Introduction to Deep Generative Modeling

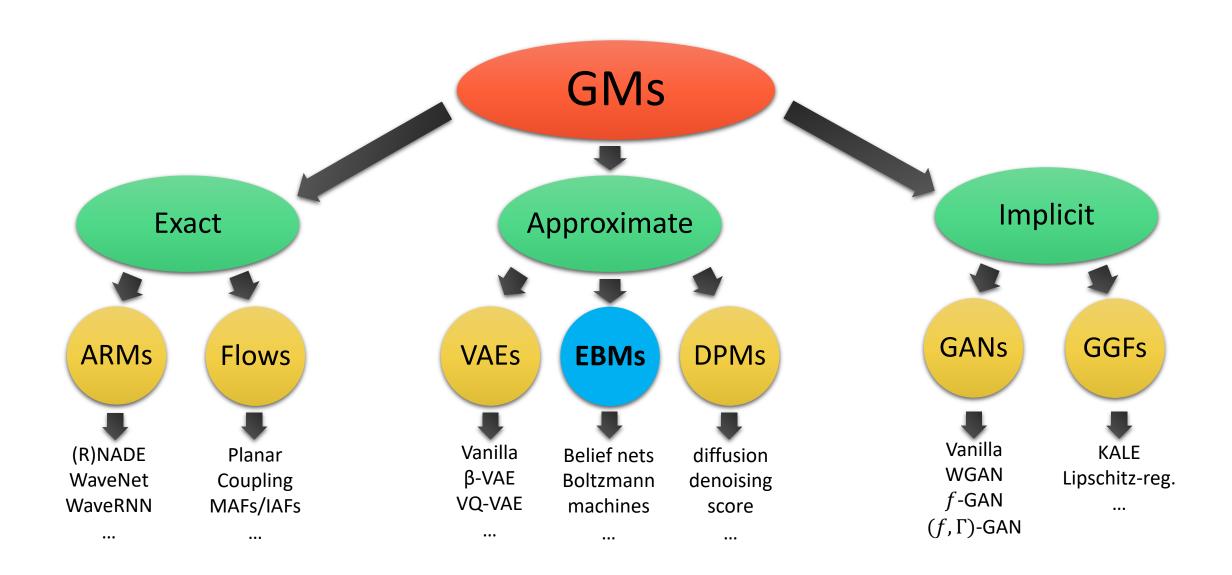
Lecture #11

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

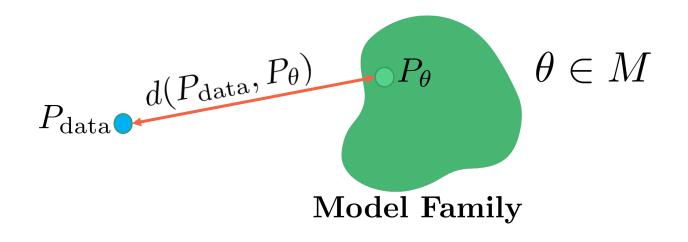
Taxonomy of GMs



Recap

$$x_i \sim P_{\text{data}}$$

 $i = 1, 2, \dots, n$



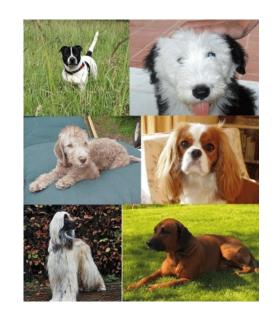
- Autoregressive models: $p_{\theta}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p_{\theta}(x_i | x_{< i})$.
- Normalizing flow models: $p_{\theta}(\mathbf{x}) = p(\mathbf{z})|\det J_{f_{\theta}}|$, where $\mathbf{z} = f_{\theta}(\mathbf{x})$.
- Variational autoencoders: $p_{\theta}(\mathbf{x}) = \int p(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z}$.

