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Taxonomy of GMs
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Recap: Latent Variable Models

e Latent Variable Models:

— Allow us to define complex models pg(x) in terms of simple building
blocks pg(x|2).

— Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, feature disentanglement, etc.).

— No free lunch: Much more difficult to learn compared to fully ob-
served autoregressive models.



Recap: Variational Inference
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o Key idea in variatioanl inference. approximate the intractable posterior
with a (parametric) inference model:

qy(z|x) =~ po(2|7)
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Recap: A Concrete VAE
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Recap: ELBO

e Evidence or the (marginal) likelihood for a single data x equals to

ST
— Loo(2) (ELBO) = Dier(q(2]2) po(zlx)

o Since Dgr(qe(z|z)||pe(z|z)) > 0, it holds that

|log po(7) > Lo.4(a)]
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Recap: ELBO
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The better q4(z|z) can approximate the posterior py(z|z), the smaller Dg 1, (qs(2|2)||pe(2|2))
we can achieve, thus, the closer ELBO will be to logpg(z).
Next: Jointly optimizer over 6 and ¢ to maximize the ELBO over a dataset.



Amortized Variational Inference

Maximize ELBO w.r.t. both 6 and ¢:

max Z Lo o ().

x; €D

Amortization: When we learn a single parametric function f; that
maps each x to a set of (good) parameters for the approximate posterior
distribution.



Rewriting ELBO

e ELBO is rewritten as

po(x, 2) pe(z)
Lop(x) =K, 21z [log ] =E, (212) logpe(x|2)| +E, . (212 [log ]
negative likelihood = —Dxrr(qs(2|x)||lpo(2))

(reconstruction error) (regularization term)

o There are cases where Dg 1 (qs(2|2)||pa(2)) can be computed
analytically (i.e., Gaussians).



ELBO as Kullback-Leibler Divergence (KLD)

ap,4(%,2) = qp(X) qe(z[x)

Marginal: qe(z)

Encoder: qq(z|x)
0"

Data distribution: qp(x)

z-space

X-space

pe(x,z) = pe(z) pe(x|z)

Prior distribution: pe(z)

3

Decoder: pe(x|2z)

Marginal: pe(x)

ML objective = - Dxki( qp(x) || pe(x) )
ELBO objective = - Dki( qp¢(x,2) || pe(x,z) )
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e ELBO can be written as the KL divergence
between the joint distributions plus a cosntant.

e Racall likelihood maximization is
equivalent to KL divergence minimization.

e ELBO can be viewed as a maximum
likelihood objective in an augmented space.



Recap: Reparametrization Trick

e Want to compute a gradient with respect to ¢ of:

e Suppose qy(z|z) =N (u¢(x), diag(aq%(:c))) is a Gaussian with pg(x),04(x) be neural
nets. It holds:

Eq¢(z|az) [f(Z)] — IEefvp(e) [f(g(ev ¢7 ZIZ))] = /f(,Lqu(ZE) + O'(b(CL')E)p(G)dG

e Thus, the gradient w.r.t. ¢ becomes

VB, (z1o) [ (2)] = VeEpe) [f(9(€,0,2))] = Epe) Vo f(g(e, ¢, )] = Vi f(g(€i, ¢, 24))



Recap: Reparametrization Trick

Original form Reparametrized form

z ~ pg(z|x)

Stochastic node




A Concrete VAE

1. Prior distribution is isotropic/spherical Gaussian (independent of 6):

p(z) = N(0,1).

2. Stochastic decoder is Gaussian:
po(zlz) =N (,ug(z),diag(ag(z))) where ug(z),09(2) are the outputs of a

neural network.
3. Stochastic encoder (i.e., inference or recognition model) is Gaussian:

qs(z|lx) =N (,t%(x), diag(aé(az))) where p4(z),04(x) are also the outputs
of a neural network.



A Concrete VAE — ELBO statistical (i.e.,
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Monte Carlo) approximation

Computation of unbiased estimate of single-datapoint (x) ELBO

(i, log(o)) <— EncoderNNy(x)

€ ~ N(O, Id/)

z2=€@Q0+ U

wo(ele) & =3 2 (27 + log(2m) + log(oy))

d/
Lpy(z) —% >oiy (27 + log(2m))

= W=

Loo(xle) & —2 o0 (i — 71)? /57 + log(27) + log(5,))
L= Lpy(z) + Lpg(x]2) = Lgy(2]2)

© N o o



Another Concrete VAE

1. Prior distribution is isotropic/spherical Gaussian (independent of 6):

p(z) = N(0,1).

2. Stochastic decoder is factorized Bernoulli:
po(x|2) = B (rg(z)) where r4(2) € [0,1]% is the output of a neural network.

3. Stochastic encoder (i.e., inference or recognition model) is Gaussian:
qs(z|lx) =N (/L¢(x), diag(afb(z))) where py(x), 04(x) are also the outputs

of a neural network.



A Concrete VAE — ELBO statistical (i.e.,
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Monte Carlo) approximation

Computation of unbiased estimate of single-datapoint ELBO
(i, log(o)) < EncoderNNy(x)

€~ N(O, Id’)

z=€©O0o+ U

Loy(ela) & =3 2ien (27 + log(2m) + log (o))

d/
Lpg(z) ¢ —3 2o (27 +1og(2m))
r <— DecoderNNy(2)

Loo(ale) & Sy (zilog(r;) + (1 — x;) log(1 — 7))
L Lpy(z) + Lpy(alz) = Lag(2]x)

= L =

© N o o



Four Points for Intervention

We can design:

1. The prior distribution, pg(z),
2. The conditional (likelihood), pg(x|2),
3. The approximate posterior, g,(z|x) and

4. The “loss” tunction, —L.



Changing the prior distribution

We can choose py(z) between

e Fully Gaussian X0 A=K J
< = (L O) Lmask + d1ag(0)) €+ W /
e Various normalizing flows ; I
— Planar flows
Inference network Generative model

— Inverse autoregressive flows (IAF's)

Common property: They have an analytic (i.e., tractable) probability density
function.




Changing the Prior Distribution

e Till now, we have discussed only for continuous latent variables.
e However, discrete latent variables are also important (e.g., GMMs).
e Three popular solutions are:

— VQ-VAE: Neural Discrete Representation Learning, Oord et al.

— The Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables, Maddison et al.

— Categorical Reparameterization with Gumbel-Softmax, Jang et al.



Changing the “Loss”

e An attractive property of VAEs is that they are capable of constructing
independent features.

— Also known as
disentagled

representations. Smile feature:

from neutral to
happy to sad

e Are there systematic ways to guide the training towards constructing in-
depedent features?



Changing the “Loss”

e $5-VAE puts more weight to the regularization term of ELBO

Ly (@) = Eq, (212) log po(]2)] — BDx1.(qs(2|2)||po(2))

e InfoVAE additionally tries to maximize the Mutual Information between
the data r and the latent variable z.

Lo,y =By, (20) logpo(2]2)] — BDrL(q4(2|)||po(2))+aZ(z, 2)



Changing the “Loss”

3-VAE
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VAE-Generated Images are Blurry

e One possible explanation is that we perform maximization of the ELBO
and not of the log-likelihood.

— ELBQO’s gap is large.

e Blurriness can be alleviated to some degree by choosing a sufficiently flex-
ible inference model (i.e., encoder) and/or a sufficiently flexible generative
model (i.e., decoder).



Posterior Collapse

e Posterior collapse or variational overpruning may occur due to:
Sufficiently powerful decoders which ignore latent codes due to the tradeoft
between recostruction error and KL prior penalty minimization (Bowman

et al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018).

e Sufficiently powerful decoders means that

30" such that pg«(x|z) = pg(x)

e Some proposed solutions:
— 0-VAE (6 adjusts the prior’s parameters).
— Free bits (guarantees a minimum KL prior penalty).

— Adding skip connections.



Selected Applications of VAEs

1. Multi-modal VAE (both x; and x2 are generated from z).

2. VAE with missing data.
3. Hierarchical VAE (z has an hierarchical structure).
4. VQ-VAE-2: Generates large-scale, diverse and high-fidelity images.

5. VAEs with sequential encoders/decoders for text generation, sketch draw-
ing, molecular design, etc.

6. 0-VAE for disentangled latent feature construction in underwater source
localization.



Learning Deep Generative Models ecture #10

Dog
Running

Alice Frisbee Bob

Grass

e This scheme works well if Ey (. |,) [logp(z|2;0)] is large.

o The term Dxkr, (g4(2|x)||p(2)) forces the distribution over messages to have a specific
shape p(z). If Bob knows p(z), then he can generate realistic messages Z ~ p(z) and
the corresponding image, as if he had received them from Alice!
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Summary of VAEs

1. Combine two relatively simple models to get a more flexible one: pg(x) =
[ po(x, z)dz.

2. Directed model permits ancestral sampling (efficient generation): z ~
po(2), x ~ po(z|2).

3. However, log-likelihood is generally intractable, hence learning is difficult.

4. Joint learning of a model # and an amortized inference component ¢ to
achive tractability via ELBO optimization.

5. Latent representations for any = can be inferred via ¢4 (z|z).

6. Latent representations may reveal high-level controllable features of the
data.

7. Some issues with the quality of the generated samples as well as with
posterior collapse exist.



Research Directions

2

(2

KL (Q¢(2|z), Py(z|x))

Improving variational learning via:
1. Better optimization techniques.
2. More expressive techniques.

3. Alternate loss functions.
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Model Families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ...)
e Scalability: Efficient learning and inference on massive datasets.

e Regularization effect: Because of joint training, it also implicitly regularizes the model 6
(Shu et al., 2018)..

Augmenting variational posteriors:

e Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC (Salimans et
al., 2015, Hoffman, 2017, Levy at al., 2018), Sequential Monte Carlo (Maddison et al.,
2017, Le et al., 2018, Naesseth et al., 2018), Rejection Sampling (Grover et al., 2018).

e Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016).



Model Families - Decoder

e Powerful Decoders p(x|z;60) such as DRAW (Gregor et al., 2015), PixelCNN (Gulrajani
et al., 2016).

e Parametrized, learned priors p(z;60) (Nalusnich et al., 2016, Tomczak & Welling, 2018,
Graves et al., 2018).
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Variational Objectives & References

Tighter ELBO does not imply:
e Better samples: Sample quality and likelihoods are uncorrelated (Theis et al., 2016).

e Informative latent codes: Powertul decoders can ignore latent codes due to tradeoff in

minimizing recostruction error vs. KL prior penaly (Bowman et al., 2015, Chen et al.,
2016, Zhao et al., 2017, Alemi et al., 2018).

Alternatives to KL divergence:
e Renyi’s alpha-divergences (Li & Turner, 2016).

e Integral probability metrics, such as, maximum mean discrepancy, Wasserstein distance
(Dziugaite et al., 2015; Zhao et. al 2017; Tolstikhin et al., 2018).

References: https://deepgenerativemodels.github.io
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