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Taxonomy of GMs
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Desiderata in Deep GMs

e Efficient sampling from py(x):

z— | fo | — x ~ py(x) = pa(x)

— 2z should have simple (base/prior) distribution (e.g., isotropic Gaussian).

— Great advantage over previous sampling approaches (typically based on
Markov Chain Monte Carlo - MCMC methods).

e For exact MLE-based GMs, easy to compute pg(z).

— Again, z should have simple (prior) distribution.
— fo(2) should have some structure that will result in tractable py(x).



Terminology in Deep GMs

e fy(x): sampling or “coloring” phase @

the decoder or the generator.

o f,'(x): inference or “normalizing” phase
— the encoder or the normalizer. .

e The encoder transforms the distribution into
independent factors.
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Simple Prior to Complex Data Distributions

e Desirable properties of any model distribution pg(x):

1. For Training: Easy to evaluate, closed form density.
2. For Generation: Easy to sample from.

e Many distributions satisty these two, e.g., Gaussian, uniform, et al.
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Simple Prior to Complex Data Distributions Lecture #7

e Unfortunately, real data distributions are usually more complex (multi-

modal).
. Visualization of multimodal protein data (scatter plot)
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What is a Flow Model?

e Key idea behind flow models: Map simple distributions (i.e., easy to
sample and evaluate densities) to complex distributions through a series

of invertible and differentiable transformations.
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Many small steps adds up
to big results.



Planar Flows (Rezende & Mohamed, 2015)

e Base distribution* (zaussian
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Flow models — Basic properties

e The decoder/generator is given by: )

p
8 Example: fr = fo,,
f@ -_fKO"'Oka"'Ofl' Wlth(gz {917“'79}(}'

\ )

e The encoder/normalizer is given by:

—1 —1 —1 —1
Jo i=ff o..of  o..ofr.

e What about f;’s?

— They have to be invertible. = dim(z) = dim(x) = d.
— The output has to have tractable and fast-to-compute probability density
function.

— The change of variables formula for random variablesimples that fi’s need
to have easy-to-compute Jacobian and easy-to-compute determinant.

e How expressive/powerful is a flow model?
Answer: They are universal approximators of the density.




Flow models — Math Terminology

e Bijection: An invertible transformation.

o Diffeomorphism: A bijection that is differentiable.

o Flow: A family of diffeomorphisms f; indexed by a real number ¢ such that
t = 0 indexes the identity function and ¢; + ¢3 indexes the composition

ftl O ftz'

o po(x): pushforward of the base distribution (notation: pg = f.po).




Change of Variables Formula

e Let Z be a uniform random variable I/[0, 2] with density pz(z).
What is pz(1)?

Answer: 3, sanity check: |, ° zdx = 1.

1
27

o Let X =47, and let px(z) be its density. What is px(4)?
Answer: px(4) = P(X =4) = P(4Z = 4) = P(Z = 1) = pz(1) = 1/2.  Wrong!

Answer: Clearly, X is uniform in [0, 8], so px(4) = 1/8.

I To get the correct result, we need to use the change of variables formula.



Change of Variables Formula

¢ Change of Variables (1D case): If X = f(Z) and f(-) is monotone
with inverse Z = f~1(X) = h(X), then:

px(z) = pz(h(z)) x | ()],

e More interesting example: If X = f(Z) = exp(Z) and Z ~ U|0, 2],

what is px (x)7
Answer: Note that Z = h(X) = log(X), thus,
px(z) = pz(log(x)) x |W'(z)| = 5=, for = € [exp(0), exp(2)].

— Note that the “shape” of px(x) is different (and, essentially, more complex)
from that of the base distribution pz(z).




Change of Variables Formula

e Change of Variables (1D case): If X = f(Z) and f(-) is monotone
with inverse Z = f~1(X) = h(X), then:

px () = pz(h(x)) x | k()|

e Proof sketch: Assuming f(-) is monotonic:

Fx(z) = P(X <z)=P(f(Z) <z)=P(Z < h(z)) = Fz(h(z)).
Differentiating both sides:

px(z) = LoD = AF2E) — ) () L),




Change of Variables Formula

e Change of Variables (1D case): If X = f(Z) and f(-) is monotone
with inverse Z = f~1(X) = h(X), then:

px (z) = pz(h(z)) x | Fzh(z)].

e Recall from basic calculus that h'(z) = [f~1](z) = f’(f—ll(a:))'

So, letting z = h(x) = f~1(x), we can also write:

px(z) =pz(2) X




Geometry: Determinants & Volumes

e Let Z be a uniform random vector in [0,1]". Let Z7 = AZ for a square
invertible matrix A, with inverse W = A=, How is X distributed?

Answer: Geometrically, the matrix A maps the unit hypercube [0, 1|" to a par-
allelotope. Hypercube and parallelotope are generalizations of square/cube and
parallelogram /parallelopipes to higher dimensions.
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Geometry: Determinants & Volumes

(a+c,b+d)
(c,d) . a C
Th A=
e matrix (b d)
b maps a unit square to a parallelogram.
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e The volume of the parallelotope is equal to the d
absolute value of the determinant of the matrix A: b

a C

a C
det(A) = det <b d) = ad — be. (a+c)(b+d) — ab— 2bc — cd = ad — be.



Geometry: Determinants & Volumes

o Let X = AZ for a square invertible matrix A, with inverse W = A~1.
X is uniformly distributed over the parallelotope of area |det(A)].
Hence:

px(z) = pz(Wx)/|det(A)| = pz(Wz)|det(W)],

because if W = A~ then det(W) = m.
— Essentially, an extension of the 1D case formula.

e For linear transformations specified via A, change in volume is given by the
determinant of A, and for non-linear transformations f(-), the linearized
change in volume is given by the determinant of the Jacobian of f(-).



Generalized Change of Variables

e Change of Variables (General case): The mapping between Z and X,
given by f : RY — RY, is invertible such that X = f(Z) and Z = f~1(X).

[px(w) =pz (f~(2)) ‘det (8f;(x)) |]

1. Generalizes the previous 1D case: px(z) = pz(h(x))|h'(z)

2. x and z need to be continuous and have the same dimension.
For example, if z € RY, then z € R?.

1
3. For any invertible matrix A, det(A™!) = det(A)™! = [px(w) = pz(2) ‘det (8J;<Z))| ]

z

https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/
supplementalchap_changeofvar.pdf



Two Dimensional Example

e Let Z; and Z3 be continuous random variables with joint density pz, z,.
Let f = (f1,f2) be a transformation, and h = (hy,hs) be the inverse
transformation. Let X1 — fl(Zl,Zz) and X2 — fQ(Zl,ZQ). Then, Zl =
hl(Xl,XQ) and ZQ = hQ(Xl,XQ). It follows that:

PX., X5 ($1, $2)

p— le,ZQ (hl (le, ZEQ)y h2(x17 :EQ))

0f1(z1,22)
= pz,,2,(21, 22) |det | g4, 21
0z1

aZQ

Ohi(x1,22)  Ohi(w1,z2)
921 0z inverse
det Oho(xz1,x2)  Oha(x1,72) ( )
8331 8$2
—1
0f1(z1,22)
822
8 f2(z1,22) (forward)



Normalizing Flow Models

Consider a directed, latent-variable model over observed variables X and
latent variables Z. In a normalizing flow model, the mapping between

Z and X, given by fy : RY — R?, is deterministic, invertible and differen-
tiable, such that X = fp(Z) and Z = f, ' (X).

Q Using change of variables, the marginal likelihood pg(x) is given by:
<
\ . 8f_1
. po(z) = pz (f5 (2)) |det ( an(x)) |
fo fo

Note: x and z need to be continuous and have the same dimension.



A Flow of Transformations

e Normalizing: Change of variables gives a normalized density after ap-
plying an invertible transformation.

e Flow: Invertible transformations can be composed with each other:

o= i o0 £ (o) = ST B (z0)) =t o() |

with z = z;, and z = zj.



A Flow of Transformations

1. Start with a simple distribution for zy (e.g., isotropic Gaussian).

2. Apply a sequence of K invertible transformations to finally obtain © = 2.

3. By change of variables:

\

(pe(:c) =pz (fy ' (2)) zﬁ det <3(f5§;:(2’<)) | |

\. J

(Note: The determinant of a matrix product equals the product of the matrix
determinants.)



Learning and Inference

1. Learning via maximum likelihood over dataset D:

det (af 9;(:”)> H .

2. Exact likelihood evaluation: via inverse tranformation x — 2z and
change of variables formula.

g og(po(P) = 3 log pz(f; () + log

3. Sampling via forward transformation z — z.

z~pz(2), = fo(2).

4. Latent representations inferred via inverse transformation (no extra
inference model is required!).

2= fy ().



Desiderata for Flow Models

1. Simple prior pz(z) that allows for efficient sampling and tractable likeli-
hood evaluation, e.g., isotropic Gaussian.

2. Invertible transformations with tractable evaluation:

e Likelihood evaluation requires effcient evaluation of x — z mapping.

e Sampling requires efficient evaluation of z —+ x mapping.



Desiderata for Flow Models

3. Computing likelihoods also requires the evaluation of determinants of d x d
Jacobian matrices, where d is the data dimensionality:

e Computing the determinant for an d x d matrix is O(d’): prohibitively
expensive within a learning loop!

e Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular matrix
is the product of the diagonal entries, i.e., an O(d) operation.



Triangular Jacobian

The Jacobian matrix of x = [x1,--- , 24|l = f(2) = [f1(2), -, fa(2)]*
1s given by: o, of
J=2f SO
) Ofa ... Ofa
821 8Zd

Suppose z = fr(2) only depends on z<g. Then, its Jacobian is given by:

9f ..

8Z1 O
J: e o o e o o e o o ,

Ofa ... 9Jd

821 8zd

which has lower triangular structure, thus, its determinant can be computed
in linear time.



Planar Flows (Rezende & Mohamed, 2015)

e Planar flow: Invertible (residual) transformation:

2k = fo, (2k—1) = 2K—1 + Ulch(wkTZk—l + bg),

parametrized by 0 = (wg, ug, by) where h(-) is a non-linearity.

e Absolute value of the determinant of the Jacobian is given by:

dfe, (2)
‘det 2

(via matrix determinant lemma: det(A + uv!) = (1 +v? A7 1u)det(A))



Planar Flows (Rezende & Mohamed, 2015)

e Planar flow: Maximum log-likelihood:

max log(pe(x|D)) = Z log pz(20) Zlog |1 + +1 (w2 + b)u; wk} ,
x€D L k=1 i

where 2z, = f9_1€1(2k+1) starting from zx_1 = f9_K1 ().

e Need to restrict the parameters and the non-linearity for the mapping to
be invertible. For example, h = tanh and h/(w!z + by)ui wy > —1, Vk.



Planar Flows (Rezende & Mohamed, 2015)

e In general, there is no analytic expression for the inverse f, (x). However,
it can be iteratively approximated via:

Zl(ﬂl) — k41 — ukh(wgzl(cl—n T bk)) | = 17 27

e Banach’s fixed point theorem guarantees under the contraction assumption

that the sequence z,(j), [ =1,2,... will converge to fe—kl(Zk_l_l) exponentially
fast.



Planar Flows (Rezende & Mohamed, 2015)

e Base distribution* (zaussian
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