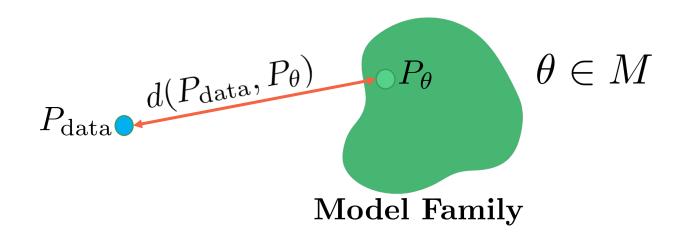
<u>Cons:</u> Model architectures are restricted.

Today's Lecture

$$x_i \sim P_{\text{data}}$$

 $i = 1, 2, \dots, n$





- Energy-Based Models (EBMs):
 - Very flexible model architectures.
 - Stable training.
 - Relatively high sample quality.
 - Flexible composition.

Probability distributions p(x) are a key building block in generative modeling. Basic requirements:

- 1. non-negative: $p(x) \ge 0$.
- 2. sum-to-one: $\sum_{x} p(x) = 1$, or $\int_{\mathcal{X}} p(x) dx = 1$ for continuous variables.

Coming up with a non-negative function $p_{\theta}(\mathbf{x})$ is not hard. Given any funtion $f_{\theta}(\mathbf{x})$, we can choose:

•
$$g_{\theta}(\mathbf{x}) = f_{\theta}(\mathbf{x})^2$$

•
$$g_{\theta}(\mathbf{x}) = |f_{\theta}(\mathbf{x})|$$

•
$$g_{\theta}(\mathbf{x}) = \exp\left(f_{\theta}(\mathbf{x})\right)$$

•
$$g_{\theta}(\mathbf{x}) = \log((1 + \exp(f_{\theta}(\mathbf{x}))))$$

Probability distributions p(x) are a key building block in generative modeling. Basic requirements:

- 1. non-negative: $p(x) \ge 0$.
- 2. sum-to-one: $\sum_{x} p(x) = 1$, or $\int_{\mathcal{X}} p(x) dx = 1$ for continuous variables.
- Sum-to-one is key:

Total "volume" is fixed: Increasing $p(x_i)$ guarantees that x_i becomes relatively more likely compared to the rest.

Problem:

- $g_{\theta}(x)$ is easy, but $g_{\theta}(x)$ might not sum to one.
- $Z_{\theta} := \sum_{x} g_{\theta}(x) \neq 1$ in general, so $g_{\theta}(x)$ is not a valid PMF or PDF.

Problem: $g_{\theta}(x) \geq 0$ is easy, but $g_{\theta}(x)$ might not be normalized.

Solution:
$$p_{\theta}(x) = \frac{1}{\text{Volume}(g_{\theta})} g_{\theta}(x) = \frac{1}{Z_{\theta}} g_{\theta}(x), \quad \int p_{\theta}(x) dx = 1.$$

$$\implies$$
 by definition: $\int p_{\theta}(x)dx = 1$.

Example: Choose $g_{\theta}(\mathbf{x})$ so that we know the volume analytically as a function of θ :

1.
$$g_{(\mu,\sigma)}(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, volume: $\int_{-\infty}^{+\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2} \to \text{Gaussian}$.

2.
$$g_{\lambda}(x) = e^{-\lambda x}$$
, volume: $\int_{0}^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda} \to \mathbf{Exponential}$.

Problem: $g_{\theta}(x) \geq 0$ is easy, but $g_{\theta}(x)$ might not be normalized.

Solution:
$$p_{\theta}(x) = \frac{1}{\text{Volume}(g_{\theta})} g_{\theta}(x) = \frac{1}{Z_{\theta}} g_{\theta}(x), \quad \int p_{\theta}(x) dx = 1.$$

- 3. $g_{\theta}(x) = \exp(\theta^T t(x)) h(x)$, volume: $\exp(A(\theta))$, where $A(\theta) := \log \int \exp(\theta^T t(x)) h(x) dx \to \text{Exponential family of distributions.}$
 - Normal, Poisson, exponential
 - Bernoulli, Beta, Gamma, Dirichlet, Wishart, etc.

Function $g_{\theta}(\mathbf{x})$ needs to allow analytical integration. Despite being restrictive, they are useful as building blocks for more complex distributions.

Problem: $g_{\theta}(x) \geq 0$ is easy, but $g_{\theta}(x)$ might not be normalized.

Solution:
$$p_{\theta}(x) = \frac{1}{\text{Volume}(q_{\theta})} g_{\theta}(x) = \frac{1}{Z_{\theta}} g_{\theta}(x), \quad \int p_{\theta}(x) dx = 1.$$

Typically, choose $g_{\theta}(\mathbf{x})$ so that we know the volume analytically. More complex models can be obtained by combining these building blocks:

1. Autoregressive: Products of normalized objects $p_{\theta}(x)p_{\theta'}(y)$:

$$\int_{x} \int_{y} p_{\theta}(x) p_{\theta'}(y) dx dy = \int_{x} p_{\theta}(x) \underbrace{\int_{y} p_{\theta'}(y) dy dx}_{-1} = \int_{x} p_{\theta}(x) dx = 1.$$

Problem: $g_{\theta}(x) \geq 0$ is easy, but $g_{\theta}(x)$ might not be normalized.

Solution:
$$p_{\theta}(x) = \frac{1}{\text{Volume}(q_{\theta})} g_{\theta}(x) = \frac{1}{Z_{\theta}} g_{\theta}(x), \quad \int p_{\theta}(x) dx = 1.$$

2. Latent Variables: Mixtures of normalized objects $\alpha p_{\theta}(\mathbf{x}) + (1 - \alpha)p_{\theta'}(\mathbf{x})$:

$$\int_{x} \alpha p_{\theta}(x) + (1 - \alpha)p_{\theta'}dx = \alpha + (1 - \alpha) = 1.$$

How about using models where the "volume"/normalization constant of $g_{\theta}(\mathbf{x})$ is not easy to compute analytically?

Energy-Based Model

Definition:
$$p_{\theta}(x) = \frac{1}{\int \exp(f_{\theta}(x)) dx} \exp(f_{\theta}(x)) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$$

- The volume/normalization constant $Z_{\theta} = \int \exp((f_{\theta}(x)) dx$, is also called the **partition** function.
- Why exponential (and not, e.g., $f_{\theta}(\mathbf{x})^2$)?
- 1. Want to capture very large variations in probability. Log-probability is the natural scale we want to work with. Otherwise, need highly non-smooth f_{θ} .
- 2. Many common distributions can be written in the exponential family form.
- 3. These distributions arise under fairly general assumptions in statistical physics (maximum entropy, second law of thermodynamics).
 - $-f_{\theta}(\mathbf{x})$ is called the **energy**, hence the name.
 - Intuitively, configurations \mathbf{x} with low energy (high $f_{\theta}(\mathbf{x})$) are more likely.

Energy-Based Model

Definition:
$$p_{\theta}(x) = \frac{1}{\int \exp(f_{\theta}(x)) dx} \exp(f_{\theta}(x)) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$$

Pros:

1. Extreme flexibility: Can use pretty much any $f_{\theta}(\mathbf{x})$ you want.

Cons:

- 1. Sampling from $p_{\theta}(x)$ is hard.
- 2. Evaluation and optimizing likelihood $p_{\theta}(x)$ is hard (learning is hard).
- 3. No feature learning (but can add latent variables).

Curse of Dimensionality: The fundamental issue is that numerically computing Z_{θ} (when no analytic solution is available) scales *exponentially* in the number of dimensions of x.

Nevertheless, some tasks do not require knowing Z_{θ} .

Applications of EBMs

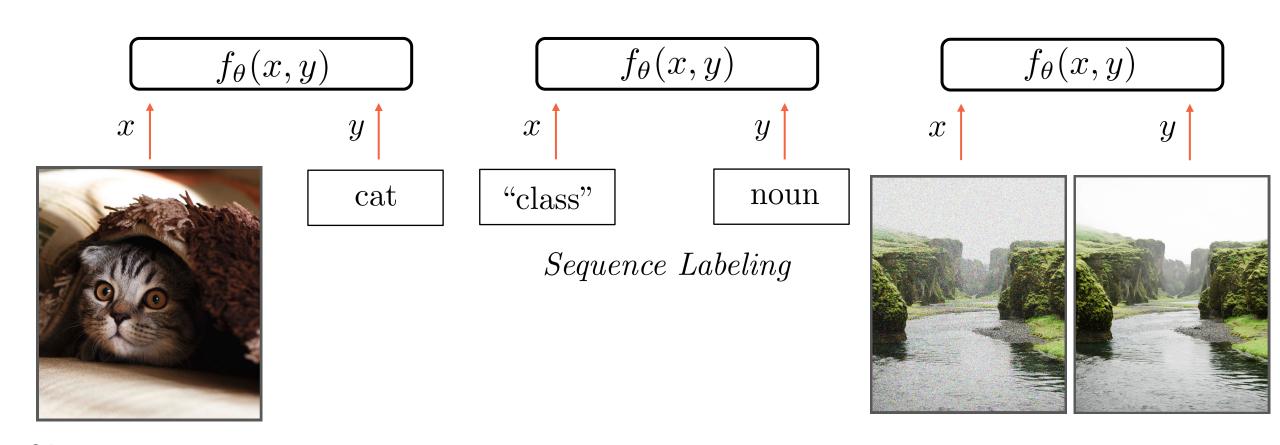
Definition:
$$p_{\theta}(x) = \frac{1}{\int \exp(f_{\theta}(x)) dx} \exp(f_{\theta}(x)) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$$

- Given x, x', evaluating $p_{\theta}(x)$ or $p_{\theta}(x')$ requires Z_{θ} .
- However, their **ratio** does not depend on Z_{θ} :

$$\frac{p_{\theta}(x)}{p_{\theta}(x')} = \exp\left(f_{\theta}(x) - f_{\theta}(x')\right).$$

- This means we can easily check which one is more likely. Applications include:
 - 1. Anomaly Detection.
 - 2. Denoising.

Applications of EBMs



 $Object\ Recognition$

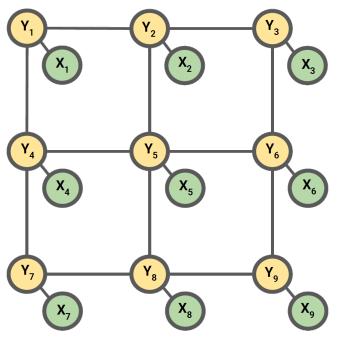
Image Restoration

Given a trained model, many applications require relative comparisons. Hence, Z_{θ} is not needed.

Example: Ising Model

• There is a true image $y \in \{0,1\}^{3\times 3}$, and a corrupted image $x \in \{0,1\}^{3\times 3}$. We know x, and want to somehow recover y.

Markov Random Field (MRF)



 x_i : noisy pixels

 y_i : "true" pixels

Example: Ising Model

• We model the joint distribution p(x,y) as:

$$p(x,y) = \frac{1}{Z} \exp \left(\sum_{i} \psi_i(x_i, y_i) + \sum_{i,j} \psi_{ij}(y_i, y_j) \right).$$

- $\psi_i(x_i, y_i)$: The *i*-th corrupted pixel depends on the *i*-th original pixel.
- $\psi_{ij}(y_i, y_j)$: Neighbouring pixels tend to have the same value.
- How did the original image y look like? <u>Answer:</u> Maximize p(y|x), or, equivalently, maximize p(x,y).

Example: Product of Experts

- Suppose you have trained several models $q_{\theta_1}(x), r_{\theta_2}(x), t_{\theta_3}(x)$. They can be different models (e.g., PixelCNN, Flow, etc.)
- \bullet Each one is like an *expert* that can be used to score how likely an input x is.
- Assuming the experts make their judgement independently, it is tempting to ensemble them as:

$$q_{\theta_1}(x)r_{\theta_2}(x)t_{\theta_3}(x)$$
.

• To get a valid probability distribution, we need to normalize:

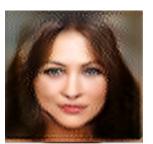
$$p_{\theta_1,\theta_2,\theta_3}(x) = \frac{1}{Z_{\theta_1,\theta_2,\theta_3}} q_{\theta_1}(x) r_{\theta_2}(x) t_{\theta_3}(x).$$

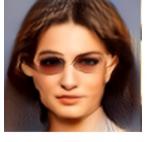
• Node: Similar to an AND operation (e.g., probability is zero as long as one model gives zero probability), unlike mixture models which behave more like OR.

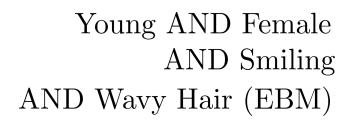
Example: Product of Experts

Image source: Du et al., 2020.

Young (EBM)





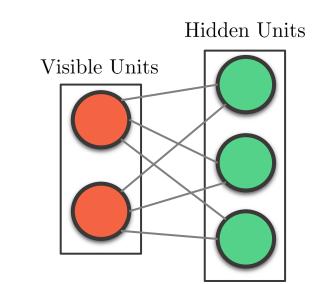


Example: Deep Boltzmann Machines (DBMs)

- RBM: Energy-based model with latent variables.
- Two types of variables:
 - 1. $x \in \{0,1\}^n$ are visible variables (e.g., pixel values).
 - 2. $z \in \{0,1\}^m$ are latent ones.
- The joint distribution is:

$$p_{W,b,c}(x,z) = \frac{1}{Z} \exp\left(x^T W z + b^T x + c^T z\right) = \frac{1}{Z} \exp\left(\sum_{i=1}^n \sum_{j=1}^m x_i z_i w_{ij} + \sum_{i=1}^n b_i x_i + \sum_{j=1}^m c_j z_j\right).$$

• Restricted because there are no visible-visible and hidden-hidden connections, i.e., $x_i x_j$ or $z_i z_j$ terms in the objective.

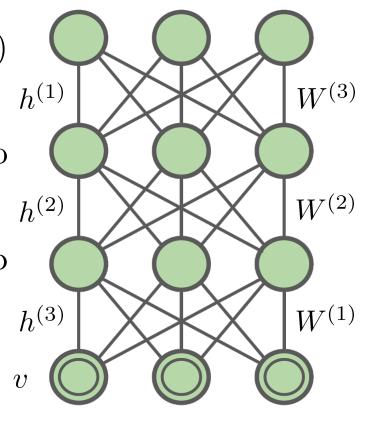


Example: Deep Boltzmann Machines (DBMs)

Stacked RBMs are one of the first deep generative models:

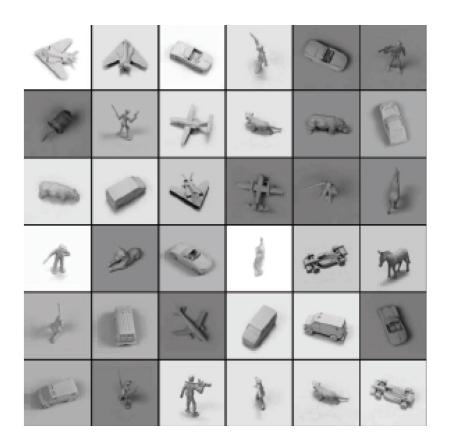
- Bottom layer variables v are pixel values. Layers above (h) represent "higher level" features (e.g., corners, edges, etc.) $h^{(1)}$
- Early deep neural networks for *supervised learning* had to be pre-trained like this to make them work.
- Very similar to deep belief networks (one of the first deep learning models with an effective training algorithm).

