Introduction to Deep

Lecture #8

Generative Modeling

HY-673 — Computer Science Dep., University of Crete
Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

g

Exact

a4

ARMs Flows

N 4
(R)NADE Planar
WaveNet Coupling

WaveRNN MAFs/IAFs

* n %
VAEs DPMs EBMs

Vanilla diffusion Belief nets
B-VAE score Boltzmann
GMM-VAE machines

N\

Lecture #8

Implicit

e

GANSs GGFs

Vanilla KALE
WGAN Lipschitz-reg.
f-GAN

(f,T)-GAN

Recap: Normalizing Flow Models

- ~ \
7 AN
/ AY
4 \
I \
| 1
\ I
\ '
\ 7/
N /
~ 7

20 "~ po(Z’o) Rk ™ pk Zk) RK ™ pK(ZK)

1. Transform simple to complex distributions via sequence of invertible and
differentiable transformations.

2. Directed latent variable models with marginal likelihood given by the
change of variables formula.

3. Triangular Jacobian permits efficient evaluation of log-likelihoods.

Normalizing Flow Models Recap

e Functionality of Normalizing Flows:

- Sampling via: r= fo(2), z~pz(2).
- Density evaluation via: po(z) = pz(f, ' (z))|det] = ()],
- or via: po(z) = pz(2)|detJs, (u)|~! where z = f, ' (x).

e Training with MLE requires:
Compute f, *(z).

Compute f, '(z)’s Jacobian determinant with O(d) cost.

Differentiate the above w.r.t. 6.

Caution: Being invertible and
being able to explicitly calculate the
inverse are not synonymous!

Compute base density pz(z).

Training Normalizing Flow Models

e Recall: Planar flows didn’t have easy-to-calculate inverse transtormation.

- Thus, MLE estimation is not suitable for planar flows.

e Recall: MLE is equivalent to Kullback-Leibler divergence minimization (at
the infinite number of sample limit).

argming D 1. (pa()|[pe(z))-

e Recall: What if we minimize the reverse Kullback-Leibler divergence?

argming D 1, (pe(2)||pa(7))-

Reverse KLD Minimization

GOCLZ.’ argminQDKL (pe (a;) ‘ \pd(az))

e Suitable when we can evaluate pg(x) (up to a multiplicative factor).

e Requirements: (i) sample from base distribution pz(z), (ii) compute and
(iii) differentiate through the transformation fy and its Jacobian determi-
nant.

- Planar flows satisfy all three requirements!

o Applications:
1. Variational Inference (e.g, compine variational autoencoders with flows),
2. Model Distilation (e.g., Parallel Wavenet).

Lecture #8

Designing Invertible Transformations

e NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014): Composes two kinds of invertible transformations: additive, cou-
pling layers and rescaling layers.

e Real-NVP (Dinh et al., 2017): NICE extension to non-volume preserving HY-673
transformations.

e Masked Autoregressive Flow (Papamakarios et al., 2017).

e Inverse Autoregressive Flow (Kingma et al., 2016).

e [-resnet (Behrmann et al., 2018).
e Glow (Kingma et al., 2018).

e MintNet (Song et al., 2019).

¢ And many more.

NICE - Additive Coupling Layers

e Partition the multi-dimensional variable z into two disjoint subsets, say
21,5 = (21,...,25) and zj41.4 for any 1 < 5 < d:
1. Forward mapping z — x:
® 1., = z1.; (identity transformation).

® 1.0 = Zj+1.d +mp(21.5), where mg(-) is typically a neural network with
parameters #, input units 7, and output units d — j.

B B <1:5
o I = fg(Z) — Zit1:d —|—m9(21:j) |

NICE - Additive Coupling Layers

e Partition the multi-dimensional variable z into two disjoint subsets, say
21,5 = (21,...,25) and zj41.4 for any 1 < 5 < d:

2. Inverse mapping x — z:

® 2., = x1.; (identity transformation).

® Zii1.d =2Tjtr1.d — Mo(x1.;), where my(-) is the same neural network.

o B xl:j
o — L) = .
f@ () Ljt+1:d — mG(xlij)

NICE - Additive Coupling Layers

e Partition the multi-dimensional variable z into two disjoint subsets, say
21,5 = (21,...,25) and zj41.4 for any 1 < 5 < d:

3. Jacobian of forward mapping:

a.ﬂUl;j 85131;3’
__ Ofe __ 021 0zj41:d
o J= Oz <8$j+1:d Oxj41:d

0z1.j 0zj11:4

|
7 N\
QI
AN
o |©
~
ol
| -
<.
N—

o = det(J) = 1.

e Volume preserving transformation (since the determinant is 1).

Samples Generated via NICE

SIEN K

U"\Q
AN OIS PS8 o

sxlslolols
CINISIDNIEIQICIPRIwW

LI

¥ 5 N

...:-OQ-JUJQQC,;J-\IVQ
YOI IVIWwIxsIeoN IR |G

g
i1 &
13

8

5

L

2

0 [<]

~

(a) Model trained on MNIST (b) Model trained on TFD

Samples Generated via NICE

|

.,'t‘ 'f ;;"r. ‘

: t "l.’!
¢

: i 1

1 :’-‘gw'_
I,
L

L’
Y
L _E‘r“ n 5
La T T %
{r - ° .

T AR AL 5
1i‘ b]E '
+ 151+ e B

- 4

Y # ’,
o

- e =

-
N
-
.]
e -
»
- .
¥
-’
\“
.-
A ;_:l
e
b
.

IR AT R
W RIIENE R
TUHEN (Ot TiE

(a) Model trained on SVHN (b) Model trained on CIFAR-10

""-

Bad:

.»-.; "t
o u?':’.l
Wt | »
"l

Real-NVP: o
Non-Volume Preserving (NICE Extension) scture

1. Forward mapping z — x:

® 1., = z1.; (identity transformation).
® Tii1:d = Zj+1:d® eXP(Oée(ZLj)) + m9(21:j)-

e Both my(-) and «ay(-) are neural networks with parameters 6, input units
7, and output units d — j (® denotes elementwise product).

Real-NVP: o
Non-Volume Preserving (NICE Extension) scture

2. Inverse mapping x — z:

® 2., = x1.; (identity transformation).

® Zit1:d = (Zjp1:a — ma(215)) © exp(—ag(1:5)).

e Both my(:) and ay(-) are the same neural networks.

Real-NVP: o
Non-Volume Preserving (NICE Extension) scture

3. Jacobian of forward mapping:

® J — % — O ‘.[j O
0z 83;;@ diag(exp(&e(zlzj))) .

d d
o det(J) = H exp(ap(21:5)) = exp Z ag(21:5)
i=j+1 i=j+1

e Non-volume preserving transformation (in general, since the deter-
minant can be less or greater than 1).

Samples Generated via Real-NVP Lecture #8

Latent Space Interpolations via
Real-NVP

Lecture #8

Using with four validation samples z(1), ..., 24 define the interpolated sam-
ple z as:

2 = cos(¢) (zWcos(¢) + 2@ sin(¢')) + sin(@) (23 cos(¢’) + 2 sin(¢)),

with interpolation parameters ¢ and ¢'.

Summary: Coupling Layers

e Coupling layers allow both density evaluation and sampling to be fast.

- One of the most popular flow-based implementations.

e The efficiency of coupling layers comes at the cost of reduced
expressive power.

- Solution: Composing multiple coupling layers with different z
elements being transformed each time.

- Thus, all dimensions have the change to be transformed and be
correlated to each other.

e Apart from NICE and RealNVP, Glow, WaveGlow, FloWaveNet and
Flow++ are models based on coupling layers.

Continuous AR Models as Flow Models

e Consider a Gaussian autoregressive model:

d

pa(z) = | | plajle<y),

j=1

such that p(z;|z<;) = N(,uj(ajl, ey X)), explag(x, . .. ,zzjj_l))2).

e Here, 11;(-) and «;(-) are neural networks for j > 1 and constants for
j=1.

Continuous AR Models as Flow Models

e Sampler for this model: i

p(z) = | | plajlz<y).

g=1

1. Sample z; ~ N(0,1) for j =1,...,d.

2. Let x1 = exp(a1)z1 + pu1. Compute ps(z1), as(xy).

3. Let xo = exp(a2)zs + po. Compute ps(z1,x2), asz(zy, x2).
4. Let x3 = exp(as3)z3 + 3.
e Flow Interpretation: Transforms samples from the standard Gaussian

(z1,22,...,24) to those generated from the model (x1,xo,...,x4) via in-
vertible transformations (parametrized by w;(-), a;(+)).

Masked Autoregressive Flow (MAF)

T1| X |« -|xj1| Tjl|- - | Tq| Transformed Distribution

o, 10 r; = exp(a;)z; + 1y, e Sampling is sequential and slow
Vied{l,...,d}. (i.e., autoregressive): O(d) time.

21| %2 |+ %-1| 25 |- - -| 24| Base Distribution

e Forward mapping from z — x:
1. Let x1 = exp(a)z1 + p1. Compute po(z1), as(xy).
2. Let xo = exp(az)zs + uo. Compute us(x1,x2), asz(xy, x2).

3. Let z3 = exp(as)z3 + us. .« .

Masked Autoregressive Flow (MAF)

T1|Xg |« @i Tj|---|Tq| Transformed Distribution

<G 2 = (@i — 1) exp(—a).
Viedl,...,d}.

21| %2 |+ %-1| 25 |- - -| 24| Base Distribution

e Inverse mapping from x — z:

1. Compute all p;,; (can be done in parallel).

2. Let z1 = (z1 — p1)exp(—aq), (scale and shift)
3. Let z0 = (x9 — po)exp(—as), .« .

Masked Autoregressive Flow (MAF)

T1| X |« -|xj1| Tjl|- - | Tq| Transformed Distribution

<G 2 = (@i —) exp(—a).
Viedl,...,d}.

21| %2 |+ %-1| 25 |- - -| 24| Base Distribution

e Jacobian is lower diagonal, hence efficient determinant computation.
e Likelihood evaluation is easy and parallelizable (as in MADE).

e MAF transformations with different variable orderings can be stacked.

Masked Autoregressive Flow (MAF)

T1|Xg |« o|zj| Zjl|- - -| Tq| Transformed Distribution

r; = exp(a;)z; + [,
Viedl,...,d}.

21| %2 | - %i-1| 25 |- - -| 24 | Base Distribution

e Forward mapping from z — x (parallel):
1. Sample z; ~ N(0,1), for j =1,...,d.
2. Compute all p;,a; (can be done in parallel).
3. Let x1 = exp(a1)z1 + 1. Compute psz(21), az(21).
4. Let xo = exp(ag)zs + o

Inverse Autoregressive Flow (IAF)

T1|Xg |- o|zj| Zjl|- - | Tq| Transformed Distribution

o) (4 zj = (x5 — py) exp(—ay),
Viedl,...,d}.

21| %2 | - %i-1| 25 |- - -| 24 | Base Distribution

e Inverse mapping from x — 2 (sequential):
1. Let 21 = (1 — p1)exp(—aq). Compute psa(21), aa(21).

2. Let 29 = (x2 — p2)exp(—asg). Compute us(z1, 22), asz(z1, 22).

3. ...

Inverse Autoregressive Flow (IAF)

T1|Xg |« o|zj| Zjl|- - -| Tq| Transformed Distribution

@) (4 ;= explay)z; + iy,
Viedl,...,d}.

21| %2 | - %i-1| 25 |- - -| 24 | Base Distribution

e Inverse mapping from x — z (sequential):
1. Let 21 = (1 — p1)exp(—aq). Compute psa(21), az(z1).

2. Let z9 = (22 — pg)exp(—as). Compute usz(z1, 22), asz(z1, 22).

3. ...

Inverse Autoregressive Flow (IAF)

T1|Xg |- o|zj| Zjl|- - | Tq| Transformed Distribution
zi = (x; — W;)exp(—a,),

a 10 J. (zj — pj)exp(—ay)
Viedl,...,d}.

21| %2 | - %i-1| 25 |- - -| 24 | Base Distribution

e Fast to sample from but slow to evaluate likelihoods of data points (which
is needed during training).

e But it is fast to evaluate likelihoods of a generated point (given cached
(21, KDy e ooy Zd))

|AF is the Inverse of MAF

Lecture #8

< [T T2) - Ei Ty c | Td Transformed Distribution = T1|To vj-1| Tj T4
: “ : 1‘

> =

2 0y) (M g Q9 W

: :

S |z1| 22} |5 24|] 2d Base Distribution — | AL |R2 | Zi| 2 |- 0| 2d
Zj = (CUj —,uj)exp(—aj), \V/j < {1,,d} X j :exp(ozj)zj—l—,uj, \V/] c {1,,d}

e Interchanging z and z in the inverse transformation of MAF gives the
forward transformation of IAF.

e Similarly, forward transformation of MAF is inverse transformation of

IAF.

e Computational tradeoffs:

1. MAF: Fast likelihood evaluation but slow sampling.

2. TIAF: Fast sampling but slow likelihood evaluation.

e MAF more suited for training based on MLE and for density estimation.

e TAF more suited for real-time generation (done in parallel).

Can we get the best of both worlds?

- Parallel WaveNet (to be presented by Vassilis Tsiaras).

Parallel WaveNet

e Two part training with a teacher and student model.

e Teacher is parameterized by MAF'. Teacher can be efficiently trained via
MLE.

e Once teacher is trained, initialize a student model parameterized by IAF.
Student model cannot efficiently evaluate density for external datapoints
but allows for efficient sampling.

e Key observation: IAF can also efficiently evaluate densities of its own
generations (via caching the noise variates z1, 2s,..., 2n).

Parallel WaveNet

e Probability density distillation: Student distribution is trained to mini-
mize the Kullback—Leibler (KL) divergence between student (s) and teacher

(2):

DKL(Sat) = Fys [logs(a:) - logt(aj)]°

e Lvaluating and optimizing Monte Carlo estimates of this objective re-
quires:

1. Samples x from student model (IAF).
2. Density of x assigned by student model.

3. Density of x assigned by teacher model (MAF).

e All operations above can be implemented efficiently.

Parallel WaveNet

e Training:
1. Train teacher model (MAF) via MLE.

2. Train student model (IAF) to minimize KL divergence with teacher.

e Test-time: Use student model for testing.

e Improves sampling efficiency over original Wavenet (vanilla autoregressive
model) by 1000 times!

References

L.

Probabilistic Machine Learning: Advanced Topics (Chapter 22)
Kevin P Murphy, The MIT Press (2023)

. Normalizing Flows for Probabilistic Modeling and Inference, Papamakar-

ios et al., JMLR, 2021. (A coherent and accessible summary to normaliz-
ing flows - Highly recommended read!)

. https://github.com/janosh/awesome-normalizing-flows (list of pa-

pers and source code).

https://lilianweng.github.io/posts/2018-10-13-flow-models/

. https://tech.skit.ai/normalizing-flows-part-2/

References

6. NICE: Non-linear Independent Components Estimation by Dinh, Krueger
et al.

7. MADE: Masked Autoencoder for Distribution Estimation by Germain et
al.

8. RealNVP: Density estimation using Real NVP by Dinh, Sohl-Dickstein et
al.

9. TAF: Improving Variational Inference with Inverse Autoregressive Flow by
Kingma, Salimans et al.

10. MAF: Masked Autoregressive Flow for Density Estimation by Papamakar-
ios, Pavlakou et al.

11. Glow: Generative Flow with Invertible 1x1 Convolutions by Kingma &
Dhariwal

References

12.
13.

14.
15.
16.

17.

18.

19.

Neural Autoregressive Flows by Huang, Krueger et al.

Sylvester Normalizing Flow for Variational Inference by Berg, Hasenclever
et al.

Neural Spline Flows by Durkan, Bekasov et al.

FloWaveNet : A Generative Flow for Raw Audio by Kim, Lee et al.

FFJORD: Free-form Continuous Dynamics for Scalable Reversible Gen-
erative Models by Grathwohl, Chen et al.

MintNet: Building Invertible Neural Networks with Masked Convolutions
by Song, Meng et al.

Multivariate Probabilistic Time Series Forecasting via Conditioned Nor-
malizing Flows by Rasul, Sheikh et al.

iUNets: Fully invertible U-Nets with Learnable Upand Downsampling by
Etmann, Ke et al.

Lecture #8

Introduction to Deep

Lecture #8

Generative Modeling

HY-673 — Computer Science Dep., University of Crete
Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

