Introduction to Deep Generative Modeling

Lecture #7

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis

Taxonomy of GMs

Desiderata in Deep GMs

• Efficient sampling from $p_{\theta}(x)$:

$$z \longrightarrow f_{\theta} \longrightarrow x \sim p_{\theta}(x) \approx p_{d}(x)$$

- $\hookrightarrow z$ should have simple (base/prior) distribution (e.g., isotropic Gaussian).
- \hookrightarrow Great advantage over previous sampling approaches (typically based on Markov Chain Monte Carlo MCMC methods).
- For <u>exact MLE-based GMs</u>, easy to compute $p_{\theta}(x)$.
 - \hookrightarrow Again, z should have simple (prior) distribution.
 - $\hookrightarrow f_{\theta}(z)$ should have some structure that will result in tractable $p_{\theta}(x)$.

Terminology in Deep GMs

- $f_{\theta}(x)$: sampling or "coloring" phase the decoder or the generator.
- $f_{\theta}^{-1}(x)$: inference or "normalizing" phase the *encoder* or the *normalizer*.
- The *encoder* transforms the distribution into independent factors.

Simple Prior to Complex Data Distributions

- Desirable properties of any model distribution $p_{\theta}(x)$:
 - 1. For Training: Easy to evaluate, closed form density.
 - 2. For Generation: Easy to sample from.
- Many distributions satisfy these two, e.g., Gaussian, uniform, et al.

Simple Prior to Complex Data Distributions

• Unfortunately, real data distributions are usually more complex (multimodal).

What is a Flow Model?

• **Key idea behind <u>flow models</u>:** Map simple distributions (i.e., easy to sample and evaluate densities) to complex distributions through a **series** of invertible and differentiable transformations.

Many small steps adds up to big results.

• Base distribution: Gaussian

• Base distribution: Uniform

10 planar transformations can transform a simple distribution into a far more complex one.

Flow models – Basic properties

• The decoder/generator is given by:

$$f_{\theta} := f_K \circ \dots \circ f_k \circ \dots \circ f_1.$$

• The encoder/normalizer is given by:

$$f_{\theta}^{-1} := f_1^{-1} \circ \dots \circ f_k^{-1} \circ \dots \circ f_K^{-1}.$$

- What about f_k 's?
 - \hookrightarrow They have to be invertible. $\Rightarrow \dim(z) = \dim(x) = d$.
 - \hookrightarrow The output has to have tractable and fast-to-compute probability density function.
 - \hookrightarrow The <u>change of variables formula for random variables</u> implies that f_k 's need to have easy-to-compute Jacobian and easy-to-compute determinant.
- How expressive/powerful is a flow model?

 <u>Answer:</u> They are universal approximators of the density.

Flow models – Math Terminology

• Bijection: An invertible transformation.

• Diffeomorphism: A bijection that is differentiable.

• <u>Flow:</u> A family of diffeomorphisms f_t indexed by a real number t such that t = 0 indexes the identity function and $t_1 + t_2$ indexes the composition $f_{t_1} \circ f_{t_2}$.

• $p_{\theta}(x)$: pushforward of the base distribution (notation: $p_{\theta} = f_* p_0$).

• Let Z be a uniform random variable $\mathcal{U}[0,2]$ with density $p_Z(z)$. What is $p_Z(1)$?

Answer: $\frac{1}{2}$, sanity check: $\int_0^2 \frac{1}{2} dx = 1$.

• Let X = 4Z, and let $p_X(x)$ be its density. What is $p_X(4)$?

<u>Answer:</u> $p_X(4) = P(X = 4) = P(4Z = 4) = P(Z = 1) = p_Z(1) = 1/2$. Wrong!

<u>Answer:</u> Clearly, X is uniform in [0,8], so $p_X(4) = 1/8$.

!!! To get the correct result, we need to use the **change of variables formula**.

• Change of Variables (1D case): If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$p_X(x) = p_Z(h(x)) \times \left| \frac{d}{dx} h(x) \right|.$$

• More interesting example: If $X = f(Z) = \exp(Z)$ and $Z \sim \mathcal{U}[0, 2]$, what is $p_X(x)$?

Answer: Note that
$$Z = h(X) = \log(X)$$
, thus, $p_X(x) = p_Z(\log(x)) \times |h'(x)| = \frac{1}{2x}$, for $x \in [\exp(0), \exp(2)]$.

- Note that the "shape" of $p_X(x)$ is different (and, essentially, more complex) from that of the base distribution $p_Z(z)$.

• Change of Variables (1D case): If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$p_X(x) = p_Z(h(x)) \times \left| \frac{d}{dx} h(x) \right|.$$

• Proof sketch: Assuming $f(\cdot)$ is monotonic:

$$F_X(z) = P(X \le x) = P(f(Z) \le x) = P(Z \le h(x)) = F_Z(h(x)).$$

Differentiating both sides:

$$p_X(x) = \frac{dF_X(x)}{dx} = \frac{dF_Z(h(x))}{dx} = p_Z(h(x))\frac{dh(x)}{dx}.$$

• Change of Variables (1D case): If X = f(Z) and $f(\cdot)$ is monotone with inverse $Z = f^{-1}(X) = h(X)$, then:

$$p_X(x) = p_Z(h(x)) \times \left| \frac{d}{dx} h(x) \right|.$$

• Recall from basic calculus that $h'(x) = [f^{-1}]'(x) = \frac{1}{f'(f^{-1}(x))}$.

So, letting $z = h(x) = f^{-1}(x)$, we can also write:

$$p_X(x) = p_Z(z) \times \left| \frac{1}{f'(z)} \right|.$$
 Recall: $\frac{Recall:}{f'(x) \equiv \frac{d}{dx} f(x).}$

Geometry: Determinants & Volumes

• Let Z be a uniform random vector in $[0,1]^n$. Let Z = AZ for a square invertible matrix A, with inverse $W = A^{-1}$. How is X distributed?

<u>Answer:</u> Geometrically, the matrix A maps the unit hypercube $[0,1]^n$ to a parallelotope. Hypercube and parallelotope are generalizations of square/cube and parallelogram/parallelopipes to higher dimensions.

Geometry: Determinants & Volumes

• The volume of the parallelotope is equal to the absolute value of the determinant of the matrix A:

$$det(A) = det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc.$$

The matrix
$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

maps a unit square to a parallelogram.

$$(a+c)(b+d) - ab - 2bc - cd = ad - bc.$$

Geometry: Determinants & Volumes

• Let X = AZ for a square invertible matrix A, with inverse $W = A^{-1}$. X is uniformly distributed over the parallel tope of area $|\det(A)|$. Hence:

$$p_X(x) = p_Z(Wx)/|\det(A)| = p_Z(Wx)|\det(W)|,$$

because if $W = A^{-1}$, then $det(W) = \frac{1}{det(A)}$.

- Essentially, an extension of the 1D case formula.
- For linear transformations specified via A, change in volume is given by the determinant of A, and for non-linear transformations $f(\cdot)$, the *linearized* change in volume is given by the **determinant of the Jacobian** of $f(\cdot)$.

Generalized Change of Variables

• Change of Variables (General case): The mapping between Z and X, given by $f: \mathbb{R}^d \to \mathbb{R}^d$, is invertible such that X = f(Z) and $Z = f^{-1}(X)$.

$$p_X(x) = p_Z\left(f^{-1}(x)\right) \left| \det\left(\frac{\partial f^{-1}(x)}{\partial x}\right) \right|.$$

- 1. Generalizes the previous 1D case: $p_X(x) = p_Z(h(x))|h'(x)|$
- 2. x and z need to be continuous and have the same dimension. For example, if $x \in \mathbb{R}^d$, then $z \in \mathbb{R}^d$.
- 3. For any invertible matrix A, $\det(A^{-1}) = \det(A)^{-1} \Rightarrow \left[p_X(x) = p_Z(z) \left| \det\left(\frac{\partial f(z)}{\partial z}\right) \right|^{-1} \right]$

https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/supplementalchap_changeofvar.pdf

