## Introduction to Deep Generative Modeling

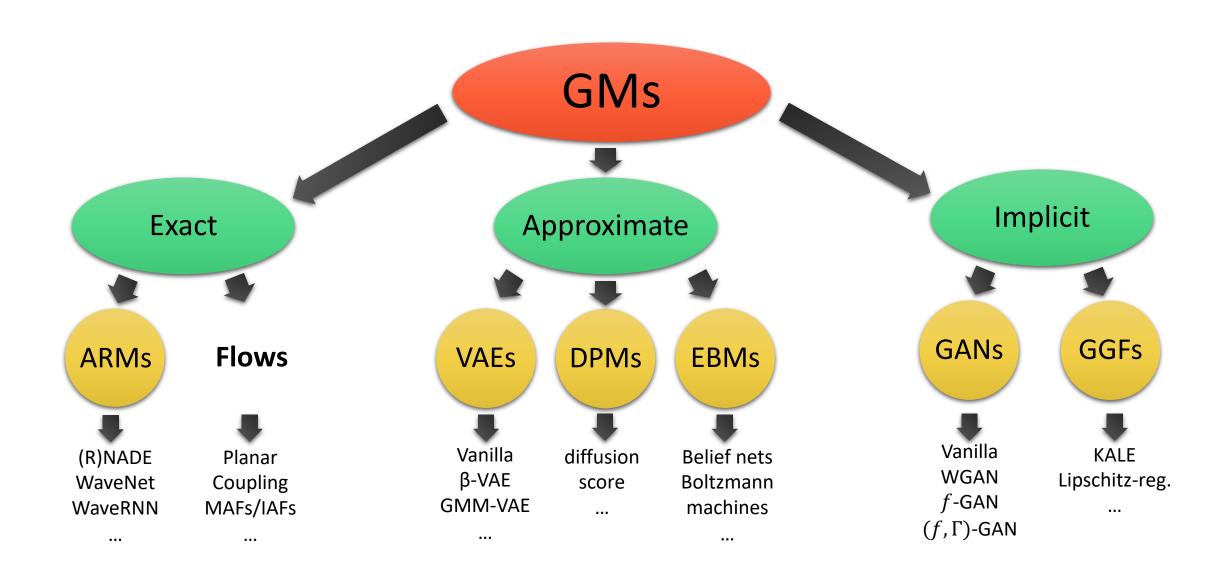
Lecture #8

**HY-673** – Computer Science Dep., University of Crete

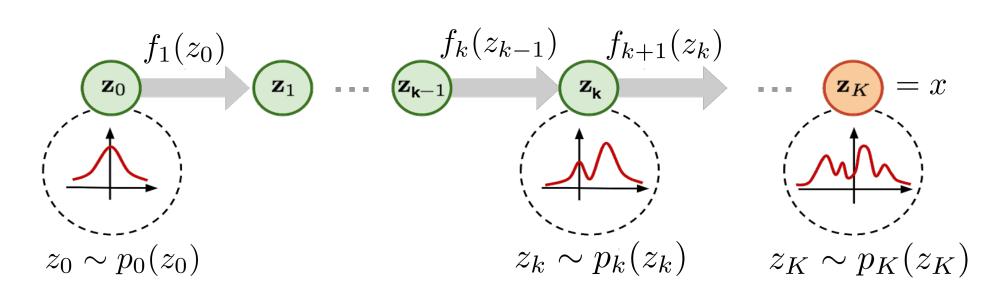
Professors: Yannis Pantazis, Yannis Stylianou

**Teaching Assistant:** Michail Raptakis

## Taxonomy of GMs



## Recap: Normalizing Flow Models



- 1. Transform simple to complex distributions via sequence of invertible and differentiable transformations.
- 2. Directed latent variable models with marginal likelihood given by the change of variables formula.
- 3. Triangular Jacobian permits efficient evaluation of log-likelihoods.

