1)

[T ——

[ TR

N -
Time Representatlon 1' I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group
normalization layers. (see Dharivwal and Nichol NeurIPS 2021)

https://arxiv.org/abs/2105.05233
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Diffusion Parameters

Noise Schedule
q(x¢|xt—1) = N(x¢; /1 — Bexi—1, i)

v

Data Noise

<&
<«

pe(Xt—1|Xt) = N(Xt—l; ,ue(Xt, t)7 U?I)

Above, B; and o7 control the variance of the forward diffusion and reverse denoising processes respectively.
Often a linear schedule is used for 8;, and o7 is set equal to 5;.

Kingma et al.NeurIPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR),
show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train o while training diffusion model by minimizing the variational bound (Improved DPM by Nichol
and Dhariwal ICLM 2021) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022)

https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2201.06503 https://arxiv.org/abs/2102.09672
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What happens to an image in the
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forward diffusion process?

Recall that sampling from q(x;|xg) is done using x; = \/a;xo + 1/ (1 — a;)e where € ~ N(0,1)

Small ¢

xi = Vo + I ane 7 (xo) ‘;,

Freq.
Fourier Transform ’/\—\A

F(xi) = VayF(xo) + /(1 — ar) Fe) Frea. \ | (x¢)]

Large ¢

W0 A

Freq.

In the forward diffusion, the high frequency content is perturbed faster.
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Content-Detail Tradeoff

Reverse denoising process (generative)

n

A\

Data Noise

. 4 A 4

The weighting of the training objective for different timesteps is important!
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Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

e The endocder is fixed
e The latent variables have the same dimension as the data
e The denoising model is shared across different timestep

e The model is trained with some reweighting of the variational bound

https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1602.02282
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Summary

Denoising Diffusion Probabilistic Models

The model is trained by sampling from the forward diffusion process and training a denoising model to predict the noise.

We discussed how the forward process perturbs the data distribution or data samples.

The devil is in the details:

e Network architectures
e Objective weighting

e Diffusion parameters (i.e., noise schedule)

See “Elucidating the Design Space of Diffusion-Based Generative Models” by Karras et al. for important design decision.

https://arxiv.org/abs/2206.00364



https://arxiv.org/abs/2206.00364

Introduction to Deep

. . L #1
Generative Modeling | tecture #13

HY-673 — Computer Science Dep., University of Crete
Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis




