Introduction to Deep Generative Modeling

Lecture #12

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

Recap. of Last Lecture

 $x_i \sim p_{\text{data}}$ $i = 1, 2, \dots, n$

- Energy-based models:
- $p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$

- Z_{θ} is intractable, so no access to likelihood.
- Comparing the probability of two points is easy: $p_{\theta}(x')/p_{\theta}(x) = \exp(f_{\theta}(x') f_{\theta}(x))$.
- Maximum likelihood training: $\max_{\theta} \{ f_{\theta}(x_{\text{train}}) \log Z_{\theta} \}$.
- Contractive divergence: $\nabla_{\theta} f_{\theta}(x_{\text{train}}) \nabla_{\theta} \log Z_{\theta} \approx \nabla_{\theta} f_{\theta}(x_{\text{sample}}),$ where $x_{\text{sample}} \sim p_{\theta}(x).$

Sampling from EBMs: MH-MCMC

- Metropolis-Hastings Markov chain Monte Carlo (MCMC).
 - 1. $x^0 \sim \pi(x)$
 - 2. Repeat for $t = 0, 1, 2, \dots, T 1$:
 - $x' = x^t + \text{noise}$
 - $x^{t+1} = x'$ if $f_{\theta}(x') \geq f_{\theta}(x^t)$
 - if $f_{\theta}(x') < f_{\theta}(x^t)$, set $x^{t+1} = x'$ with probability $\exp\{f_{\theta}(x') - f_{\theta}(x^t)\}$, otherwise set $x^{t+1} = x^t$

Properties:

- In theory, x^t converges to $p_{\theta}(x)$ as $t \to \infty$.
- In practice, need a large number of iterations and convergence slows down exponentially in dimensionality.

Sampling from EBMs: Unadjusted Langevin MCMC

Unadjusted Langevin MCMC: 1. $x^0 \sim \pi(x)$

1.
$$x^0 \sim \pi(x)$$

- 2. Repeat for $t = 0, 1, 2, \dots, T 1$:
 - $\bullet \ z^t \sim \mathcal{N}(0,I)$
 - $x^{t+1} = x^t + \epsilon \nabla_x \log p_\theta(x^t) + \sqrt{2\epsilon} z^t$

Properties:

- x^t converges to $p_{\theta}(x)$ as $t \to \infty$ and $\epsilon \to 0$.
- $\nabla_x \log p_\theta(x) = \nabla_x f_\theta(x)$ for continuous energy-based models.
- Convergence slows down as dimensionality grows.

Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we need sampling for each training iteration in contrastive divergence.

Today's Lecture

$$x_i \sim p_{\text{data}}$$
 $i = 1, 2, \dots, n$

Goal: Training without sampling

- Score matching
- Noise Contrastive Estimation

Score Function

Energy-Based model: $p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp\{f_{\theta}(x)\}$

(Stein) Score function:

$$s_{\theta}(x) := \nabla_x \log p_{\theta}(x) = \nabla_x f_{\theta}(x) - \underbrace{\nabla_x \log Z_{\theta}}_{=0} = \nabla_x f_{\theta}(x)$$

• Gaussian distribution:

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \longrightarrow s_{\theta}(x) = -\frac{x-\mu}{\sigma^2}$$

• Gamma distribution:

$$p_{\theta} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \longrightarrow s_{\theta}(x) = \frac{\alpha - 1}{x} - \beta$$

• Observation:

$$s_{\theta}(x) = \nabla_x \log p_{\theta}(x)$$
 is independent of the partition function Z_{θ} .

• Fisher divergence between p(x) and q(x):

$$D_F(p||q) := \frac{1}{2} \mathbb{E}_{x \sim p} \left[\|\nabla_x \log p(x) - \nabla_x \log q(x)\|_2^2 \right].$$

• Score matching: minimizing the Fisher divergence between $p_{\text{data}}(x)$ and the EBM $p_{\theta}(x)$:

$$\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\left\| \nabla_x \log p_{\text{data}}(x) - s_{\theta}(x) \right\|_2^2 \right]$$

$$= \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\left\| \nabla_x \log p_{\text{data}}(x) - \nabla_x f_{\theta}(x) \right\|_2^2 \right].$$

- How to deal with $\nabla_x \log p_{\text{data}}(x)$?