## Normalizing Flow Models Recap

- Functionality of Normalizing Flows:
  - Sampling via:  $x = f_{\theta}(z), z \sim p_{Z}(z).$
  - Density evaluation via:  $p_{\theta}(x) = p_Z(f_{\theta}^{-1}(x))|\det J_{f_{\theta}^{-1}}(x)|,$
  - or via:  $p_{\theta}(x) = p_{Z}(z) |\det J_{f_{\theta}}(u)|^{-1} \text{ where } z = f_{\theta}^{-1}(x).$
- Training with MLE requires:
  - Compute  $f_{\theta}^{-1}(x)$ .
  - Compute  $f_{\theta}^{-1}(x)$ 's Jacobian determinant with O(d) cost.
  - Differentiate the above w.r.t.  $\theta$ .
  - Compute base density  $p_Z(z)$ .

<u>Caution:</u> Being invertible and being able to explicitly calculate the inverse are **not synonymous!** 

## Training Normalizing Flow Models

- <u>Recall:</u> Planar flows didn't have easy-to-calculate inverse transformation.
  - Thus, MLE estimation is not suitable for planar flows.
- <u>Recall:</u> MLE is equivalent to Kullback-Leibler divergence minimization (at the infinite number of sample limit).

$$\operatorname{argmin}_{\theta} D_{KL}(p_d(x)||p_{\theta}(x)).$$

• <u>Recall:</u> What if we minimize the reverse Kullback-Leibler divergence?

$$\operatorname{argmin}_{\theta} D_{KL}(p_{\theta}(x)||p_{d}(x)).$$

## Reverse KLD Minimization

### <u>Goal:</u> $\operatorname{argmin}_{\theta} D_{KL}(p_{\theta}(x)||p_{d}(x)).$

- Suitable when we can evaluate  $p_d(x)$  (up to a multiplicative factor).
- Requirements: (i) sample from base distribution  $p_Z(z)$ , (ii) compute and (iii) differentiate through the transformation  $f_{\theta}$  and its Jacobian determinant.
  - Planar flows satisfy all three requirements!
- Applications:
  - 1. Variational Inference (e.g., compine variational autoencoders with flows),
  - 2. Model Distilation (e.g., Parallel Wavenet).

### Designing Invertible Transformations

- NICE or Nonlinear Independent Components Estimation (Dinh et al., 2014): Composes two kinds of invertible transformations: additive, coupling layers and rescaling layers.
- Real-NVP (Dinh et al., 2017): NICE extension to non-volume preserving transformations.
- Masked Autoregressive Flow (Papamakarios et al., 2017).
- Inverse Autoregressive Flow (Kingma et al., 2016).
- I-resnet (Behrmann et al., 2018).
- Glow (Kingma et al., 2018).
- MintNet (Song et al., 2019).
- And many more.

HY-673

## NICE - Additive Coupling Layers

- Partition the multi-dimensional variable z into two disjoint subsets, say  $z_{1:j} := (z_1, ..., z_j)$  and  $z_{j+1:d}$  for any  $1 \le j < d$ :
  - 1. Forward mapping  $z \to x$ :
    - $x_{1:j} = z_{1:j}$  (identity transformation).
    - $x_{j+1:d} = z_{j+1:d} + m_{\theta}(z_{1:j})$ , where  $m_{\theta}(\cdot)$  is typically a neural network with parameters  $\theta$ , input units j, and output units d-j.
    - $x = f_{\theta}(z) = \begin{bmatrix} z_{1:j} \\ z_{j+1:d} + m_{\theta}(z_{1:j}) \end{bmatrix}$ .

## NICE - Additive Coupling Layers

- Partition the multi-dimensional variable z into two disjoint subsets, say  $z_{1:j} := (z_1, ..., z_j)$  and  $z_{j+1:d}$  for any  $1 \le j < d$ :
  - 2. Inverse mapping  $x \to z$ :
    - $z_{1:j} = x_{1:j}$  (identity transformation).
    - $z_{j+1:d} = x_{j+1:d} m_{\theta}(x_{1:j})$ , where  $m_{\theta}(\cdot)$  is the same neural network.
    - $z = f_{\theta}^{-1}(x) = \begin{bmatrix} x_{1:j} \\ x_{j+1:d} m_{\theta}(x_{1:j}) \end{bmatrix}$ .

## NICE - Additive Coupling Layers

• Partition the multi-dimensional variable z into two disjoint subsets, say  $z_{1:j} := (z_1, ..., z_j)$  and  $z_{j+1:d}$  for any  $1 \le j < d$ :

3. Jacobian of forward mapping:

• 
$$J = \frac{\partial f_{\theta}}{\partial z} = \begin{pmatrix} \frac{\partial x_{1:j}}{\partial z_{1:j}} & \frac{\partial x_{1:j}}{\partial z_{1:j}} & \frac{\partial x_{1:j}}{\partial z_{j+1:d}} \\ \frac{\partial x_{j+1:d}}{\partial z_{1:j}} & \frac{\partial x_{j+1:d}}{\partial z_{j+1:d}} \end{pmatrix} = \begin{pmatrix} I_{j} & 0 \\ \frac{\partial m_{\theta}}{\partial z_{1:j}} & I_{d-j} \end{pmatrix}.$$

- $\bullet \Rightarrow \det(J) = 1.$
- Volume preserving transformation (since the determinant is 1).

## Samples Generated via NICE

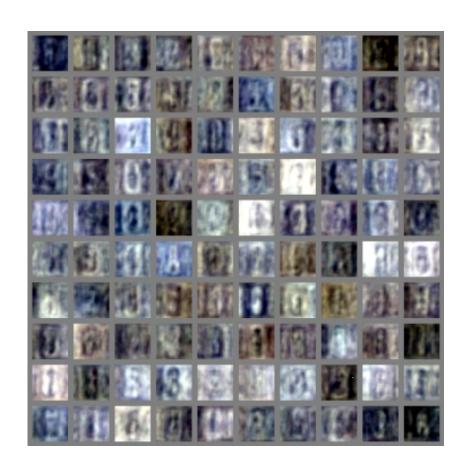


(a) Model trained on MNIST



(b) Model trained on TFD

## Samples Generated via NICE



(a) Model trained on SVHN



(b) Model trained on CIFAR-10

## Real-NVP: Non-Volume Preserving (NICE Extension)

#### 1. Forward mapping $z \to x$ :

- $x_{1:j} = z_{1:j}$  (identity transformation).
- $x_{j+1:d} = z_{j+1:d} \odot \exp(\alpha_{\theta}(z_{1:j})) + m_{\theta}(z_{1:j}).$
- Both  $m_{\theta}(\cdot)$  and  $\alpha_{\theta}(\cdot)$  are neural networks with parameters  $\theta$ , input units j, and output units d-j ( $\odot$  denotes elementwise product).

# Real-NVP: Non-Volume Preserving (NICE Extension)

#### 2. Inverse mapping $x \to z$ :

•  $z_{1:j} = x_{1:j}$  (identity transformation).

• 
$$z_{j+1:d} = (x_{j+1:d} - m_{\theta}(x_{1:j})) \odot \exp(-\alpha_{\theta}(x_{1:j})).$$

• Both  $m_{\theta}(\cdot)$  and  $\alpha_{\theta}(\cdot)$  are the same neural networks.

## Real-NVP: Non-Volume Preserving (NICE Extension)

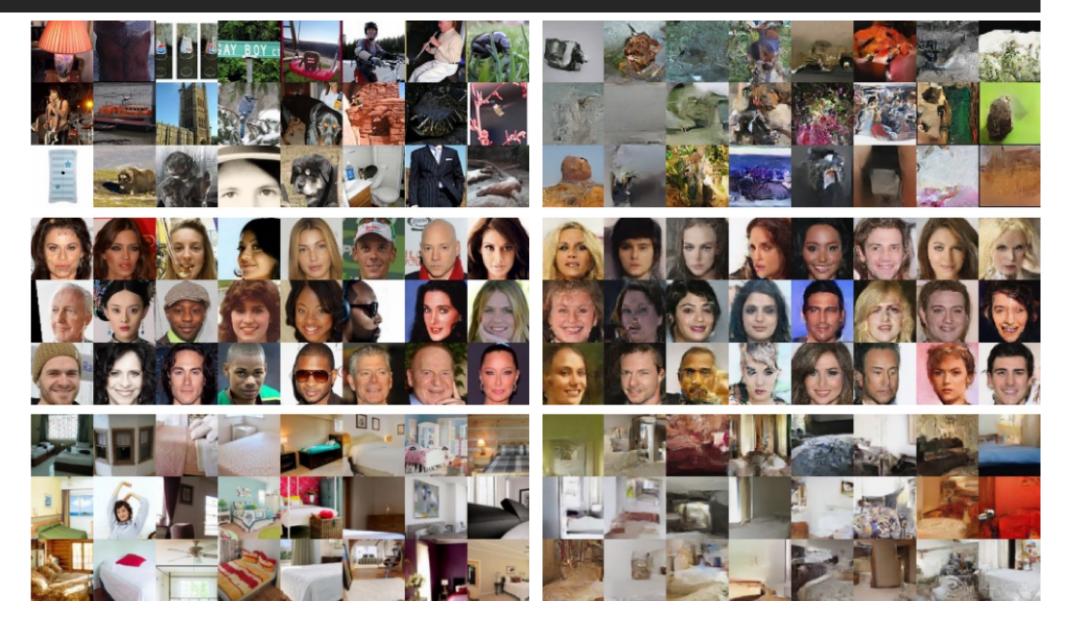
3. Jacobian of forward mapping:

• 
$$J = \frac{\partial f_{\theta}}{\partial z} = \begin{pmatrix} I_j & 0 \\ \frac{\partial x_{j+1:d}}{\partial z_{1:j}} & \operatorname{diag}(\exp(\alpha_{\theta}(z_{1:j}))) \end{pmatrix}$$
.

• 
$$\det(J) = \prod_{i=j+1}^d \exp(\alpha_\theta(z_{1:j})) = \exp\left(\sum_{i=j+1}^d \alpha_\theta(z_{1:j})\right).$$

• Non-volume preserving transformation (in general, since the determinant can be less or greater than 1).

## Samples Generated via Real-NVP



# Latent Space Interpolations via Real-NVP





Using with four validation samples  $z^{(1)}, \ldots, z^{(4)}$ , define the interpolated sample z as:

$$z = \cos(\phi) \left( z^{(1)} \cos(\phi') + z^{(2)} \sin(\phi') \right) + \sin(\phi) \left( z^{(3)} \cos(\phi') + z^{(4)} \sin(\phi') \right),$$

with interpolation parameters  $\phi$  and  $\phi'$ .

### Summary: Coupling Layers

- Coupling layers allow both density evaluation and sampling to be fast.
  - One of the most popular flow-based implementations.
- The efficiency of coupling layers comes at the cost of reduced expressive power.
  - Solution: Composing multiple coupling layers with different z elements being transformed each time.
  - Thus, all dimensions have the change to be transformed and be correlated to each other.
- Apart from NICE and RealNVP, Glow, WaveGlow, FloWaveNet and Flow++ are models based on coupling layers.

#### Continuous AR Models as Flow Models

• Consider a Gaussian autoregressive model:

$$p_d(x) = \prod_{j=1}^d p(x_j | x_{< j}),$$

such that  $p(x_j|x_{< j}) = \mathcal{N}(\mu_j(x_1, \dots, x_{j-1}), \exp(\alpha_j(x_1, \dots, x_{j-1}))^2).$ 

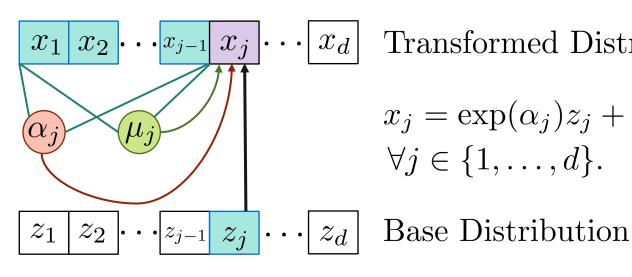
• Here,  $\mu_j(\cdot)$  and  $\alpha_j(\cdot)$  are neural networks for j > 1 and constants for j = 1.

#### Continuous AR Models as Flow Models

- Sampler for this model:
  - 1. Sample  $z_j \sim \mathcal{N}(0,1)$  for  $j = 1, \ldots, d$ .

$$p(x) = \prod_{j=1}^{d} p(x_j | x_{< j}).$$

- 2. Let  $x_1 = \exp(\alpha_1)z_1 + \mu_1$ . Compute  $\mu_2(x_1), \alpha_2(x_1)$ .
- 3. Let  $x_2 = \exp(\alpha_2)z_2 + \mu_2$ . Compute  $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$ .
- 4. Let  $x_3 = \exp(\alpha_3)z_3 + \mu_3$ . ...
- Flow Interpretation: Transforms samples from the standard Gaussian  $(z_1, z_2, \ldots, z_d)$  to those generated from the model  $(x_1, x_2, \ldots, x_d)$  via invertible transformations (parametrized by  $\mu_j(\cdot), \alpha_j(\cdot)$ ).

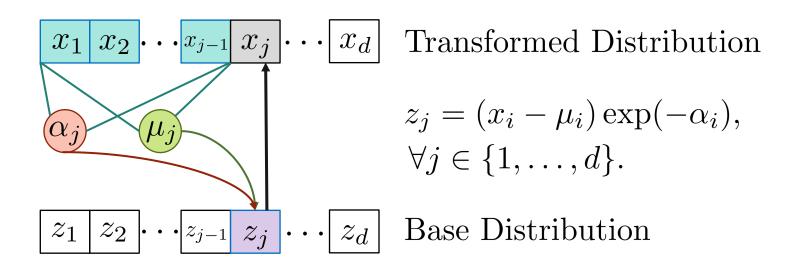


Transformed Distribution

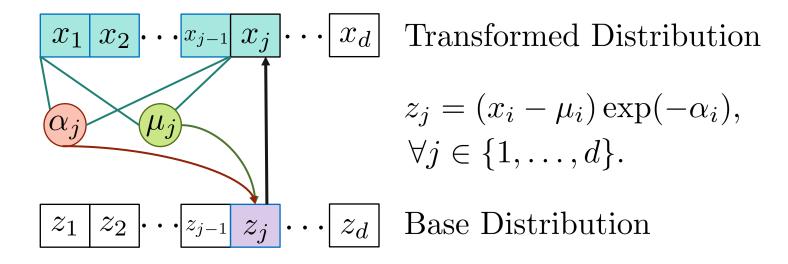
$$x_j = \exp(\alpha_j)z_j + \mu_j,$$
  
 $\forall j \in \{1, \dots, d\}.$ 

• Sampling is sequential and slow (i.e., autoregressive): O(d) time.

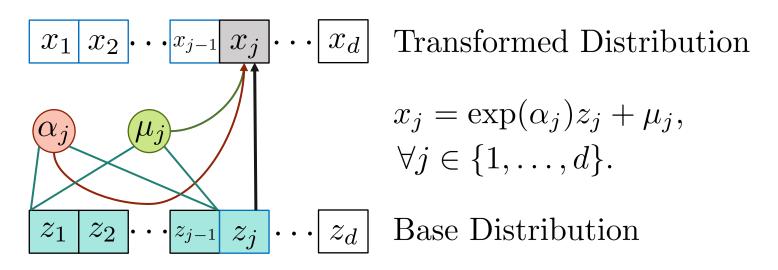
- Forward mapping from  $z \to x$ :
  - 1. Let  $x_1 = \exp(\alpha_1)z_1 + \mu_1$ . Compute  $\mu_2(x_1), \alpha_2(x_1)$ .
  - 2. Let  $x_2 = \exp(\alpha_2)z_2 + \mu_2$ . Compute  $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$ .
  - 3. Let  $x_3 = \exp(\alpha_3)z_3 + \mu_3$ .



- Inverse mapping from  $x \to z$ :
  - 1. Compute all  $\mu_j, \alpha_j$  (can be done in parallel).
  - 2. Let  $z_1 = (x_1 \mu_1) \exp(-\alpha_1)$ , (scale and shift)
  - 3. Let  $z_2 = (x_2 \mu_2) \exp(-\alpha_2)$ , • •

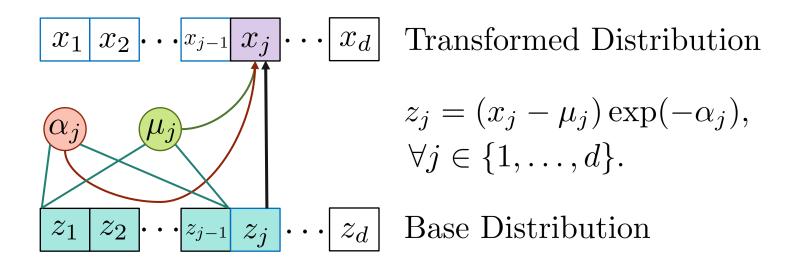


- Jacobian is lower diagonal, hence efficient determinant computation.
- Likelihood evaluation is easy and parallelizable (as in MADE).
- MAF transformations with different variable orderings can be stacked.



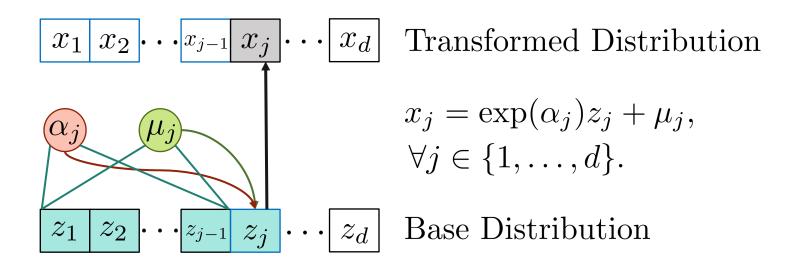
- Forward mapping from  $z \to x$  (parallel):
  - 1. Sample  $z_j \sim \mathcal{N}(0, 1)$ , for j = 1, ..., d.
  - 2. Compute all  $\mu_i, \alpha_i$  (can be done in parallel).
  - 3. Let  $x_1 = \exp(\alpha_1)z_1 + \mu_1$ . Compute  $\mu_2(z_1), \alpha_2(z_1)$ .
  - 4. Let  $x_2 = \exp(\alpha_2)z_2 + \mu_2$ . ...

## Inverse Autoregressive Flow (IAF)



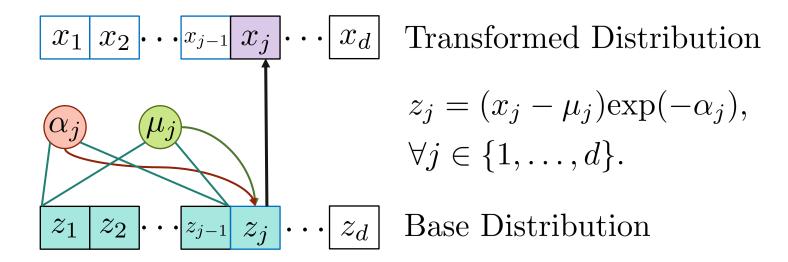
- Inverse mapping from  $x \to z$  (sequential):
  - 1. Let  $z_1 = (x_1 \mu_1) \exp(-\alpha_1)$ . Compute  $\mu_2(z_1), \alpha_2(z_1)$ .
  - 2. Let  $z_2 = (x_2 \mu_2) \exp(-\alpha_2)$ . Compute  $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$ .
  - 3. ..

## Inverse Autoregressive Flow (IAF)



- Inverse mapping from  $x \to z$  (sequential):
  - 1. Let  $z_1 = (x_1 \mu_1) \exp(-\alpha_1)$ . Compute  $\mu_2(z_1), \alpha_2(z_1)$ .
  - 2. Let  $z_2 = (x_2 \mu_2) \exp(-\alpha_2)$ . Compute  $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$ .
  - 3. . . .

## Inverse Autoregressive Flow (IAF)

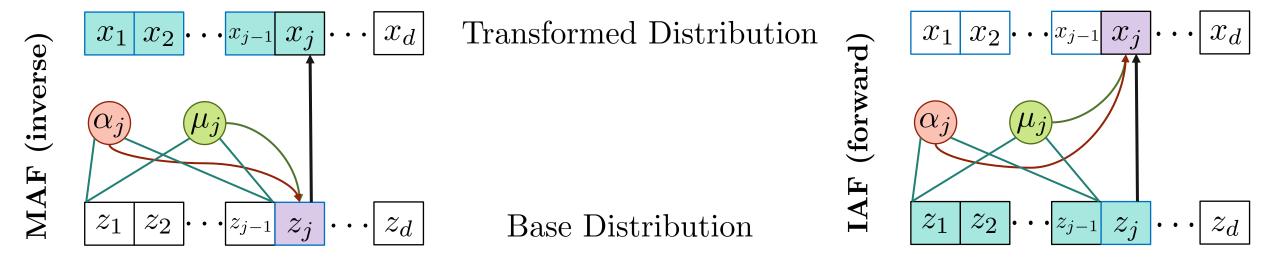


- Fast to sample from but slow to evaluate likelihoods of data points (which is needed during training).
- $\underline{But}$  it is fast to evaluate likelihoods of a generated point (given cached  $(z_1, z_2, \ldots, z_d)$ ).

 $x_i = \exp(\alpha_i)z_i + \mu_i, \ \forall j \in \{1, \dots, d\}.$ 

## IAF is the Inverse of MAF

 $z_{i} = (x_{i} - \mu_{i}) \exp(-\alpha_{i}), \ \forall j \in \{1, \dots, d\}.$ 



- Interchanging z and x in the inverse transformation of MAF gives the forward transformation of IAF.
- Similarly, forward transformation of MAF is inverse transformation of IAF.

### IAF vs MAF

- Computational tradeoffs:
  - 1. MAF: Fast likelihood evaluation but slow sampling.
  - 2. IAF: Fast sampling but slow likelihood evaluation.
- MAF more suited for training based on MLE and for density estimation.
- IAF more suited for real-time generation (done in parallel).

#### Can we get the best of both worlds?

- <u>Parallel WaveNet</u> (to be presented by Vassilis Tsiaras).

## Parallel WaveNet

- Two part training with a teacher and student model.
- Teacher is parameterized by MAF. Teacher can be efficiently trained via MLE.
- Once teacher is trained, initialize a student model parameterized by IAF. Student model cannot efficiently evaluate density for external datapoints but allows for efficient sampling.
- **Key observation**: IAF can also efficiently evaluate densities of its own generations (via caching the noise variates  $z_1, z_2, \ldots, z_n$ ).

## Parallel WaveNet

• Probability density distillation: Student distribution is trained to minimize the Kullback-Leibler (KL) divergence between student (s) and teacher (t):

$$D_{\mathrm{KL}}(s,t) = E_{x \sim s} \left[ \log s(x) - \log t(x) \right].$$

- Evaluating and optimizing Monte Carlo estimates of this objective requires:
  - 1. Samples x from student model (IAF).
  - 2. Density of x assigned by student model.
  - 3. Density of x assigned by teacher model (MAF).
- All operations above can be implemented efficiently.

## Parallel WaveNet

- Training:
  - 1. Train teacher model (MAF) via MLE.
  - 2. Train student model (IAF) to minimize KL divergence with teacher.
- Test-time: Use student model for testing.
- Improves sampling efficiency over original Wavenet (vanilla autoregressive model) by 1000 times!

## References

- 1. Probabilistic Machine Learning: Advanced Topics (*Chapter 22*) Kevin P Murphy, The MIT Press (2023)
- 2. Normalizing Flows for Probabilistic Modeling and Inference, Papamakarios et al., JMLR, 2021. (A coherent and accessible summary to normalizing flows Highly recommended read!)
- 3. https://github.com/janosh/awesome-normalizing-flows (list of papers and source code).
- 4. https://lilianweng.github.io/posts/2018-10-13-flow-models/
- 5. https://tech.skit.ai/normalizing-flows-part-2/

## References

- 6. NICE: Non-linear Independent Components Estimation by Dinh, Krueger et al.
- 7. MADE: Masked Autoencoder for Distribution Estimation by Germain et al.
- 8. RealNVP: Density estimation using Real NVP by Dinh, Sohl-Dickstein et al.
- 9. IAF: Improving Variational Inference with Inverse Autoregressive Flow by Kingma, Salimans et al.
- 10. MAF: Masked Autoregressive Flow for Density Estimation by Papamakarios, Pavlakou et al.
- 11. Glow: Generative Flow with Invertible 1x1 Convolutions by Kingma & Dhariwal

## References

- 12. Neural Autoregressive Flows by Huang, Krueger et al.
- 13. Sylvester Normalizing Flow for Variational Inference by Berg, Hasenclever et al.
- 14. Neural Spline Flows by Durkan, Bekasov et al.
- 15. FloWaveNet: A Generative Flow for Raw Audio by Kim, Lee et al.
- 16. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models by Grathwohl, Chen et al.
- 17. MintNet: Building Invertible Neural Networks with Masked Convolutions by Song, Meng et al.
- 18. Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows by Rasul, Sheikh et al.
- 19. iUNets: Fully invertible U-Nets with Learnable Upand Downsampling by Etmann, Ke et al.

## Introduction to Deep Generative Modeling

Lecture #8

**HY-673** – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

**Teaching Assistant:** Michail Raptakis