Two Dimensional Example

• Let Z_1 and Z_2 be continuous random variables with joint density p_{Z_1,Z_2} . Let $f = (f_1, f_2)$ be a transformation, and $h = (h_1, h_2)$ be the inverse transformation. Let $X_1 = f_1(Z_1, Z_2)$ and $X_2 = f_2(Z_1, Z_2)$. Then, $Z_1 = h_1(X_1, X_2)$ and $Z_2 = h_2(X_1, X_2)$. It follows that:

$$p_{X_1,X_2}(x_1,x_2)$$

$$= p_{Z_1,Z_2}(h_1(x_1,x_2),h_2(x_1,x_2)) \left| \det \begin{pmatrix} \frac{\partial h_1(x_1,x_2)}{\partial x_1} & \frac{\partial h_1(x_1,x_2)}{\partial x_2} \\ \frac{\partial h_2(x_1,x_2)}{\partial x_1} & \frac{\partial h_2(x_1,x_2)}{\partial x_2} \end{pmatrix} \right|$$
 (inverse)

$$= p_{Z_1, Z_2}(z_1, z_2) \left| \det \begin{pmatrix} \frac{\partial f_1(z_1, z_2)}{\partial z_1} & \frac{\partial f_1(z_1, z_2)}{\partial z_2} \\ \frac{\partial f_2(z_1, z_2)}{\partial z_1} & \frac{\partial f_2(z_1, z_2)}{\partial z_2} \end{pmatrix} \right|^{-1}.$$
 (forward)

Normalizing Flow Models

• Consider a directed, latent-variable model over observed variables X and latent variables Z. In a **normalizing flow model**, the mapping between Z and X, given by $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^d$, is deterministic, invertible and differentiable, such that $X = f_{\theta}(Z)$ and $Z = f_{\theta}^{-1}(X)$.

Using change of variables, the marginal likelihood $p_{\theta}(x)$ is given by:

$$p_{\theta}(x) = p_Z\left(f_{\theta}^{-1}(x)\right) \left| \det\left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x}\right) \right|.$$

<u>Note:</u> x and z need to be continuous and have the same dimension.

A Flow of Transformations

- Normalizing: Change of variables gives a normalized density after applying an invertible transformation.
- Flow: Invertible transformations can be composed with each other:

$$z_K = f_{\theta}^K \circ \cdots \circ f_{\theta}^1(z_0) = f_{\theta}^K(f_{\theta}^{K-1}(\cdots f_{\theta}^1(z_0)...)) =: f_{\theta}(z_0),$$

with $x = z_k$ and $z = z_0$.

A Flow of Transformations

- 1. Start with a simple distribution for z_0 (e.g., isotropic Gaussian).
- 2. Apply a sequence of K invertible transformations to finally obtain $x = z_K$.
- 3. By change of variables:

$$p_{\theta}(x) = p_Z \left(f_{\theta}^{-1}(x) \right) \prod_{k=1}^{K} \left| \det \left(\frac{\partial (f_{\theta}^k)^{-1}(z_k)}{\partial z_k} \right) \right|.$$

(<u>Note:</u> The determinant of a matrix product equals the product of the matrix determinants.)

Learning and Inference

1. Learning via **maximum likelihood** over dataset \mathcal{D} :

$$\max_{\theta} \log(p_{\theta}(\mathcal{D})) = \sum_{x \in \mathcal{D}} \left[\log p_{Z}(f_{\theta}^{-1}(x)) + \log \left| \det \left(\frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right) \right| \right].$$

- 2. Exact likelihood evaluation: via inverse tranformation $x \to z$ and change of variables formula.
- 3. Sampling via forward transformation $z \to x$.

$$z \sim p_Z(z), \ x = f_{\theta}(z).$$

4. Latent representations inferred via inverse transformation (no extra inference model is required!).

$$z = f_{\theta}^{-1}(x).$$

Desiderata for Flow Models

- 1. Simple prior $p_Z(z)$ that allows for efficient sampling and tractable likelihood evaluation, e.g., isotropic Gaussian.
- 2. Invertible transformations with tractable evaluation:
 - Likelihood evaluation requires efficient evaluation of $x \to z$ mapping.
 - Sampling requires efficient evaluation of $z \to x$ mapping.

Desiderata for Flow Models

- 3. Computing likelihoods also requires the evaluation of determinants of $d \times d$ Jacobian matrices, where d is the data dimensionality:
 - Computing the determinant for an $d \times d$ matrix is $O(d^3)$: prohibitively expensive within a learning loop!
 - **Key idea**: Choose tranformations so that the resulting Jacobian matrix has special structure. For example, the determinant of a triangular matrix is the product of the diagonal entries, i.e., an O(d) operation.

Triangular Jacobian

The Jacobian matrix of $x = [x_1, \dots, x_d]^T = f(z) = [f_1(z), \dots, f_d(z)]^T$ is given by:

$$J \equiv \frac{\partial f}{\partial z} := \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_d} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{pmatrix}.$$

Suppose $x_k = f_k(z)$ only depends on $z_{\leq k}$. Then, its Jacobian is given by:

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial z_1} & \cdots & 0\\ \cdots & \cdots & \cdots\\ \frac{\partial f_d}{\partial z_1} & \cdots & \frac{\partial f_d}{\partial z_d} \end{pmatrix},$$

which has lower triangular structure, thus, its determinant can be computed in **linear time**.

• Planar flow: Invertible (residual) transformation:

$$z_k = f_{\theta_k}(z_{k-1}) = z_{k-1} + u_k h(w_k^T z_{k-1} + b_k),$$

parametrized by $\theta_k = (w_k, u_k, b_k)$ where $h(\cdot)$ is a non-linearity.

• Absolute value of the determinant of the Jacobian is given by:

$$\left| \det \frac{\partial f_{\theta_k}(z)}{\partial z} \right| = \left| \det (I + h'(w_k^T z + b_k) u_k w_k^T) \right| = \left| 1 + h'(w^T z + b) u_k^T w_k \right|.$$

(via matrix determinant lemma: $det(A + uv^T) = (1 + v^T A^{-1}u)det(A)$)

• Planar flow: Maximum log-likelihood:

$$\max_{\theta} \log(p_{\theta}(x|\mathcal{D})) = \sum_{x \in \mathcal{D}} \left[\log p_{Z}(z_{0}) - \sum_{k=1}^{K} \log |1 + h'(w^{T}z_{k} + b)u_{k}^{T}w_{k}| \right],$$

where $z_k = f_{\theta_k}^{-1}(z_{k+1})$ starting from $z_{K-1} = f_{\theta_K}^{-1}(x)$.

• Need to restrict the parameters and the non-linearity for the mapping to be invertible. For example, $h = \tanh \text{ and } h'(w_k^t z + b_k) u_k^T w_k > -1$, $\forall k$.

• In general, there is no analytic expression for the inverse $f_{\theta_k}^{-1}(x)$. However, it can be iteratively approximated via:

$$z_k^{(l)} = z_{k+1} - u_k h(w_k^T z_k^{(l-1)} + b_k), l = 1, 2, \dots$$

• Banach's fixed point theorem guarantees under the contraction assumption that the sequence $z_k^{(l)}$, l = 1, 2, ... will converge to $f_{\theta_k}^{-1}(z_{k+1})$ exponentially fast.

• Base distribution: Gaussian

• Base distribution: Uniform

10 planar transformations can transform a simple distribution into a far more complex one.

References

- 1. Probabilistic Machine Learning: Advanced Topics (<u>Chapter 22</u>) Kevin P Murphy, The MIT Press (2023)
- 2. Normalizing Flows for Probabilistic Modeling and Inference, Papamakarios et al., JMLR, 2021. (A coherent and accessible summary to normalizing flows Highly recommended read!)
- 3. Variational Inference with Normalizing Flows, D. Rezende & S. Mohamed, ICML, 2015.
- 4. https://github.com/janosh/awesome-normalizing-flows (list of papers and source code).
- 5. https://lilianweng.github.io/posts/2018-10-13-flow-models/
- 6. https://tech.skit.ai/normalizing-flows-part-2/

Introduction to Deep Generative Modeling

Lecture #7

HY-673 – Computer Science Dep., University of Crete

Professors: Yannis Pantazis, Yannis Stylianou

Teaching Assistant: Michail Raptakis