Deep Boltzmann Machine



Deep Boltzmann Machines: Samples

Training Samples



Generated Samples

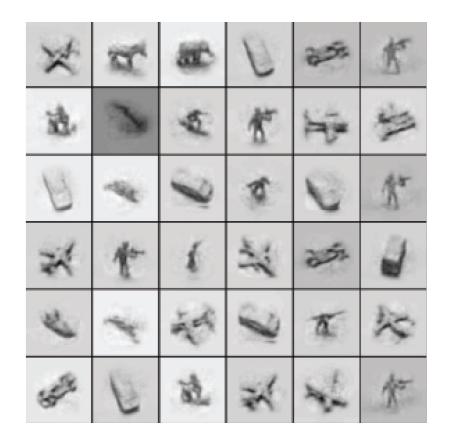


Image source: Salakhutdinov and Hinton, 2009.

Modern EBMs

Langevin sampling

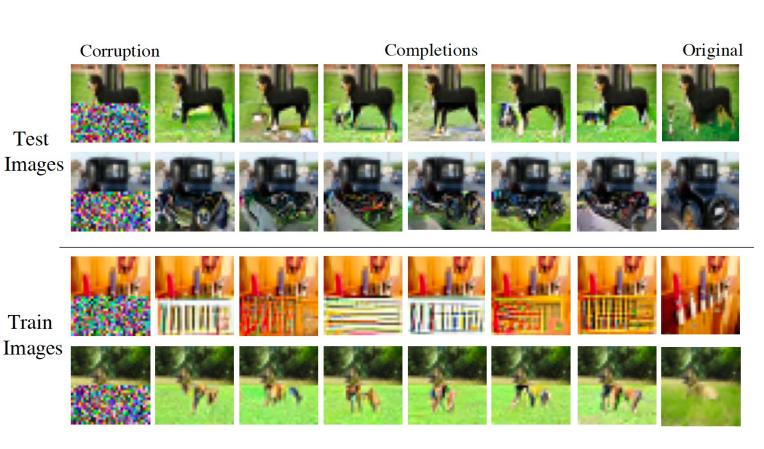
Energy-Based Model", Nijkamp et al. 2019.

Short-Run MCMC Toward

Face samples

Modern EBMs

ImageNet sample generation



Images source: "Implicit Generation and Modeling with Energy-Based Models" Du et al., 2019.

EBMs: Learning and Inference

$$p_{\theta}(x) = \frac{1}{\int \exp(f_{\theta}(x)) dx} \exp(f_{\theta}(x)) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$$

Pros:

1. Can plug in pretty much any function $f_{\theta}(x)$ you want.

Cons (lots of them):

- 1. Sampling is hard.
- 2. Evaluating likelihood (learning) is hard.
- 3. No feature learning.

Curse of Dimensionality: The fundamental issue is that numerically computing Z_{θ} (when no analytic solution is available) scales <u>exponentially</u> in the number of dimensions of x.

Computing the Normalization Constant is Hard

• As an example, the RBM joint distribution is:

$$p_{W,b,c}(x,z) = \frac{1}{Z} \exp\left(x^T W z + b x + c z\right)$$
, where:

- 1. $x \in \{0,1\}^n$ are visible variables (e.g., binary pixel values).
- 2. $z \in \{0,1\}^m$ are latent ones.
- The normalization constant (the "volume") is:

$$Z_{W,b,c} := \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^m} \exp\left(x^T W z + bx + cz\right).$$

