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Taxonomy of GMs
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Recap. of Last Lecture

e Energy-based models:

po(x) = 7 exp (fo(2)).

Model Family

e /y is intractable, so no access to likelihood.
e Comparing the probability of two points is easy: pg(x’)/po(x) = exp(fo(z') — fo(x)).
e Maximum likelihood training: max {fo(Train) — log Zy} .

e Contractive divergence: Vg fo(Zirain) — Vo log Zg =~ Vy fo(Tsample),
where Lsample ™~ P6 (CE‘)
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Sampling from EBMs: MH-MCMC

e Metropolis-Hastings Markov chain Monte Carlo (MCMC).
1. 2% ~ 7(x)
2. Repeat fort =0,1,2,---,1 — 1:
e 2/ = ' + noise
o o't =g if fo(2') > fo(z")

o if fo(x') < fo(x?), set x*T! = o’
with probability exp{ fo(z') — fo(x!)}, otherwise set !t = 2!

Properties:

e In theory, ' converges to py(x) as t — 0.

e In practice, need a large number of iterations and convergence slows down
exponentially in dimensionality.



Sampling from EBMs: Unadjusted

Lecture #12

Langevin MCMC

Unadjusted Langevin MCMC: 1. 2° ~ 7(2)

2. Repeat fort=20,1,2,---,T —1:

o 2! ~ N(0,1)
o 2!t =zt + eV, logpy(x?) 4+ v/2ez!

Properties: o x' converges to pg(z) as t — oo and € — 0.
o V.logpg(x) =V, fo(x) for continuous energy-based models.
e Convergence slows down as dimensonality grows.

Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we need sampling for
each training iteration in contrastive divergence.
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Today’s Lecture

d(pdataa p@)
Pdata.ﬂ‘*

Model Family

Goal: Training without sampling

e Score matching

e Noise Contrastive Estimation



Score Function

Energy-Based model: pg(x) = ZLG exp{ fo(x)}
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Score Matching

o (Observation:
sg(x) = V logpg(x) is independent of the partition function Zj.

e Fisher divergence between p(x) and ¢(x) :

Dr(pllg) = $Eamy [V logp(a) — Ve loga(x) 3]

e Score matching: minimizing the Fisher divergence between pqasa () and

the EBM pg(x):
B [V 108 pasea (@) — s0() ]

= 1B |1V 108 Paaca (@) = Vafo()[13].



Score Matching

e How to deal with V, log pgata(z) 7
Answer: via Integration by Parts!

e For the univariate case:

%ECUdiata [((logpdata(x)), — 50 (x))ﬂ

— 2 f Pdata () ((10g Paata(x))” — so(z))?dx

= 1 [ paata(2)((10g Pdata(%)))2dz + 3 [*_ Pdata(r)s3(2)da
— [~ pdata(x)(10g pdata(z))se(z)dz.



Score Matching

e The cross-correlation term is rewritten via interation-by-parts as:

-
-

pdata lOg pdata( ))/39 (CB)dCL‘

1

pdata pdata(m) piiata(aj)se (.T)d.flf

= —Pdatal(T)50(T) |oe o

J/

= o

=0

Pdata(2)shy(x)dx.

fjooo Pdata () Sy (x)dx
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Score Matching

e Univariate score matching:

%Eiﬂf\’pdata [((logpdata(x))/ — 59 (x))Q]

:% i)O pdata( )((logpdata( ))/)2d$—|—%ffooopdaﬁca(aj)sg(aj)da3

— f pdata log pdata( ))/38 (QZ)CZCI?

= 2 [ paata(®) (108 Pdata(x)))2dz + L [° paata(e)sd(z)dz
_I_f pdata 5/9( )d.fl?

