Introduction to Deep

. . L #11
Generative Modeling | "¢

HY-673 — Computer Science Dep., University of Crete
Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Lecture #11

Taxonomy of GMs

g N

Exact ~ Approximate ; Implicit

X » M x 0w

ARMs Flows VAEs DPMs GANSs GGFs
(R)NADE Planar Vanilla Belief nets diffusion Vanilla KALE
WaveNet Coupling B-VAE Boltzmann denoising WGAN Lipschitz-reg.
WaveRNN MAFs/IAFs VQ-VAE machines score f-GAN

(f,T)-GAN

Lecture #11

Po) 0c M

d&PdafB&?

Pdata

Model Family

e Autoregressive models: pp(x1,z2,...,2,) = [[;_; po(zi|T<s).

e Normalizing flow models: po(x) = p(z)|detJy, |, where z = fy(x).

e Variational autoencoders: pg(x) = [p(z)pe(x|z)dz

Cons: Model architectures are restricted.

Today’s Lecture

0c M

Model Family

e Fnergy-Based Models (EBMs):

— Very flexible model architectures.
— Stable training.
— Relatively high sample quality.

— Flexible composition.

Parametrizing Probability Distributions

Probability distributions p(x) are a key building block in generative modeling.
Basic requirements:

1. non-negative: p(z) > 0.

2. sum-to-one: Y p(x) =1, or [, p(x)dx =1 for continuous variables.

Coming up with a non-negative function pg(x) is not hard. Given any funtion fy(x),
we can choose:

o go(x) = fo(x)° * go(x) = |fo(x)|

* go(x) = exp (fo(x)) * go(x) = log((1 +exp (fo(x)))

Parametrizing Probability Distributions jl tece#u

Probability distributions p(x) are a key building block in generative modeling.
Basic requirements:

1. non-negative: p(x) > 0.

2. sum-to-one: »_ p(z) =1, or [, p(x)dr =1 for continuous variables.

o Sum-to-one is key: Total “volume” is fixed: Increasing p(x;) guarantees that
x; becomes relatively more likely compared to the rest.

Problem:
e go(x) is easy, but gg(x) might not sum to one.

. e Zy =) gop(xr) # 1 in general, so gg(z) is not a valid
PMF or PDF.

Lecture #11

Parametrizing Probability Distributions

Problem: gy(x) > 0 is easy, but gg(x) might not be normalized.

Solution: py(x) = Volun}le(gg)ge () = Z@ = 90(x), [po(z

— by definition: [pp(x)dx = 1.

Example: Choose gg(x) so that we know the volume analytically as a function of 6:

_ (z—p)? <w u)2

1. g(u0)(x) =€ 2:2, volume: fjoo dr = V2mo? — Gaussian.

2. gr(z) = e *, volume: f0+oo e **dx = 5+ — Exponential.

Parametrizing Probability Distributions

Problem: gy(x) > 0 is easy, but gg(x) might not be normalized.

Solution: py(x) = Volun}le(gg)ge () = Ze = 90(x), [po(z

3. go(z) = exp (67t(2)) h(z), volume: exp (A(F)), where
A(0) :=log [exp (6*t(z)) h(z)dz — Exponential family of distributions.

- Normal, Poisson, exponential
- Bernoulli, Beta, Gamma, Dirichlet, Wishart, etc.

Function gy(x) needs to allow analytical integration.
Despite being restrictive, they are useful as building blocks for more complex distributions.

Parametrizing Probability Distributions

Problem: gy(x) > 0 is easy, but gg(x) might not be normalized.

1

Solution: py(z) = yormer,y90 (%) = Ze = 90(x), [po(z

Typically, choose gg(x) so that we know the volume analytically.
More complex models can be obtained by combining these building blocks:

1. Autoregressive: Products of normalized objects pg(z)pg (y) :

/m/ype(at)pef(y)dxdy = /xpe(x)/ype'(y)dydaz — /xpe(x)dqj 1

- g

T

=1

Parametrizing Probability Distributions

Lecture #11

Problem: gy(x) > 0 is easy, but gg(x) might not be normalized.

Solution: py(x) = Volun}le(gg)ge () = Z@ = 90(x), [po(z

2. Latent Variables: Mixtures of normalized objects apg(x) + (1 — a)pg (X):

/ong(a:) + (1 —a)pgrdr=a+ (1 —a)=1.

How about using models where the “volume” /normalization constant of gg(x) is not easy
to compute analytically?

Lecture #11

Energy-Based Model

1 1

= Texp Go@)) de P Vo)) =z o fole)).

Definition: py(x)

e The volume/normalization constant Zy = [exp((fo(z)) dx, is also called the partition
function.

e Why exponential (and not, e.g., fo(x)?)?

1. Want to capture very large variations in probability. Log-probability is the natural scale we want to
work with. Otherwise, need highly non-smooth fy.

2. Many common distributions can be written in the exponential family form.

3. These distributions arise under fairly general assumptions in statistical physics (maximum entropy,
second law of thermodynamics).

- —fo(x) is called the energy, hence the name.
- Intuitively, configurations x with low energy (high fy(x)) are more likely.

Lecture #11

Energy-Based Model

~ [exp (fle(x)) dr (fol)) = 7 P (fo(2))

Definition: py(x)

Pros:

1. Extreme flexibility: Can use pretty much any fy(x) you want.

Cons:

1. Sampling from pg(x) is hard.
2. Evaluation and optimizing likelihood pgy(x) is hard (learning is hard).

3. No feature learning (but can add latent variables).

Curse of Dimensionality: The fundamental issue is that numerically computing Zy (when
no analytic solution is available) scales exponentially in the number of dimensions of x.

Nevertheless, some tasks do not require knowing Zj.

Applications of EBMs

1 1

= Texp Go@)) de P Vo)) =z o fole)).

Definition: py(x)

e Given z, x’, evaluating pg(x) or pg(x’) requires Zy.

e However, their ratio does not depend on Zy:

Do) — exp (fola) ~ fola))

e This means we can easily check which one is more likely. Applications include:

1. Anomaly Detection.
2. Denoising.

Applications of EBMs

cat “class” noun

Sequence Labeling

Object Recognition Image Restoration

Given a trained model, many applications require relative comparisons. Hence, Zy is not needed.

Example: Ising Model

}3x3

e There is a true image y € {0,1 , and a corrupted image z € {0,1}°%3. We know

x, and want to somehow recover y.
Markov Random Field (MRF)

(v
G\i (- i ¢
G\ D) x;: noisy pixels

y;: “true” pixels

e
i)
Q)G:)

r
P

d
2)

(&

Example: Ising Model

e We model the joint distribution p(zx,y) as:

7 1,9

— ;(x;,y;): The i-th corrupted pixel depends on the i-th original pixel.
— i (yi,y;): Neighbouring pixels tend to have the same value.

e How did the original image y look like?
Answer: Maximize p(y|x), or, equivalently, maximize p(z,y).

Example: Product of Experts

e Suppose you have trained several models gy, (x),79,(x), ts,(x). They can be different models
(e.g., Pixel CNN, Flow, etc.)

e [ach one is like an expert that can be used to score how likely an input x is.

e Assuming the experts make their judgement independently, it is tempting to ensemble them

as: qo, ()T, (x)te, ().

e To get a valid probability distribution, we need to normalize:

1

— 7 q9, (513)7”92 (Qf)teS (ZE)
01,02,03

P61,02,03 (33)

e Node: Similar to an AND operation (e.g., probability is zero as long as one model gives zero
probability), unlike mixture models which behave more like OR.

Image source:
Du et al., 2020.

Young AND Female (EBM)

Young AND Female
AND Smiling (EBM)

Young AND Female
AND Smiling

AND Wavy Hair (EBM)

Example: Deep Boltzmann Machines

Lecture #11

(DBMSs)

e RBM: Energy-based model with latent variables.

Hidden Units
e Two types of variables: Visible Units Q
R

1. x € {0,1}" are visible variables (e.g., pixel values). ‘

2. z € {0,1}™ are latent ones. iﬂ
e The joint distribution is: ‘\D

1
Pwbelx,2) = - ©XP (:UTWZ +ble 4+t z = — exp Z Z T;2iW;5 + Z b;x; + Z C;%;

1=1 j=1

e Restricted because there are no visible-visible and hidden-hidden connections, i.e., x;z; or
2;%; terms in the objective.

Example: Deep Boltzmann Machines

Lecture #11

(DBMSs)

Stacked RBMs are one of the first deep generative models: ~ Deep Boltzmann Machine

e Bottom layer variables v are pixel values. Layers above (h)
represent “higher level” features (e.g., corners, edges, etc.) 1)

e Early deep neural networks for supervised learning had to C
be pre-trained like this to make them work. 1 (2)

e Very similar to deep belief networks (one of the first deep C

learning models with an effective training algorithm). 1 (3)

Deep Boltzmann Machines: Samples

Training Samples Generated Samples
X &\ (&= §
LU lw (N g |C|F
A | 1N ¢
LSRR IR A=
T ARVHR N LSRN

Image source: Salakhutdinov and Hinton, 2009.

Modern EBMs
) @
8

Images source: “Learning
Non-Convergent Non-Persistent
Short-Run MCMC Toward
Energy-Based Model”,
Nijkamp et al. 2019.

Face samples

Lecture #11

Modern EBMs

ImageNet sample generation

Corruption Completlons Or1 ginal

muan. !&' . %" ’ l{m
.“;"-‘;"v-i: 1: BRNEE === /1 11d e
i

Images source: “Implicit Generation and Modeling
with Energy-Based Models” Du et al., 2019.

EBMs: Learning and Inference

1 1

po(x) = Texp (fo(a)) dz P (fo(z)) = 7, &P (fo(x)) -

Pros:

1. Can plug in pretty much any function fy(x) you want.

Cons (lots of them):
1. Sampling is hard.
2. Evaluating likelihood (learning) is hard.

3. No feature learning.

Curse of Dimensionality: The fundamental issue is that numerically computing Zj
(when no analytic solution is available) scales exponentially in the number of dimensions
of x.

Computing the Normalization

Lecture #11

Constant is Hard

e As an example, the RBM joint distribution is:

1
pW,b,c(:U, z) = - exp (QZTWZ + bx + cz) , Where :

1. x € {0,1}" are visible variables (e.g., binary pixel values).

2. z €{0,1}™ are latent ones.

e The normalization constant (the “volume”) is:

LWbe = Z Z exp (:BTWZ + b + cz) .
re{0,1}™ z€{0,1}™

Computing the Normalization

Lecture #11

Constant is Hard

1
Joint distribution : pywp (2, 2) = - €Xp (xTWz + bz + CTZ) .

Volume : Zwyp . = Z Z exp (.CCTWZ + bl + cTz) .
x€{0,1}™ 2€{0,1}™

e Note: It is a well-defined function of the parameters W, b, c, but no simple closed
form. Takes time, exponential in n,m to compute. This means that evaluating the
objective function pw . (x, 2) for likelihood-based learning is hard.

e Observation: Optimizing the likelihood pyw 4 .(x, 2) is difficult, but optimizing the un-
normalized probability exp (z? Wz + bz + ¢!'z) (w.r.t. trainable parameters W, b, c)
1S easy.

Lecture #11

Training Intuition

push down

after training

| > fe

wrong answer correct answer wrong answer correct answer X
xtrain

e Goal: Maximize ZLQ exp (fo(Ztrain)). Increase numerator, decrease denominator.

e Intuition: Because the model is not normalized, increasing the un-normalized log-probability fg(Ztrain)
by changin 6 does not guarantee that x;,i, becomes relatively more likely (compared to the rest).

e We also need to take into account the effect on the other “wrong points” and try to “push them down”
to also make Zy small.

Lecture #11

Contrastive Divergence

push down

after training

| > fe

wrong answer correct answer wrong answer correct answer X
xtrain

e Goal: Maximize ZLO exp (fo(Tirain))-

e Idea: Instead of evaluating Zy exactly, use a Monte Carlo estimate.
e Contrastive Divergence Algorithm: Sample Zgample ~ po(x), take step on

Vo (fo(Ztrain) — fo(Tsample)). Make training data more likely than typical sample
from the model.

Contrastive Divergence

e Maximize log-likelihood: maxy fg(Zirain) — log Zp with the log-likelihood gradient being:

Vo fo(Ttrain) — Vo log Zo = Vo fo(Tirain) — Z_QVHZG
= Vo fo(Ttrain) — Zig /Ve exp (fo()) dx
= Vafa(aian) ~ [5 e (fo(a)) Vofo(a)do

= Vo /g (xtrain) — Ky, [Vefe (x)]

~ V@f& (xtrain) — V@f@ (xsample)a

1
e How to sample? where Zgample ~ Po(T) 1= 7 exp (fo(x)) .

Sampling from an EBM

e No direct way to sample like in autoregressive or flow models. Main issue: Cannot
easily compute how likely each possible sample it. 1

e However, we can easily compare two samples x, x’. Zg

e Use an iterative approach called Markov Chain Monte Carlo (MCMC):

1. Initialize £(?) randomly, ¢t = 0.

2. Let 2’ = () 4+ noise. — Works in the.ory, but can take
a very long time to converge.

2.1. If fo(2') > fo (z\V), let (D) = o/,
2.2. Else, let z(tD) = 2/ with probability exp (fo(x") — fo (x(t))).

3. Go to step 2.

Sampling from an EBM

e For any continuous distribution pg(x), suppose we can compute its gradient, i.e., the
score function, V logpg(z).

e Let w(x) be a prior distribution that is easy to sample from.

e Langevin MCMC:
1. 209 ~ ().

2. Repeat (D ~ 2(0) + eV, logpg(x®)) + v/2e2®), for t =0,1,...,T — 1,
where z() ~ N(0,).

3. If e » 0 and T — oo, we have xp ~ pg(x).

e Note that for energy-based models: V. logpg(x) = Vi fo(z) — Vi log Zg = Vi fo(x).
~0

References

1. Probabilistic Machine Learning: Advanced Topics (Chapter 23)
Kevin P Murphy, The MIT Press (2023)

2. How to Train Your Energy-Based Models
https://arxiv.org/pdf/2101.03288.pdf

3. https://github.com/yataobian/awesome-ebm

4. Statistical exponential families: A digest with flash cards, Nielsen & Gar-
cia, https://arxiv.org/pdf/0911.4863.pdf

Introduction to Deep

. . L #11
Generative Modeling | "€

HY-673 — Computer Science Dep., University of Crete
Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