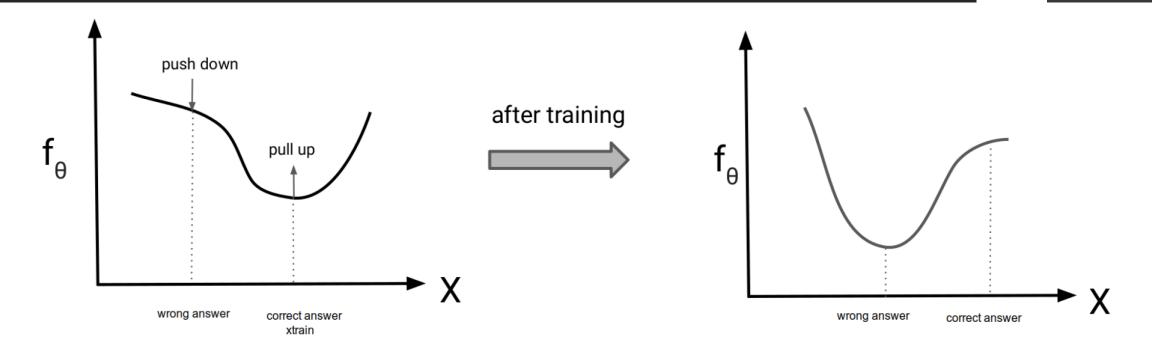
Computing the Normalization Constant is Hard

Joint distribution:
$$p_{W,b,c}(x,z) = \frac{1}{Z} \exp(x^T W z + b^T x + c^T z)$$
.

Volume:
$$Z_{W,b,c} := \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^m} \exp(x^T W z + b^T x + c^T z)$$
.

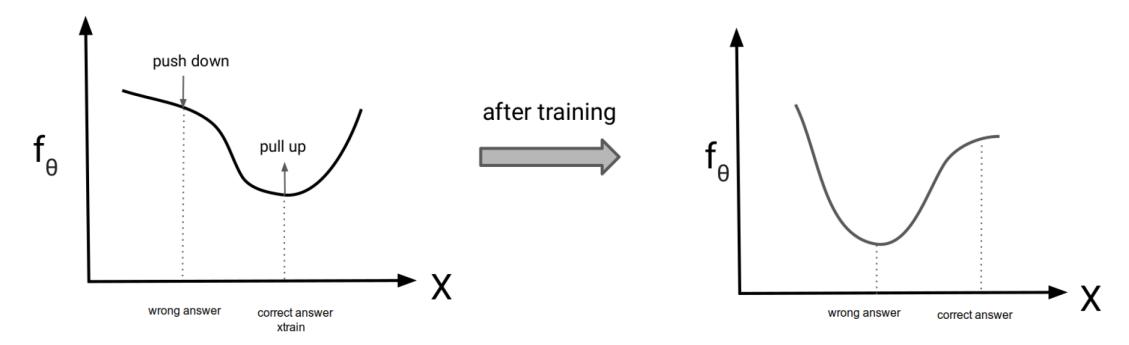
- Note: It is a well-defined function of the parameters W, b, c, but no simple closed form. Takes time, exponential in n, m to compute. This means that evaluating the objective function $p_{W,b,c}(x,z)$ for likelihood-based learning is hard.
- **Observation:** Optimizing the likelihood $p_{W,b,c}(x,z)$ is difficult, but optimizing the unnormalized probability $\exp(x^TWz + b^Tx + c^Tz)$ (w.r.t. trainable parameters W, b, c) is easy.

Training Intuition



- Goal: Maximize $\frac{1}{Z_{\theta}} \exp(f_{\theta}(x_{\text{train}}))$. Increase numerator, decrease denominator.
- Intuition: Because the model is not normalized, increasing the un-normalized log-probability $f_{\theta}(x_{\text{train}})$ by changin θ does **not** guarantee that x_{train} becomes relatively more likely (compared to the rest).
- We also need to take into account the effect on the other "wrong points" and try to "push them down" to also make Z_{θ} small.

Contrastive Divergence



- Goal: Maximize $\frac{1}{Z_{\theta}} \exp(f_{\theta}(x_{\text{train}}))$.
- Idea: Instead of evaluating Z_{θ} exactly, use a Monte Carlo estimate.
- Contrastive Divergence Algorithm: Sample $x_{\text{sample}} \sim p_{\theta}(x)$, take step on $\nabla_{\theta} (f_{\theta}(x_{\text{train}}) f_{\theta}(x_{\text{sample}}))$. Make training data more likely than typical sample from the model.

Contrastive Divergence

• Maximize log-likelihood: $\max_{\theta} f_{\theta}(x_{\text{train}}) - \log Z_{\theta}$ with the log-likelihood gradient being:

$$\nabla_{\theta} f_{\theta}(x_{\text{train}}) - \nabla_{\theta} \log Z_{\theta} = \nabla_{\theta} f_{\theta}(x_{\text{train}}) - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$

$$= \nabla_{\theta} f_{\theta}(x_{\text{train}}) - \frac{1}{Z_{\theta}} \int \nabla_{\theta} \exp\left(f_{\theta}(x)\right) dx$$

$$= \nabla_{\theta} f_{\theta}(x_{\text{train}}) - \int \frac{1}{Z_{\theta}} \exp\left(f_{\theta}(x)\right) \nabla_{\theta} f_{\theta}(x) dx$$

$$= \nabla_{\theta} f_{\theta}(x_{\text{train}}) - \mathbb{E}_{p_{\theta}} \left[\nabla_{\theta} f_{\theta}(x)\right]$$

$$\approx \nabla_{\theta} f_{\theta}(x_{\text{train}}) - \nabla_{\theta} f_{\theta}(x_{\text{sample}}),$$
How to sample?

• How to sample?

where
$$x_{\text{sample}} \sim p_{\theta}(x) := \frac{1}{Z_{\theta}} \exp(f_{\theta}(x))$$
.

 \rightarrow Works in theory, but can take

a very long time to converge.

Sampling from an EBM

- No direct way to sample like in autoregressive or flow models. Main issue: Cannot easily compute how likely each possible sample it. $p_{\theta}(x) = \frac{1}{Z_{\theta}} \exp(f_{\theta}(x)).$
- However, we can easily compare two samples x, x'.
- Use an iterative approach called Markov Chain Monte Carlo (MCMC):
 - 1. Initialize $x^{(0)}$ randomly, t = 0.
 - 2. Let $x' = x^{(t)} + \text{noise}$.
 - 2.1. If $f_{\theta}(x') > f_{\theta}(x^{(t)})$, let $x^{(t+1)} = x'$.
 - 2.2. Else, let $x^{(t+1)} = x'$ with probability $\exp(f_{\theta}(x') f_{\theta}(x^{(t)}))$.
 - 3. Go to step 2.

Sampling from an EBM

- For any continuous distribution $p_{\theta}(x)$, suppose we can compute its gradient, i.e., the score function, $\nabla_x \log p_{\theta}(x)$.
- Let $\pi(x)$ be a prior distribution that is easy to sample from.
- Langevin MCMC:
 - 1. $x^{(0)} \sim \pi(x)$.
 - 2. Repeat $x^{(t+1)} \sim x^{(t)} + \epsilon \nabla_x \log p_{\theta}(x^{(t)}) + \sqrt{2\epsilon}z^{(t)}$, for t = 0, 1, ..., T 1, where $z^{(t)} \sim \mathcal{N}(0, I)$.
 - 3. If $\epsilon \to 0$ and $T \to \infty$, we have $x_T \sim p_{\theta}(x)$.
- Note that for energy-based models: $\nabla_x \log p_{\theta}(x) = \nabla_x f_{\theta}(x) \underbrace{\nabla_x \log Z_{\theta}}_{=0} = \nabla_x f_{\theta}(x)$.

References

- 1. Probabilistic Machine Learning: Advanced Topics (*Chapter 23*) Kevin P Murphy, The MIT Press (2023)
- 2. How to Train Your Energy-Based Models https://arxiv.org/pdf/2101.03288.pdf
- 3. https://github.com/yataobian/awesome-ebm
- 4. Statistical exponential families: A digest with flash cards, Nielsen & Garcia, https://arxiv.org/pdf/0911.4863.pdf

Introduction to Deep Generative Modeling

Lecture #11

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis