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Gaussian Mixture Model - Motivation Lecture #4



• Now, we are trying to fit a GMM with K = 2 components (or modes):
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GMM Definition

pθ(x) =
K∑

k=1

πkN (x;µk,Σk),
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GMM Properties Lecture #4



2D GMM Density Estimation Lecture #4



GMM Ancestral Sampling Lecture #4



Fitting GMMs: Maximum Likelihood

L(θ;D) =
N
∑

n=1

log

(

K
∑

k=1

πkN (xn;µk,Σk)

)

.
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1. Singularities: Arbitrarily large likelihood when a Gaussian component
explains a single point.

2. Identifiability: Solution is invariant to permutations (but not an issue
if used as a generative model).
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Mixture Models as Latent Variable Model 
Marginalization
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Latent Variable in GMMs

N (x;µk,Σk)
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Latent Variable Models in General Lecture #4



Back To GMMs

p(x) =
K∑

k=1

πkN (xn;µk,Σk) .

• We had: z ∼ Catergorical(π), where πk ≥ 0, Σkπk = 1.

• Join distribution: p(x, z) = p(z)p(x|z).

L(θ;D) =
N
∑

n=1

log

(

K
∑

k=1

πkN (xn;µk,Σk)

)

=
N
∑

n=1

log

(

K
∑

zn=1

p (zn;π) p (xn|zn;µ,Σ)

)

.
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MLE for the Joint Distribution

L(π, µ,Σ;Dxz) =
N∑

n=1

log p (xn, zn;π, µ,Σ)

=
N
∑

n=1

log p (xn|zn;µ,Σ) + log p (zn;π) .
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Maximum Likelihood

µ̂k =

∑N

n=1 1[zn=k]xn

∑N

n=1 1[zn=k]

,

Σ̂k =

∑N

n=1 1[zn=k] (xn − µ̂k) (xn − µ̂k)
T

∑N

n=1 1[zn=k]

,
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How can we fit a GMM?

• Optimization uses the Expectation Maximization (EM) algorithm,
which alternates between two steps:

↪→ We can derive closed form updates for all parameters.
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Where does EM come from?

L(θ;D) =
N
∑

n=1

log

(

K
∑

k=1

πkN (xn;µk,Σk)

)

=
N
∑

n=1

log

(

K
∑

k=1

p (xn, zn = k; θ)

)

.

L(θ;D) =
N
∑

n=1

log

(

K
∑

k=1

qk
p (xn, zn = k; θ)

qk

)

.
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Where does EM come from?

g (E[x]) = g

(

∑

k

pkxk

)

≥
∑

k

pkg(xk) = E [g(x)] .

L(θ;D) =
N
∑

n=1

log

(

K
∑

k=1

qk
p (xn, zn = k; θ)

qk

)

≥

N
∑

n=1

K
∑

k=1

qk log

(

p (xn, zn = k; θ)

qk

)

.

Lecture #4



EM Derivation

• Let’s fix the current parameters to θold and try to find a good qk.

• What happens if we pick qnk = p
(

zn = k|xn; θ
old

)

?

↪→
p(xn,zn=k;θold)
p(zn=k|xn;θold) = p

(

xn; θold
)

, and the inequality becomes an equality!

L(θ;D) ≥
N
∑

n=1

K
∑

k=1

qk log

(

p (xn, zn = k; θ)

qk

)

.

a posteriori probability of the 
latent variable given the sample
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EM Derivation

Q
(

θ, θold
)

:=
N
∑

n=1

K
∑

k=1

p
(

zn = k|xn; θ
old

)

log p (xn, zn = k; θ)

=
N∑

n=1

Ep(zn|xn;θold) [log p (xn, zn; θ)] .
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EM Derivation

• Conceptually: We don’t know zn so we average them given the current
model.

• Practically: We define the function:

that lower bounds the desired function and is equal at our current guess.
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Q
(

θ, θold
)

:=
N
∑

n=1

Ep(zn|xn;θold) [log p (xn, zn; θ)] .



EM Derivation

• We can iterate between expectation step and maximization step and
the lower bound will always improve (or we are done).
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Visualization of the EM Algorithm Lecture #4



GMM E-Step: Responsibilities

γk = p (z = k|x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)

∑K
j=1

p(z = j)p(x|z = j)
=

πkN (x;µk,Σk)
∑K

j=1
πjN (x;µj ,Σj)

.
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GMM E-Step

• Once we computed γnk = p
(

zn = k|xn; θ
old

)

we can compute the expected
log-likelihood:
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N
∑

n=1

Ep(zn|xn;θold)

[

log
(

p (xn, zn; θ)
)]

=
N
∑

n=1

K
∑

k=1

γnk
[

log
(

p (zn = k; θ)
)

+ log
(

p (xn|zn = k; θ)
)]

=
N
∑

n=1

K
∑

k=1

γnk log
(

πk

)

+
N
∑

n=1

K
∑

k=1

γnk log
(

N (xn;µk,Σk)
)



GMM M-Step
• Solving for µk and Σk is like fitting k separate Gaussians but with weights

γnk. The solution is similar to what we have already seen:

µ̂k =
1

Nk

N∑

n=1

γnkxn,

Σ̂k =
1

Nk

N∑

n=1

γnk (xn − µ̂k) (xn − µ̂k)
T
,

π̂k =
Nk

N
, Nk =

N∑

n=1

γnk.

effective sample size of cluster 𝑘
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1. Initialize the means µ̂
(0)
k

, covariances Σ̂
(0)
k

and mixing coefficients π̂
(0)
k

.

2. Iterate t = 0, 1, ... until convergence:

2.1. E-step: Evaluate the responsibilities given the current parameters:

γ
(t)
nk = p (zn = k|xn) =

π̂
(t)
k N

(

xn; µ̂
(t)
k , Σ̂(t)

k

)

∑K
j=1 π

(t)
j N

(

xn; µ̂
(t)
j , Σ̂(t)

j

) .
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2.2. M-step: Re-estimate the parameters given current responsibilities:

µ̂
(t+1)
k

=
1

N
(t)
k

N∑

n=1

γ
(t)
nk

xn,

Σ̂
(t+1)
k

=
1

N
(t)
k

N
∑

n=1

γ
(t)
nk

(

xn − µ̂
(t+1)
k

)(

xn − µ̂
(t+1)
k

)T

.

π̂
(t+1)
k

=
N

(t)
k

N
, N

(t)
k

=

N∑

n=1

γ
(t)
nk

.

2. Iterate t = 0, 1, ... until convergence:
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1. Initialize the means µ̂
(0)
k

, covariances Σ̂
(0)
k

and mixing coefficients π̂
(0)
k

.

EM Algorithm for GMM



EM Algorithm for GMM

2.3. Evaluate the log-likelihood function and check for convergence:

L(θ̂(t+1);D) =
N
∑

n=1

log

(

K
∑

k=1

π̂
(t+1)
k

N

(

xn; µ̂
(t+1)
k

, Σ̂(t+1)
k

)

)

.

2. Iterate t = 0, 1, ... until convergence:
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1. Initialize the means µ̂
(0)
k

, covariances Σ̂
(0)
k

and mixing coefficients π̂
(0)
k

.



Visualization of the EM Algorithm Lecture #4



General EM Algorithm
Lecture #4

HY-673
1. Initialize θold.

2. E-step: Evaluate p
(

z|x; θold
)

and compute:

3. M-step: Maximize:

θnew = argmax
θ

Q
(

θ, θold
)

.

4. Evaluate log-likelihood and check for convergence (or the parameters).
If not converged, set θold = θnew and go to step 2.
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Q
(

θ, θold
)

=
∑

x

∑

z

p
(

z|x; θold
)

log p (x, z; θ) .



Take home messages on GMMs & EM

1. GMM is a model that uses latent variables to represent its components.

2. Mixture models are very powerful models, universal approximator.

3. Optimization is performed using the EM algorithm.

4. EM is a general algorithm for optimizing many latent variable models.

5. EM iteratively computes a lower bound then optimizes it.

6. Converges but maybe to a local minima. So, we can use multiple restarts.

7. Limitation: need to be able to compute the posterior p(z|x; θ) which might
not be possible for more complicated models.

Lecture #4



References
Lecture #4

HY-673

Lecture #4

1. Pattern Recognition and Machine Learning (Chapter 9)
Christopher M. Bishop, Springer (2006)

2. “Maximum Likelihood from Incomplete Data via the EM Algorithm”
Dempster, Laird and Rubin. Journal of the Royal Statistical Society,
Series B. (1977)

3. https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/
pdf/bilmes-em-algorithm.pdf

4. https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_
algorithm



Lecture #4
Introduction to Deep 
Generative Modeling

HY-673 – Computer Science Dep., University of Crete
Professors: Yannis Pantazis & Yannis Stylianou

TAs: Michail Raptakis & Michail Spanakis


