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What 1s this course about?

#1

v/Statistical Generative Models
v'A Generative Model (GM) is defined as a probability distribution, p(x).

v'A statistical GM is a trainable probabilistic model, pg(x).

v'A deep GM is a statistical generative model parametrized by a neural network.

v'p(x) and in many cases pg(x) are not analytically known. Only samples are available!
v'Data (x): complex, (un)structured samples (e.g., images, speech, molecules, text, etc.)

v'Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,
maximum likelihood, divergence), optimization algorithm, invariance/equivariance, laws
of physics, prior distribution, etc.
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What 1s this course about?

v A dataset with images e.g., of bedrooms (LSUN dataset)

data distribution GM’s distribution
p(x) O Pggra(x) OF pa(x) pe(x) or pg(x)

v Goal: Find 6 € 0 such that pg(x) = py(x).

v It is generative because samplmg from pg (x) generates
new unseen images. I =
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What 1s this course about?

#1
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Parametric Model Space

We will stydy:

v Families of Generative Models
v Algorithms to train these GMs
v’ Network architectures

v’ Loss functions & distances between probability density functions
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What 1s this course about?

v'Conditional Generative Models
v'A conditional GM is defined as a conditional probability distribution, p(x|y).

v'y: conditioning variable(s) (e.g., label/class, text, captions, speaker id, style,
rotation, thickness, .
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Discriminative vs Generative Models #1

Discriminative Generative
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v’ Discriminative Model ® \“ o _ @ ® ®
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v Learn p(x|y)
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Families of Generative Models

v'Energy-based Models (EBMs) w [
° ® GAN: : ® @ [
v'Generative Adversarial Nets (GANSs) gl x oo |—@ o s
° ) VAE: Maximize N } { ]
v'Variational Auto-Encoders (VAEs) smsotoner oL gap B poels ¥
v'"Normalizing Flows (NFs) el W E B!

v'Diffusion Probabilistic Models (DPMs) ey || 1

conditional of each 0 1 2 ©

variable given past —J’—>

M Autoregressive e |8
v'Deep Autoregressive Models (ARMs) mosiiean 8 B W ]
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Famailies of Generative Models

P =

» - ®* 3 ¢ » -
ARMs NFs VAEs EBMs DPMs GANs GGFs
N g " g " 5 A 4

(R)NADE Planar Vanilla Belief nets  diffusion Vanilla KALE
WaveNet Coupling B-VAE Boltzmann  denoising WGAN Lipschitz-reg.
WaveRNN MAFs/IAFs VQ-VAE machines score f-GAN

GPT (f,I)-GAN
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Less known Families of GMs

v'Generative Stochastic Networks (GSNs)
v'Generative Gradient Flows (GGFs)

v'Specific EBMs
v'Deep Belief Networks

v'Deep Boltzmann Machines

v'Generative Flow Networks (GFlowNets)
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Progress in Image Generation #1

v Face generation: Rapid progress in image quality
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Image Super Resolution #1

v’ Several inverse problems can be solved with conditional GMs.
v’ Inverse problems: From measurements, calculate/infer the causes.

v P(high resolution|low resolution) ¥

v’ Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network - Ledig et al. - CVPR 2017

v" https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_P
hoto-Realistic_Single_Image CVPR_2017_ paper.html
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Image Inpainting

v P(full image|masked image)

v'DeepFill (v2): Free-Form Image Inpainting With Gated Convolution
—Yu et al. - ICCV 2019

v’ https://openaccess.thecvf.com/content_ICCV_2019/html/Yu_Free-
Form_Image Inpainting_With_Gated_Convolution ICCV_2019 paper.html
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Image Colorization

v'P(colored image|grayscale image)

v PalGAN: Image Colorization with Palette Generative Adversarial
Networks — Wang et al. - ECCV 2022

v’ https://link.springer.com/chapter/10.1007/978-3-031-19784-0_16
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Text2Image Translation #1

v'Recent advancements:
v'DALL-E 2
v'Stable Diffusion
v'Imagen
v'GLIDE
v'"Midjourney

vP(image|text)

Théatre D’opéra Spatial by Jason Allen and Midjourney
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OpenAl’'s DALL-E 2

v Text 2 Text embedding = Image embedding = low resolution
image =2 medium resolution image =2 high resolution image

vP(highres image|text caption) = P(image emb|text caption) x
P(highresimagelimage emb)
CLIP objective o E img
o encoder
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v'Hierarchical Text-Conditional
Image Generation with CLIP Latents -
Ramesh et al. - 2022

v https://cdn.openai.com/papers/dall-e-2.pdf ‘a corgi
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Image2lmage Translation #l

v'Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks
(CycleGAN) — Zhu et al. - ICCV 2017

v’ https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired _Image-To-
Image_Translation ICCV_2017_ paper.html
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Speech & Audio Synthesis

V'P(Xpiq|Xe, Xp—1, ..., text)
v"WaveNet, WaveRNN, Parallel Wavenet, Text to Speech Synthesis

MelGAN, WaveDiff, ... Parametric
Ouput @ @ © © © © © © © © © © @ @ © Concatenative
Hil(.jden WaveNet
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(Natural) Language Generation 1

v'P(next word|previous word)
v

/ G PT- 3 InferKit pevo

Generate Options

v'Generative Pre-trained
Transformer

B e ] 600 C
/ Try to include these words @
drug design X

[[] startatbeginning @
Advanced Settings v

[} Pauseatend @

Nucleus samplingtopp @
—_—® 09 °

Sampling temperature @
—o 0.5

<2

Reset

X rn


https://app.inferkit.com/demo
https://deepai.org/machine-learning-model/text-generator
https://deepai.org/machine-learning-model/text-generator
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(Natural) Language Generation

v'Enormous model size (Trillion parameters?)

OpenAl
v'Enormous & diverse training data ChatGPT4.0
v'"Multimodal capabilities
v'Context learning (a.k.a. prompting)
v'Reinforcement learning
v'Enormous performance

v'Coherence, relevance, proficiency
v'Safety & Ethics
v'Few steps from AGI TR LA
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Molecule/Drug/Protein Design

v'"MolGAN: An implicit generative model for small molecular graphs
— De Cao & Kipf — ICML 2018
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Driving forces in GM progress

v'Representation learning

v'Leveraging the exponential growth of data & of model’s parameters
via self-supervised learning

v'Gave raise to the Foundation Models

v'Computational resources are also exponentially increasing.

v'Better understanding of the models, algorithms act as key
enablers.

v'Unlocks human productivity & creativity.

v'Ideally, it will accelerate the scientific discovery process.




Challenges 1n GMs

v'Representation: How do we model the joint distribution of many
random variables?

v'Need compact & meaningful representations

v'Learning (a.k.a. quality assessment): What is the proper comparison
metrics between probability distributions?

v'Reliability: Can we trust the generated outcomes? Are they
consistent?

v'Alignment: Do they perform according to the input of the user?
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Prerequisites #1

v'Very good knowledge of probability theory, multivariate calculus
& linear algebra.

v'Intermediate knowledge regarding machine learning & neural
networks.

v Proficiency in some programming language, preferable Python, is
required.
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Course Syllabus

v'Basics in probability theory (1W)
v’ Shallow generative models - GMMs (1W)
v'Exact (i.e., fully-observed) likelihood

v" AR models (1.5W)
v"Normalizing flows (1.5W)

b

~

v’ Approximate likelihood Exact Approxi Implicit
v VAEs (2W) | , ~ mate |
v’ Diffusion/Score-based models (2W) \/ lv‘ H
v EBMs (1W) / ) b

v Implicit O © O/ U © o ©

v GANs (2W)
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Logistics

v’ Teaching Assistant: Michail Raptakis (PhD candidate)

v Weekly Tutorial (Friday 10:00-12:00): Python/PyTorch basics, neural
network architectures and training, solve problems to assist with
homework, solve selected homework’s problems.

v’ Textbook: Probabilistic Machine Learning: Advanced Topics
by Kevin P. Murphy

v'Seminal papers will be distributed.


https://probml.github.io/pml-book/book2.html

Grading policy

v Final Exam (30% of total grade)

v'Open notes
v'NO internet

v'5-6 series of Homework (40% of total grade)
v'Mix of theoretical and programming problems
v’ Equally weighted

v Project: paper implementation & presentation (30% of total grade)
v Implementation: 10%
v'Final report: 10%
v'Presentation: 10%




Project

v'Select from a given list of papers or propose a paper (which has to
be approved)

\/Cateqories OprDEI'SZ
v'Application of deep generative models on a novel task/dataset

v'Algorithmic improvements into the learning, inference and/or evaluation
of deep generative models

v'Theoretical analysis of any aspect of existing deep generative models

v Groups of up to 2 students per project

v'"Computational resources might be provided (colab, local GPUs,
etc.)

Lecture

#1
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