 Answer: via Integration by Parts!
- For the univariate case:

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}} \left[((\log p_{\text{data}}(x))' - s_{\theta}(x))^{2} \right]$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))' - s_{\theta}(x))^{2} dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))')^{2} dx + \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) s_{\theta}^{2}(x) dx$$

$$- \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))' s_{\theta}(x) dx.$$

• The cross-correlation term is rewritten via interation-by-parts as:

$$-\int_{-\infty}^{\infty} p_{\text{data}}(x) (\log p_{\text{data}}(x))' s_{\theta}(x) dx$$

$$= -\int_{-\infty}^{\infty} p_{\text{data}}(x) \frac{1}{p_{\text{data}}(x)} p'_{\text{data}}(x) s_{\theta}(x) dx$$

$$= \underbrace{-p_{\text{data}}(x) s_{\theta}(x) \mid_{x=-\infty}^{\infty}}_{=0} + \int_{-\infty}^{\infty} p_{\text{data}}(x) s'_{\theta}(x) dx$$

$$= 0$$

$$= \int_{-\infty}^{\infty} p_{\text{data}}(x) s'_{\theta}(x) dx.$$

• Univariate score matching:

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}} \left[((\log p_{\text{data}}(x))' - s_{\theta}(x))^{2} \right]$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))')^{2} dx + \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) s_{\theta}^{2}(x) dx$$

$$- \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))' s_{\theta}(x) dx$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) ((\log p_{\text{data}}(x))')^{2} dx + \frac{1}{2} \int_{-\infty}^{\infty} p_{\text{data}}(x) s_{\theta}^{2}(x) dx$$

$$+ \int_{-\infty}^{\infty} p_{\text{data}}(x) s_{\theta}'(x) dx$$

$$= \text{const} + \mathbb{E}_{x \sim p_{\text{data}}} \left[\frac{1}{2} s_{\theta}^{2}(x) + s_{\theta}'(x) \right].$$

• Multivariate score matching:

$$s_{\theta}(x) = \nabla_x \log p_{\theta}(x).$$

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}} \left[\left\| \nabla_x \log p_{\text{data}}(x) - \nabla_x \log p_{\theta}(x) \right\|_2^2 \right]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\frac{1}{2} \| \nabla_x \log p_{\theta}(x) \|_2^2 + \text{tr}(\nabla_x^2 \log p_{\theta}(x)) \right] + \text{const.}$$

Hessian of $\log p_{\theta}(x)$

Trace operator

(sum of all diagonal elements of a matrix)

Score Matching – Training Algorithm

- 1. Sample a mini-batch of datapoints $\{x_1, x_2, \dots, x_m\} \sim p_{\text{data}}(x)$.
- 2. Estimate the score matching loss with the empirical mean:

$$\frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{2} \|\nabla_x \log p_{\theta}(x_i)\|_2^2 + \text{tr}(\nabla_x^2 \log p_{\theta}(x_i)) \right]$$

$$\frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{2} \|\nabla_x f_{\theta}(x_i)\|_2^2 + \text{tr}(\nabla_x^2 f_{\theta}(x_i)) \right].$$

- Trained via stochastic gradient descent. No need to sample from the EBM!
- Caveat: Computing the trace of Hessian $\operatorname{tr}(\nabla_x^2 \log p_{\theta}(x))$ is in general very expensive for large models.
- Denoising score matching (Vincent 2011) and sliced score matching (Song et al. 2019).

Score Matching for Learning Implicit VAEs

- Model: $p(z), p_{\theta}(x \mid z), q_{\phi}(z \mid x) = \delta(z = f_{\phi}(x, \epsilon)).$
- Goal: maximize the evidence lower bound (ELBO):

$$\mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}) p(\boldsymbol{z}) \right] - \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \log q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}).$$

$$:= H(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}))$$

• Estimate the gradient of the entropy term by training an energy-based model.

Score Matching for Learning Implicit VAEs

$$\nabla_{\phi} H(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}))$$

$$= -\nabla_{\phi} \mathbb{E}_{\boldsymbol{z} \sim q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})} \left[\log q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) \right]$$

$$= -\nabla_{\phi} \mathbb{E}_{\epsilon} \left[\log q_{\phi}(f_{\phi}(\boldsymbol{x}, \epsilon) \mid \boldsymbol{x}) \right] = -\mathbb{E}_{\epsilon} \left[\nabla_{\phi} \log q_{\phi}(f_{\phi}(\boldsymbol{x}, \epsilon) \mid \boldsymbol{x}) \right]$$

$$= -\mathbb{E}_{\epsilon} \left[\nabla_{\boldsymbol{z}} \log q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}) \mid_{\boldsymbol{z} = f_{\phi}(\boldsymbol{x}, \epsilon)} \nabla_{\phi} f_{\phi}(\boldsymbol{x}, \epsilon) \right].$$

Score function of $q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x})$.

Score Matching for Learning Implicit VAEs

Samples on CelebA 64×64 .

Image source: Song et al., 2019.

Recap

$$x_i \sim p_{\text{data}}$$
 $i = 1, 2, \dots, n$

Distances used for training energy-based models:

• KL divergence minimization \iff maximum likelihood maximization.

$$\nabla_{\theta} f_{\theta}(x_{\text{data}}) - \nabla_{\theta} f_{\theta}(x_{\text{sample}})$$
 (contrastive divergence)

• Fisher divergence minimization \iff score matching.

$$\frac{1}{2}\mathbb{E}_{x \sim p_{\text{data}}} \left[\left\| \nabla_x \log p_{\text{data}}(x) - \nabla_x f_{\theta}(x) \right\|_2^2 \right].$$

Noise Contrastive Estimation (NCE)

Learning an energy-based model by contrasting it against a noise distribution.

- <u>Data distribution:</u> $p_{\text{data}}(x)$.
- Noise distribution: $p_n(x)$. It should be analytically tractable and easy to sample from.
- Train a discriminator (binary classifier) $D(x) \in [0,1]$ to distinguish between data sample and noise samples via MLE:

$$\max_{D} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] + \mathbb{E}_{x \sim p_n} \left[\log (1 - D(x)) \right].$$

• Given enough capacity, the *optimal discriminator* is given by:

$$D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_n(x)}.$$

Noise Contrastive Estimation (NCE)

• What if the discriminator is parameterized by:

$$D_{\theta}(x) := \frac{p_{\theta}(x)}{p_{\theta}(x) + p_{n}(x)}.$$

• The optimal discriminator $D_{\theta^*}(x)$ satisfies:

$$D_{\theta^*}(x) := \frac{p_{\theta^*}(x)}{p_{\theta^*}(x) + p_n(x)} = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_n(x)}.$$

• Equivalently,

$$p_{\theta^*}(x) = \frac{p_n(x)D_{\theta^*}(x)}{1 - D_{\theta^*}(x)} = p_{\text{data}}(x).$$

NCE for Training EBMs

• Energy-based models:

$$p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$$

The normalization constraint $Z_{\theta} = \int e^{f_{\theta}(x)} dx$ is hard to satisfy.

• Solution: Modeling Z_{θ} with an additional trainable parameter Z that disregards the normalization constraint:

$$p_{\theta}(x) = \frac{1}{Z} \exp(f_{\theta}(x)).$$

• With noise contrastive estimation, the optimal parameters θ^*, Z^* are:

$$p_{\theta^*,Z^*}(x) = \frac{1}{Z^*} e^{f_{\theta^*}(x)} = p_{\text{data}}(x).$$

• The optimal parameter Z^* is the correct partition function, because

$$\int \frac{1}{Z^*} e^{f_{\theta^*}(x)} dx = \int p_{\text{data}}(x) dx = 1 \Longrightarrow Z^* = \int e^{f_{\theta^*}(x)} dx.$$

NCE for Training EBMs

• The discriminator $D_{\theta,Z}(x)$ for $p_{\theta,Z}(x)$ is given by:

$$D_{\theta,Z}(x) = \frac{\frac{1}{Z}e^{f_{\theta}(x)}}{\frac{1}{Z}e^{f_{\theta}(x)} + p_n(x)} = \frac{e^{f_{\theta}(x)}}{e^{f_{\theta}(x)} + p_n(x)Z}.$$

• Noise contrastive estimation training:

$$\max_{\theta, Z} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_{\theta, Z}(x) \right] + \mathbb{E}_{x \sim p_n} \left[\log (1 - D_{\theta, Z}(x)) \right].$$

• Equivalently,

$$\max_{\theta, Z} \mathbb{E}_{x \sim p_{\text{data}}} \left[f_{\theta}(x) - \log(e^{f_{\theta}(x)} + Zp_n(x)) \right] + \mathbb{E}_{x \sim p_n} \left[\log(Zp_n(x)) - \log(e^{f_{\theta}(x)} + Zp_n(x)) \right].$$

• Use LogSumExp (LSE) function for numerical stability:

$$\log\left(e^{f_{\theta}(x)} + Zp_n(x)\right) = \log\left(e^{f_{\theta}(x)} + e^{\log Z + \log p_n(x)}\right) = LSE(f_{\theta}(x), \log Z + \log p_n(x)).$$

NCE for Training EBMs

- 1. Sample a mini-batch of datapoints $x_1, x_2, \dots, x_n \sim p_{\text{data}}(x)$.
- 2. Sample a mini-batch of noise samples $y_1, y_2, \dots, y_n \sim p_n(y)$.
- 3. Estimate the NCE loss.

$$\frac{1}{n} \sum_{i=1}^{n} \left[f_{\theta}(x_i) - \text{LSE}(f_{\theta}(x_i), \log Z + \log p_n(x_i)) + \log Z + \log p_n(y_i) - \text{LSE}(f_{\theta}(y_i), \log Z + \log p_n(y_i)) \right]$$

4. Compute the gradient and then update $\theta \& Z$ (Stochastic gradient ascent).

No need to sample from the EBM! However, the noise distribution needs to be "close" to the data distribution.

Comparing NCE and GAN

Similarities:

- Both involve training a discriminator to perform binary classification with cross-entropy loss.
- Both are likelihood-free.

<u>Differences:</u>

- GAN requires adversarial training or minimax optimization for training, while NCE does not.
- NCE requires the likelihood of the noise distribution for training, while GAN only requires efficient sampling from the prior.
- NCE trains an energy-based model, while GAN trains a deterministic sample generator.

Flow Contrastive Estimation (Gao et al. 2020)

Observations:

- We need to both evaluate the probability of $p_n(x)$, and sample from it efficiently.
- We hope to make the classification task as hard as possible, i.e., $p_n(\mathbf{x})$ should be colose to $p_{\text{data}}(\mathbf{x})$ (but not exactly the same).

Flow contrastive estimation:

- Parameterize the distribution with a normalizing flow model $p_{n,\phi}(\boldsymbol{x})$.
- Parameterize the descriminator $D_{\theta,Z,\phi}(\boldsymbol{x})$ as

$$D_{\theta,Z,\phi}(x) = \frac{\frac{1}{Z}e^{f_{\theta}(x)}}{\frac{1}{Z}e^{f_{\theta}(x)} + p_{n,\phi}(x)} = \frac{e^{f_{\theta}(x)}}{e^{f_{\theta}(x)} + p_{n,\phi}(x)Z}$$

• Train the flow model to minimize $D_{JS}(p_{\text{data}}, p_{n,\phi})$:

$$\min_{\phi} \max_{\theta, Z} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log D_{\theta, Z, \phi}(\boldsymbol{x}) \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{n, \phi}} \left[\log (1 - D_{\theta, Z, \phi}(\boldsymbol{x})) \right]$$

Flow Contrastive Estimation (Gao et al. 2020)

Samples from SVHN, CIFAR-10, and CelebA datasets.

Image source: Gao et al. 2020.

Adversarial training for EBMs

Energy-based model:
$$p_{\theta}(\boldsymbol{x}) = \frac{e^{f_{\theta}(\boldsymbol{x})}}{Z(\theta)}$$
.

Upper bounding its log-likelihood with a variational distribution $q_{\phi}(\boldsymbol{x})$:

$$\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log p_{\theta}(\boldsymbol{x}) \right] = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[f_{\theta} \right] - \log Z(\theta)$$
 What do we require for the model $q_{\phi}(\boldsymbol{x})$?

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[f_{\theta}(\boldsymbol{x}) \right] - \log \int e^{f_{\theta}(\boldsymbol{x})} d\boldsymbol{x}$$

$$\mathbf{x} = \mathbb{E}_{oldsymbol{x} \sim p_{\mathrm{data}}} \left[f_{ heta}(oldsymbol{x}) \right] - \log \int q_{\phi}(oldsymbol{x}) rac{e^{f_{ heta}(oldsymbol{x})}}{q_{\phi}(oldsymbol{x})} doldsymbol{x}$$

$$0 \leq \mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}} \left[f_{ heta}(oldsymbol{x})
ight] - \int q_{\phi}(oldsymbol{x}) \log rac{e^{f_{ heta}(oldsymbol{x})}}{q_{\phi}(oldsymbol{x})} doldsymbol{x}$$

$$= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[f_{\theta}(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim q_{\phi}} \left[f_{\theta}(\boldsymbol{x}) \right] + H(q_{\phi}(\boldsymbol{x})).$$

Adversarial training: $\max_{\theta} \min_{\phi} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[f_{\theta}(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim q_{\phi}} \left[f_{\theta}(\boldsymbol{x}) \right] + H(q_{\phi}(\boldsymbol{x})).$

Conclusions

- Energy-based models are very flexible probabilistic models with intractable partition functions.
- Sampling is hard and typically requires iterative MCMC approaches.
- Training is hard because computing likelihood is hard.
- Comparing the likelihood/probability of two different points is tractable.
- Maximum likelihood training by contrastive divergence. However, it requires sampling for each training iteration.
- Sampling-free training: score matching and its extensions.
- Sampling-free training: noise contrastive estimation.

 Additionally, it provides an estimate of the partition function.

References

- 1. Probabilistic Machine Learning: Advanced Topics (*Chapter 23*) Kevin P Murphy, The MIT Press (2023)
- 2. How to Train Your Energy-Based Models https://arxiv.org/pdf/2101.03288.pdf
- 3. https://github.com/yataobian/awesome-ebm

Introduction to Deep Generative Modeling

Lecture #12

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis