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Taxonomy of GMs
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Latent Variable Models: Motivation Lecture #9

e Lots of variability in images x due to gender, eye color, hair color, pose,

etc. However, unless images are annotated, these factors of variation are
not explicitly available (latent).

e Idea: Explicitly model these factors using latent variables z.



Latent Variable Models: Motivation

1. Only variable x is observed (pixel values).

2. Latent variable z correspond to high level features.

e If 2 is chosen properly, p(x|z) could be much simpler than p(x).

e If we had trained this model, then we could identify features via
p(z|x), e.g., p(EyeColor = Blue|x).

3. Challenge: Very difficult to specity these conditionals by hand.



Latent Variable Models: Motivation
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Deep Latent Variable Models

e Use neural networks to model the conditionals (deep latent variable mod-
els):
1. z~N(0,1)
2. p(x|z) = N (ug(2),X9(2)) where g, Xy are the output of a neural

network

e Hope that after training, z will correspond to meaningful latent factors of
variation (features).
— A type of Unsuperuvised representation learning.

e Features can be computed via p(z|x).



Deep Latent Variable Models




Mixture of Gaussians: A Shallow
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Latent Variable Model
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e Clustering: Posterior p(z|x) identifies mixture component.

e Unsupervised learning: Hope to learn from unlabeled data (ill-posed).



Till now...

e [Latent Variable Models:

— Allow us to define complex models p(x) in terms of simpler building
blocks p(x|z).

— Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)

— No free lunch: much more difficult to learn compared to fully ob-
served, autoregressive models.



Variational Autoencoder (VAE)
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Variational Autoencoder (VAE)

® po(x,2) =pe(x|2)pe(z): joint generative distribution.

— pg(2): prior distribution.

— py(x|2): likelihood of the (stochastic) decoder.

o py(x,2) = py(z|x)pe(z) where

— po(x): marginal likelihood or model evidence.

— pg(z|x): posterior distribution.



Variational Autoencoder (VAE)

By design:

e It is easy to sample from py(x, z) = po(z|2)pe(2).

e Marginal pg(z) = [ po(x, z)dz is very complex/flexible and unfortunately
intractable.

— If both py(z) and py(x|z) are Guassians then py(x) is an infinite
mixture of Gaussians.

e Consequently, the posterior distribution pg(z|z) is also intractable.

e Our alm is:

[po(2) = pa(z))




Variational Inference

e Key idea of variatioanl inference: approximate the intractable posterior
with a (parametric) inference model.

o Mathematically, we introduce g4(z|x) such that
G (2|) = po(2|z)

e Why is called variational?
Simply because we optimize w.r.t. a function (of z conditioned on ).



Variational Inference
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A Concrete VAE

1. Prior distribution is isotropic/spherical Gaussian:

p(z) =N(0,1).

2. Stochastic decoder is Gaussian:
po(x|z) = N (ug(2),diag(og(z))) where ug, og are neural networks.

3. Stochastic encoder (i.e., inference or recognition model) is Gaussian:
qo(z|z) = N (g (x),diag(os(z))) where pg, o4 are also neural networks.
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A Concrete VAE
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e VAE resembles an autoencoder when dim(z) < dim(x).



How to train a VAE model?

We will emlpoy two tricks:

1. Approximate the model evidence with a lower bound called ELBO (from
Evidence Lower BOund) and maximize ELBO instead of the evidence.

2. Reparametrization trick for efficient gradient estimation.



The Evidence Lower Bound (ELBO)

e Evidence or the (marginal) likelihood for a single data = equals to

B )]
= Log(x) (FLBO) = Dycp(ag(2l)Ipo(2]2)

o Since Dgr(qe(2|x)||pe(2]z)) > 0, it holds that

[10gp0($) > Ee,qs(fﬂ)]
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The Evidence Lower Bound (ELBO)

D1 (q4(z|x), po(z|x))

*
A J
-

log pe(x)
ELBO

log-likelihood estimate

¢

The better q4(z|z) can approximate the posterior py(z|z), the smaller Dg 1, (qs(2|2)||pe(2|2))
we can achieve, thus, the closer ELBO will be to log pg(x).
Next: Jointly optimizer over 6 and ¢ to maximize the ELBO over a dataset.



ELBO Derivation — To Be Filled

e Evidence or the (marginal) likelihood for a single data x equals to

po(x, 2) qe(z|)
logpe(x) =K, (.14 [lo } FIE, (1 [log
g po(x) e (z|x) | 108 qcp(Z’CL‘) q¢ (2]) po(z|z)
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= Lg,¢(x) (ELBO) = Dk r(qe(z[2)||pe(z|x))

o Since Dgr(qe(z|z)||pe(z|z)) > 0, it holds that

[10g290(513) > ﬁe,gb(fﬂ)]




ELBO Applied to the Entire Dataset

e ELBO holds for any g4 (2|z):

log po () = Lo,¢(T).

e Maximum likelihood learning (over the entire dataset):

= > logpy () > Y Lo ()
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Gradient Estimation
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e Recall

Lo(r) = Eqy(z)2) [bg } =y, (2]a) log pe(, 2)] — Eq,(z)2) log g4 (2|)]

e The gradient with respect to 6 (easy):

VoLlyg(r) =Eq, (212) Vo logpa(x,2)] = Vg logpg(zs, 2;)

e The gradient with respect to ¢ requires a trick: 2 ~ q¢(2|%;)



Reparametrization Trick

e Want to compute a gradient with respect to ¢

Eqy(zla) LS /f 2)q¢(z|x)dz

e Suppose q4(z|z) =N (u¢(m), diag(ai(z))) is a Gaussian with pg(x),04(z) be neural
nets. These are equivalent ways of sampling:
— Sample z ~ g4 (2|x).
— Sample € ~ N (0, 1) =: p(e), 2 = pg(x) + op(x)e = gg(€, ).

e Therefore:

By el (2)) = Eepio F(gs(ec0))] i= [ Flal@) + ou(a)elpe)de.



Reparametrization Trick
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Reparametrization Trick in VAESs

e Thus, the gradient w.r.t. ¢ becomes

VoEq,(z1)[f(2)] = VoEp(e) [f(9(€,0,2))] = Ep(e) [Vo f(g(€; ¢, 7)) = Vg fg(€is ¢, 24))-

— Easy to estimate Monte Carlo if f and ¢ are differentiable w.r.t. ¢
and € is easy to sample from.

e In VAEs
f(g(ea ¢7 .CC)) — lngg(CU, Z) _ log ng(Z‘Q?).



VAE’s Training Algorithm

Data:
D: Dataset
¢4 (z|x): Inference model
pe(X,z): Generative model
Result:
0, ¢: Learned parameters

(0, @) < Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)

e ~ p(e) (Random noise for every datapoint in M)
Compute /39,4,(./\/1, €) and its gradients Vg,(ng’qb(M, €)
Update 0 and ¢ using SGD optimizer

end




Summary on Latent Variable Models

e Latent Variable Models Pros:

— Easy to build flexible models.
— Suitable for unsupervised learning.

e Latent Variable Models Cons:

— Hard to evaluate likelihoods.
— Hard to train via maximum-likelihood.

— Fundamentally, the challenge is that posterior distribution pg(z|z) is
hard. Typically requires variational approximations.
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