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Gaussian Mixture Model - Motivation

e Fitting a Gaussian to multimodal data is... a bad idea:

- = Data Density — Model Fit
0.06 | — Model Fit || | |
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Gaussian Mixture Model - Motivation Lecture #4

e Now, we are trying to fit a GMM with K = 2 components (or modes):

Mixture Model Data Samples (nSamp = 500)

— Model Fit
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GMM Definition

e The probability density function of a Gaussian Mixture Model (GMM)
with K components is given by:

K
po(z) = N (@5 e, i),
k=1

with 7, being the mixing coefficients or weights which satisty

Zle m. = 1 and 7 > 0 Vk.

while 6 collects all the parameters of the model:

0 .= {mg, pr, 2, k=1,..., K}.



GMM Properties

1. A GMM is typically considered as a density estimator. We will view it as
a generative model.

2. GMMs are universal approximators of densities (if you have enough
Gaussians). Even diagonal GMMSs are universal approximators.

3. In general, mixture models are very powerful, but hard to optimize.
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2D GMM Density Estimation
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GMM Ancestral Sampling

1. Sample from categorical distribution (via inverse sampling theorem):

k—1 k
1 1
u ~ U [0,1], choose k € {1, ..., K} such that: 1 k,g_o T < U < 2 k,E_Owk.

0 Uu(o,1) 1

2. Draw a Gaussian sample: x ~ N (g, k).



Fitting GMMs: Maximum Likelihood

e Dataset: D = {x1,...,xn} model family: GMM.

e Likelihood function:

N K
L(0; D) = Zlog (Z TN (Cﬁn;uk,Ek)> -
n=1 k=1
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Fitting GMMs: Maximum Likelihood

e Problems:

1. Singularities: Arbitrarily large likelihood when a (Gaussian component
explains a single point.

2. Identifiability: Solution is invariant to permutations (but not an issue
if used as a generative model).

e How would you optimize this?
e Can we have a closed form update?

e Don’t forget to satisfy the constraints on 7 and .



Mixture Models as Latent Variable Model
. . . Lecture #4
Marginalization

e We model the joint distribution as:

Z
p(z, z) = p(z|2)p(2).
— E.g., z indicates which component out of K is chosen.
e But we do not have the labels z. What can we do instead?
Answer: Marginalize: .

p(x) =) p(x,2)=> p(z|2)p(z).

< This is a mixture model.



Latent Variable in GMMs

e In GMMs, a hidden (latent) variable z would represent which Gaussian
generated our observation x, with some probability.

o Let z ~ Catergorical(7), where m; > 0, Zszl mr = 1. Then:

K K
p(x) =) plz,z=k) =) p(z=k)p(z|z =k).
k=1 k=1 = \———

Tk N(z;pe, Xr)



Latent Variable Models in General

e Some model variables may be unobserved, either at training or at test
time, or both.

e If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets.

e Variables which are always unobserved are called latent variables, or
sometimes hidden variables.



Back To GMMs

e A Gaussian mixture distribution: p(x Zﬂk/\/ T ke, 2k ) -

e We had: z ~ Catergorical(m), where 7, > 0, Ypmp = 1.
(z]2).
N K
> log (Z TN (wn;ﬂk,zk))
=1

Z (Z D (2n; ) P (0| 205 1, Z)) .

Zn—1

e Join distribution: p(z,z) = p(2)p
e Likelihood function: L(8;D) =



MLE for the Joint Distribution

e If we knew z,, for every z,,, the maximum likelihood problem is easy:

L(m, 1, 25 D) = Y 10gp (wn, 2n; 0, 11, )

n=1

N
Z 10gp ZCn‘Zn, :ua Z) + lng (Zna 7T) .



Maximum Likelihood

e We would get for K =1, ..., K:

)T




How can we fita GMM? Lecture #4

e Optimization uses the Expectation Maximization (EM) algorithm,
which alternates between two steps:

1. E-step: Compute the posterior probability over z given our current model,
i.e., how much do we think each Gaussian generates each datapoint.

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it would
generate the data it is currently responsible for.

— We can derive closed form updates for all parameters.



Where does EM come from?

e Optimizing the likelihood is hard because of the sum inside of the log.
Recalling 0 .= {7‘%, Ui, Zk, k= 1, ceny K}:

N K N K
L(6;D) = Zlog (Z TN (ajn;,uk,Zk)> = Zlog (Zp(a:n,zn — k;@)) :
n=1 k=1 n=1 k=1

e Let’s use a common trick in machine learning and introduce a new distri-
. L T.
bUthIl, q = [Q17'“7QK] .

al = p(ajnazn :kae)
L(0;D) = Z log qu .
n=1 k=1 Uk




Where does EM come from?

e Now we can swap them via Jensen’s inequality! For the concave function,

log, it holds:
z]) =g (me) > prg(er) =Elg(z)].

e Applying Jensen’s inequality:

Zlog (qu xn,zn—k 0) ) . quklog< xn,znzk;e)).

n=1 k=1 K

e Maximizing this lower bound will force our likelihood to increase.

e But how do we pick a ¢; that gives a good bound?



EM Derivation

e We got the sum outside, but we end up with an inequality:

Tny2n = k; 0
qr. log <p( )>-
qk

L(6;D) >

L 12
T[]~

p—

k

n—

o Let’s fix the current parameters to 6°'4 and try to find a good gy.

. . o o pold a posteriori probability of the
e What happens if we pick ¢, = p (Zn — k|33n7 0 )? latent variable given the sample

N p(xnazn:k;gdd) L
" p(zn=k|zn;00) — P

(:Cn; HOId), and the inequality becomes an equality!



EM Derivation

e We can now define and optimize:

N K
Q (0,67 =) N p(zn = klzn;0°9) logp (2n, 20 = k; 0)

n=1 k=1

N
= D Eptenlonio0) 08D (20, 203 6)].

n=1

— We ignored the part that doesn’t depend on 6.



EM Derivation

e S0, what just happened?

e (Conceptually: We don’t know z, so we average them given the current
model.

e Practically: We define the function:

N
Q(0,0°Y) == Eps an00) 108 P (2, 203 0)] -

n=1

that lower bounds the desired function and is equal at our current guess.



EM Derivation

e Why it works?

o If we now optimize 6§ we will get a better lower bound!
L(HOld;D) _ Q (eold, Hold) S Q (enewj eold) S L(@neW;D).

e We can iterate between expectation step and maximization step and
the lower bound will always improve (or we are done).



Visualization of the EM Algorithm

\

—oid grew
e The EM algorithm involves alternately computing a lower bound on the

log-likelihood for the current parameter values and then maximizing this
bound to obtain the new parameter values.



GMM E-Step: Responsibilities

e Using Bayes rule, the conditional a posteriori probability of z given x is
written as:

__pe=kpalz=k)  mN (@i Xk)
S apz=gplz=75) Y mN (@, 5))

e 7 can be viewed as the responsibility of component k& towards =.



e Once we computed v, = p (2, = kl|zy,; 0

log-likelihood:

) we can compute the expected

N
Z Ep(zn|:vn;901d) [lOg (p (xna n 9) )]

n=—

2 |
=

Ynk 108 (p (20 = F;0) ) +log (p (zn|20 = k; 6) )|

S
= 1[
=y
~I[
e
=

Yk 10g (Tx) + Yk 10g (N (2n; pr, i) )
k

L

-
1L
I L

S
1L

n

e To fit k Gaussians, we just need to weight each sample by v,,%.



e Solving for u; and X is like fitting k separate Gaussians but with weights
Ynk- 1he solution is similar to what we have already seen:

1 N
I = — nkTn,
i Nknglv
1 N
- ~ ~ N1
Y= > ok (@ = fir) (T — )"
n=1

/ effective sample size of cluster k
N

A Nk ° h N _

ﬂ-k:W7W1t kK — Tnk-

n=1



EM Algorithm for GMM

1. Initialize the means /l,io), covariances 2120) and mixing coeflicients ﬁ,io).

2. Iterate t = 0, 1, ... until convergence:

2.1. E-step: Evaluate the responsibilities given the current parameters:
i N (wn;ﬂg),ig))
SN (ain; iy 53§t))

j=1 "

V= (2 = klzy) =




EM Algorithm for GMM

O

~(0)

1. Initialize the means 1), ~, covariances Z< ) and mixing coefficients 7

2. Iterate t = 0, 1, ... until convergence:

2.2. M-step: Re-estimate the parameters given current responsibilities

(t)
UHD Z (t) t+1) N ith N — § : ()
Hi (t) YnkLn; T‘-l(g ) — ]l\cf ) W k Ink

T
(t+1) _ () ~ (t+1) ~(t+1)
2 N(t) ZV (2 =) (0n = i)



EM Algorithm for GMM

O

~(0)

1. Initialize the means 1), ~, covariances Z< ) and mixing coefficients 7

2. Iterate t = 0, 1, ... until convergence:

2.3. Evaluate the log-likelihood function and check for convergence:

L6 H(t+1). . D) Zlog (Z ](€t+1)N( A](€t+1) Z(t+1))) .



Visualization of the EM Algorithm




General EM Algorithm

1. Initialize §°'9.

2. E-step: Evaluate p (z\:c, HOId) and compute:
0,0°) YYp (z|z;0°') log p (z, 2;0) .

3. M-step: Maximize:

0" = arg meaxQ (6, HOId) .

4. Evaluate log-likelihood and check for convergence (or the parameters).
If not converged, set °'4 = "°V and go to step 2.



Take home messages on GMMs & EM

GMM is a model that uses latent variables to represent its components.
Mixture models are very powerful models, universal approximator.
Optimization is performed using the EM algorithm.

EM is a general algorithm for optimizing many latent variable models.
EM iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima. So, we can use multiple restarts.

N o R N

. Limitation: need to be able to compute the posterior p(z|x; #) which might
not be possible for more complicated models.

— Solution: Variational inference (will be presented in VAEs).
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