— ConSt —I_ Eprdata [%Sg (CC) _I_ 8/9 (x)] ‘



Score Matching

e Multivariate score matching: [59(33) = V; log pe(fli‘)-]

YE s panen ||V 108 Panea(x) — Vi logpo () 3]

= E o pauca {% |V logpg(:zz)Hg + tr(V2 logpg(a:)} + const.

N ——’
/ Hessian of
log po ()

Irace operator
(sum of all diagonal
elements of a matrix)
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Score Matching — Training Algorithm

1. Sample a mini-batch of datapoints {x1,z2, -+, Zm} ~ Pdata(T).

2. Estimate the score matching loss with the empirical mean:
1 ™m
2
=1 =
1 <~ [
m 2
1=1

1
5 V2 108 pa(2:) 3+ (V2 og po()|

5 V2 fola |+ (V2 ol |

e Trained via stochastic gradient descent. No need to sample from the EBM!

e Caveat: Computing the trace of Hessian tr(V2 log pg(x)) is in general very
expensive for large models.

e Denoising score matching (Vincent 2011) and sliced score matching (Song
et al. 2019).



VAES

e Model: p(2z),po(x | 2),q4(2 | ) = (2 = fs(x,€)).

Score Matching for Learning Implicit

e Goal: maximize the evidence lower bound (ELBO):

IE‘Zzwq¢(z|ac) [lngg(ai‘ ‘ Z)p(Z)] _Ezwq¢(z|m) log QQb(Z ‘ ZL‘)
S —

= H(qy(z | )))

e Estimate the gradient of the entropy term by training an energy-based
model.



VAES

Score Matching for Learning Implicit

VeH (qp(z | ))
— _V¢Ezwq¢(z|a§) [lOg QQb(z ‘ .’B)]

— _V,E. [log 4 (fs(@.€) | 2)] = —E. [V log o (fs(w, €) | )]

= —Ec | Valoggp(z | @) |a=f,(2.0) Vo So(@ ) | .

Score function of ¢4(z | x).



Score Matching for Learning Implicit S
VAES

Samples on CelebA 64 x 64. Image source: Song et al., 2019.
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Model Family

Distances used for training energy-based models:

e KL divergence minimization <= maximum likelihood maximization.
Vo fo(Tdata) — Vo fo(Tsample) (contrastive divergence)

e Fisher divergence minimization <= score matching.

%Eprdata HVCB logpdata(x) — vacf@ (x)Hg} .



Noise Contrastive Estimation (NCE) Lecture #12

Learning an energy-based model by contrasting it against a noise distribution.

o Data distribution: pgata(x).

o Noise distribution: p,(x).
It should be analytically tractable and easy to sample from.

e Train a discriminator (binary classifier) D(x) € [0, 1] to distinguish be-
tween data sample and noise samples via MLE:

X By, 108 D(@)] + Epnp, [log(1 - D())].

e Given enough capacity, the optimal discriminator is given by:

* . pdata(x)
P (x) B pdata(x) +pn(x) .




Noise Contrastive Estimation (NCE)

e What if the discriminator is parameterized by:

po()

Do) = 0 @) + pu(@)

e The optimal discriminator Dy-(x) satisfies:

Dy« (x) = po-(x) _ Pdata ()

po-(x) + pn(x)  Pdata(x) + pr(z)’

e Liquivalently,
_ pul)Dp- (a)

Do~ ('CC) :pdata(w)-
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NCE for Training EBMs

e Energy-based models: po(x) = ZLQ exp (fo(x)).

The normalization constraint Zy = [ ef0(*)dx is hard to satisfy.

e Solution: Modeling Zy with an additional trainable parameter Z that disregards the
normalization constraint:

po(x) = 7 exp (fo(z)).
e With noise contrastive estimation, the optimal parameters 6*, Z* are:

1
i
7%

e The optimal parameter Z* is the correct partition function, because

1
?e‘f@*('x)daﬁ = /pdata(a?)dx — 1= 7" = /efQ*(x)d:C.

Pox,z~ (.CE) — (@) = pdata(x)-



Lecture #12

NCE for Training EBMs

e The discriminator Dy z(x) for pg z(x) is given by:

A

e Noise contrastive estimation training:

08X Eppe, [108 Do 2(2)] + By, [log(1 = Do 2(2))].

e Equivalently,

Max Eopyoe, | fo(@) — 10g(e%) + Zpy (2)) |+ Epny, [l0g(Zpa(x)) — log(e) + Zp, (x))|.

e Use LogSumExp (LSE) function for numerical stability:

10g (efe(w) e an(iU)) — lOg (efe(a:) 4+ elog Z+logpn(x)) — LSE(fH (aj)’ log / + lggpn(gj))



NCE for Training EBMSs

1. Sample a mini-batch of datapoints x1, 22, -, ZTn ~ Pdata(T).
2. Sample a mini-batch of noise samples y1,vy2, - , Yn ~ Pn(Yy).

3. Estimate the NCE loss.
1 mn
=3 | fol@s) — LSE(fo(w:), 0g Z + log pu (1))
i=1

+log Z + log pn (y;) — LSE( fo(y;),log Z + logpn<yi))}

4. Compute the gradient and then update 6 & Z (Stochastic gradient ascent).

No need to sample from the EBM!
However, the noise distribution needs to be “close” to the data distribution.



Lecture #12

Comparing NCE and GAN

Similarities:

e Both involve training a discriminator to perform binary classification with
cross-entropy loss.

e Both are likelihood-free.

Differences:

e GAN requires adversarial training or minimax optimization for training,
while NCE does not.

e NCE requires the likelihood of the noise distribution for training, while
GAN only requires efficient sampling from the prior.

e NCE trains an energy-based model, while GAN trains a deterministic
sample generator.



Flow Contrastive Estimation
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(Gao et al. 2020)

Observations: ® We need to both evaluate the probability of p,(x), and sample from it
efficiently.

e We hope to make the classification task as hard as possible, i.e., p,(x)
should be colose to pgata(x) (but not exactly the same).

Flow contrastive estimation:
e Parameterize the distribution with a normalizing flow model p, ().

e Parameterize the descriminator Dy z () as
%efe(x) efG(m)

Dy, z,4(x) = B
0.2,6(7) Lefo@) 4 p, 4(x)  efo@ +p, 4(2)Z

e Train the flow model to minimize Djs(PdatasPn.¢):

000 0 Ea 108 D0 2,0(2)] + B, 0g(1 = Do zo(0)



Flow Contrastive Estimation
(Gao et al. 2020)
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Samples from SVHN, CIFAR-10, and CelebA datasets.

Image source: Gao et al. 2020.



Adversarial training for EBMs

6f9 (w)

Energy-based model: Po(T) = Z(6)

Upper bounding its log-likelihood with a variational distribution g4 (x):

Ke~pana [log pg(w)] = Eerpaaca [f@] — log Z(@) What do we require for the model g4(x) 7

— Eoropouns [fo(@)] — log [ @) da

efo (@)
— Ewdiata [fe( log f qu e(w) dm

efo(®)
q¢ ()

< Eonpaua [fo(@)] — [ g4(2)log S5 da

= Eopan, [6(@)] — Eang, [fo(@)] + H(gs(x)).

Adversarial training: max mqbin Eznpanca Lf0(X)] — Egng, [fo(x)] + H(gs(x)).
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Conclusions

e Energy-based models are very flexible probabilistic models with intractable
partition functions.

e Sampling is hard and typically requires iterative MCMOC approaches.
e Training is hard because computing likelihood is hard.

e Comparing the likelihood/probability of two different points is tractable.

e Maximum likelihood training by contrastive divergence.
However, it requires sampling for each training iteration.

e Sampling-free training: score matching and its extensions.

e Sampling-free training: noise contrastive estimation.
Additionally, it provides an estimate of the partition function.
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