Introduction to Deep Generative Modeling

Lecture #9

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

Latent Variable Models: Motivation

- Lots of variability in images x due to gender, eye color, hair color, pose, etc. However, unless images are annotated, these factors of variation are not explicitly available (latent).
- Idea: Explicitly model these factors using latent variables z.

Latent Variable Models: Motivation

- 1. Only variable x is observed (pixel values).
- 2. Latent variable z correspond to high level features.
 - If z is chosen properly, p(x|z) could be much simpler than p(x).
 - If we had trained this model, then we could identify features via p(z|x), e.g., p(EyeColor = Blue|x).
- 3. Challenge: Very difficult to specify these conditionals by hand.

Latent Variable Models: Motivation

Deep Latent Variable Models

- Use neural networks to model the conditionals (deep latent variable models):
 - 1. $z \sim \mathcal{N}(0, I)$
 - 2. $p(x|z) = \mathcal{N}(\mu_{\theta}(z), \Sigma_{\theta}(z))$ where $\mu_{\theta}, \Sigma_{\theta}$ are the output of a neural network
- \bullet Hope that after training, z will correspond to meaningful latent factors of variation (features).
 - \longrightarrow A type of Unsupervised representation learning.
- Features can be computed via p(z|x).

Deep Latent Variable Models

Mixture of Gaussians: A Shallow Latent Variable Model

Mixture of Gaussians:

1.
$$z \sim \text{Categorical}(1, \dots, K)$$
.

2.
$$p(x|z=k) = \mathcal{N}(\mu_k, \Sigma_k)$$
.

- Clustering: Posterior p(z|x) identifies mixture component.
- Unsupervised learning: Hope to learn from unlabeled data (ill-posed).

Till now...

- Latent Variable Models:
 - Allow us to define complex models p(x) in terms of simpler building blocks p(x|z).
 - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
 - No free lunch: much more difficult to learn compared to fully observed, autoregressive models.

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

- $p_{\theta}(x,z) = p_{\theta}(x|z)p_{\theta}(z)$: joint generative distribution.
 - $-p_{\theta}(z)$: prior distribution.
 - $-p_{\theta}(x|z)$: likelihood of the (stochastic) decoder.
- $p_{\theta}(x,z) = p_{\theta}(z|x)p_{\theta}(x)$ where
 - $-p_{\theta}(x)$: marginal likelihood or model evidence.
 - $-p_{\theta}(z|x)$: posterior distribution.

Variational Autoencoder (VAE)

By design:

- It is easy to sample from $p_{\theta}(x,z) = p_{\theta}(x|z)p_{\theta}(z)$.
- Marginal $p_{\theta}(x) = \int p_{\theta}(x, z) dz$ is very complex/flexible and unfortunately intractable.
 - If both $p_{\theta}(z)$ and $p_{\theta}(x|z)$ are Guassians then $p_{\theta}(x)$ is an infinite mixture of Gaussians.
- Consequently, the posterior distribution $p_{\theta}(z|x)$ is also intractable.
- Our aim is:

$$p_{\theta}(x) \approx p_d(x)$$

Variational Inference

- Key idea of variatioanl inference: approximate the intractable posterior with a (parametric) inference model.
- Mathematically, we introduce $q_{\phi}(z|x)$ such that

$$q_{\phi}(z|x) \approx p_{\theta}(z|x)$$

• Why is called variational? Simply because we optimize w.r.t. a **function** (of z conditioned on x).

Variational Inference

A Concrete VAE

- 1. Prior distribution is isotropic/spherical Gaussian: $p(z) = \mathcal{N}(0, I)$.
- 2. Stochastic decoder is Gaussian: $p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \operatorname{diag}(\sigma_{\theta}(z)))$ where $\mu_{\theta}, \sigma_{\theta}$ are neural networks.
- 3. Stochastic encoder (i.e., inference or recognition model) is Gaussian: $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \operatorname{diag}(\sigma_{\phi}(x)))$ where $\mu_{\phi}, \sigma_{\phi}$ are also neural networks.

A Concrete VAE

• VAE resembles an autoencoder when $\dim(z) < \dim(x)$.

How to train a VAE model?

We will emlpoy two tricks:

- 1. Approximate the model evidence with a lower bound called **ELBO** (from Evidence Lower BOund) and maximize ELBO instead of the evidence.
- 2. Reparametrization trick for efficient gradient estimation.

The Evidence Lower Bound (ELBO)

• Evidence or the (marginal) likelihood for a single data x equals to

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right]$$

$$= \mathcal{L}_{\theta,\phi}(x) \text{ (ELBO)} \qquad = D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$$

• Since $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \geq 0$, it holds that

$$\log p_{\theta}(x) \ge \mathcal{L}_{\theta,\phi}(x)$$

The Evidence Lower Bound (ELBO)

The better $q_{\phi}(z|x)$ can approximate the posterior $p_{\theta}(z|x)$, the smaller $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$ we can achieve, thus, the closer ELBO will be to $\log p_{\theta}(x)$.

Next: Jointly optimizer over θ and ϕ to maximize the ELBO over a dataset.

ELBO Derivation — To Be Filled

• Evidence or the (marginal) likelihood for a single data x equals to

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} \right]$$
$$= \mathcal{L}_{\theta,\phi}(x) \text{ (ELBO)} \qquad = D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))$$

• Since $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \geq 0$, it holds that

$$\log p_{\theta}(x) \ge \mathcal{L}_{\theta,\phi}(x)$$

ELBO Applied to the Entire Dataset

• ELBO holds for any $q_{\phi}(z|x)$:

$$\log p_{\theta}(x) \geq \mathcal{L}_{\theta,\phi}(x).$$

• Maximum likelihood learning (over the entire dataset):

$$\ell(\theta; \mathcal{D}) = \sum_{x_i \in \mathcal{D}} \log p_{\theta}(x_i) \ge \sum_{x_i \in \mathcal{D}} \mathcal{L}_{\theta, \phi}(x).$$

• Therefore:

$$\max_{\theta} \ell(\theta; \mathcal{D}) \ge \max_{\theta, \phi} \sum_{x_i \in \mathcal{D}} \mathcal{L}_{\theta, \phi} (x_i).$$

Gradient Estimation

• Recall

$$\mathcal{L}_{\theta,\phi}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left| \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right| = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x,z) \right] - \mathbb{E}_{q_{\phi}(z|x)} \left[\log q_{\phi}(z|x) \right]$$

• The gradient with respect to θ (easy):

$$\nabla_{\theta} \mathcal{L}_{\theta,\phi}(x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\nabla_{\theta} \log p_{\theta}(x,z) \right] \approx \nabla_{\theta} \log p_{\theta}(x_i,z_i)$$

• The gradient with respect to ϕ requires a trick: $z_i \sim q_{\phi}(z|x_i)$

Reparametrization Trick

• Want to compute a gradient with respect to ϕ of:

$$\mathbb{E}_{q_{\phi}(z|x)}[f(z)] = \int f(z)q_{\phi}(z|x)dz,$$

- Suppose $q_{\phi}(z|x) = \mathcal{N}\left(\mu_{\phi}(x), \operatorname{diag}(\sigma_{\phi}^{2}(x))\right)$ is a Gaussian with $\mu_{\phi}(x), \sigma_{\phi}(x)$ be neural nets. These are equivalent ways of sampling:
 - Sample $z \sim q_{\phi}(z|x)$.
 - Sample $\epsilon \sim \mathcal{N}(0, I) =: p(\epsilon), z = \mu_{\phi}(x) + \sigma_{\phi}(x)\epsilon =: g_{\phi}(\epsilon, x).$
- Therefore:

$$\mathbb{E}_{q_{\phi}(z|x)}[f(z)] = \mathbb{E}_{\epsilon \sim p(\epsilon)} \left[f(g_{\phi}(\epsilon, x)) \right] := \int f(\mu_{\phi}(x) + \sigma_{\phi}(x)\epsilon) p(\epsilon) d\epsilon.$$

Reparametrization Trick

Original form

Reparametrized form

Reparametrization Trick in VAEs

• Thus, the gradient w.r.t. ϕ becomes

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[f(z)] = \nabla_{\phi} \mathbb{E}_{p(\epsilon)} \left[f(g(\epsilon, \phi, x)) \right] = \mathbb{E}_{p(\epsilon)} \left[\nabla_{\phi} f(g(\epsilon, \phi, x)) \right] \approx \nabla_{\phi} f(g(\epsilon_i, \phi, x_i)).$$

- \longrightarrow Easy to estimate Monte Carlo if f and g are differentiable w.r.t. ϕ and ϵ is easy to sample from.
- In VAEs

$$f(g(\epsilon, \phi, x)) = \log p_{\theta}(x, z) - \log q_{\phi}(z|x).$$

VAE's Training Algorithm

```
Data:
     \mathcal{D}: Dataset
    q_{\phi}(\mathbf{z}|\mathbf{x}): Inference model
    p_{\theta}(\mathbf{x}, \mathbf{z}): Generative model
Result:
     \theta, \phi: Learned parameters
(\boldsymbol{\theta}, \boldsymbol{\phi}) \leftarrow \text{Initialize parameters}
while SGD not converged do
      \mathcal{M} \sim \mathcal{D} (Random minibatch of data)
     \epsilon \sim p(\epsilon) (Random noise for every datapoint in \mathcal{M})
     Compute \tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M}, \epsilon) and its gradients \nabla_{\theta,\phi}\tilde{\mathcal{L}}_{\theta,\phi}(\mathcal{M}, \epsilon)
      Update \theta and \phi using SGD optimizer
end
```

Summary on Latent Variable Models

- Latent Variable Models Pros:
 - Easy to build flexible models.
 - Suitable for unsupervised learning.
- Latent Variable Models Cons:
 - Hard to evaluate likelihoods.
 - Hard to train via maximum-likelihood.
 - Fundamentally, the challenge is that posterior distribution $p_{\theta}(z|x)$ is hard. Typically requires variational approximations.

References

- 1. Probabilistic Machine Learning: Advanced Topics (<u>Chapter 20</u>) Kevin P Murphy, The MIT Press (2023)
- 2. An Introduction to Variational Autoencoders, D. Kingma & M. Welling, Foundations and Trends in ML, 2019. (A coherent and accessible introduction to variational autoencoders Highly recommended read!) https://arxiv.org/abs/1906.02691
- 3. Auto-Encoding Variational Bayes, D. Kingma & M. Welling, ICLR, 2014.
- 4. https://github.com/matthewvowels1/Awesome-VAEs