Introduction to Deep Generative Modeling

Lecture #1

HY-673 – Computer Science Dept, University of Crete

Professors: Yannis Pantazis & Yannis Stylianou

TAs: Michail Raptakis & Michail Spanakis

✓ Statistical Generative Models

- \checkmark A Generative Model (GM) is defined as a **probability distribution**, p(x).
 - \checkmark A statistical GM is a <u>trainable probabilistic</u> model, $p_{\theta}(x)$.
 - ✓ A deep GM is a statistical generative model parametrized by a *neural network*.
 - $\checkmark p(x)$ and in many cases $p_{\theta}(x)$ are not analytically known. Only samples are available!
- ✓ Data (x): complex, (un)structured samples (e.g., images, speech, molecules, text, etc.)
- ✓ **Prior knowledge:** parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g., maximum likelihood, divergence), optimization algorithm, invariance/equivariance, laws of physics, prior distribution, etc.

✓ A dataset with images e.g., of bedrooms (LSUN dataset)

- ✓ *Goal:* Find $\theta \in \Theta$ such that $p_{\theta}(x) \approx p_{d}(x)$.
- It is <u>generative</u> because <u>sampling from $p_{\theta}(x)$ <u>generates</u> new <u>unseen</u> images. $\sim p_{\theta}(x)$ </u>

$$x_i \sim p_{\text{data}}$$
 $i = 1, 2, \dots, n$

Parametric Model Space

We will stydy:

- ✓ Families of Generative Models
- √ Algorithms to train these GMs
- ✓ Network architectures
- ✓ Loss functions & distances between probability density functions

✓ Conditional Generative Models

- \checkmark A conditional GM is defined as a **conditional probability distribution**, p(x|y).
- \checkmark y: conditioning variable(s) (e.g., label/class, text, captions, speaker id, style, rotation, thickness, ...)

 $\sim p_{\theta}(x|y), y:$ digit label

Discriminative vs Generative Models

Data: x

Label: y

"Cat"

- ✓ Discriminative Model
 - \checkmark Learn the probability distribution p(y|x)
- ✓ Generative Model
 - \checkmark Learn the probability distribution p(x)
- ✓ Conditional GM
 - ✓ Learn p(x|y)

Families of Generative Models

- √ Energy-based Models (EBMs)
- ✓ Generative Adversarial Nets (GANs)
- √ Variational Auto-Encoders (VAEs)
- ✓ Normalizing Flows (NFs)
- ✓ Diffusion Probabilistic Models (DPMs)
- ✓ Deep Autoregressive Models (ARMs)

Families of Generative Models

Less known Families of GMs

- ✓ Generative Stochastic Networks (GSNs)
- ✓ Generative Gradient Flows (GGFs)
- ✓ Specific EBMs
 - ✓ Deep Belief Networks
 - ✓ Deep Boltzmann Machines

• •

✓ Generative Flow Networks (GFlowNets)

• • •

Progress in Image Generation

✓ Face generation: Rapid progress in image quality

Image Super Resolution

- ✓ Several inverse problems can be solved with *conditional GMs*.
- ✓ *Inverse problems:* From measurements, calculate/infer the causes.

- $\checkmark P(high\ resolution|low\ resolution)$
- ✓ Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network - Ledig et al. - CVPR 2017
 - √ https://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_P
 hoto-Realistic Single Image CVPR 2017 paper.html

Image Inpainting

- $\checkmark P(full\ image|masked\ image)$
- ✓ <u>DeepFill (v2):</u> Free-Form Image Inpainting With Gated Convolution
 - Yu et al. ICCV 2019
 - ✓ https://openaccess.thecvf.com/content_ICCV_2019/html/Yu_Free-Form_Image_Inpainting_With_Gated_Convolution_ICCV_2019_paper.html

Image Colorization

$\checkmark P(colored\ image|grayscale\ image)$

- ✓ PalGAN: Image Colorization with Palette Generative Adversarial Networks Wang et al. ECCV 2022
 - √ https://link.springer.com/chapter/10.1007/978-3-031-19784-0_16

Text2Image Translation

- ✓ Recent advancements:
 - ✓ DALL-E 2
 - ✓ Stable Diffusion
 - ✓ Imagen
 - **✓** GLIDE
 - ✓ Midjourney
- $\checkmark P(image|text)$

Théâtre D'opéra Spatial by Jason Allen and Midjourney

OpenAI's DALL-E 2

- √Text → Text embedding → Image embedding → low resolution image → medium resolution image → high resolution image
- $\checkmark P(high\ res\ image|text\ caption) = P(image\ emb|text\ caption) \times P(high\ res\ image|image\ emb)$
- ✓ Hierarchical Text-Conditional Image Generation with CLIP Latents -Ramesh et al. - 2022
 - √ https://cdn.openai.com/papers/dall-e-2.pdf

Image2Image Translation

- ✓ Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks (CycleGAN) Zhu et al. ICCV 2017
 - ✓ https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Speech & Audio Synthesis

$$\checkmark P(x_{t+1}|x_t,x_{t-1},...,text)$$

✓ WaveNet, WaveRNN, Parallel Wavenet, MelGAN, WaveDiff, ...

Text to Speech Synthesis

van den Oord et al., 2016

(Natural) Language Generation

- $\checkmark P(next word|previous word)$
- √ https://app.inferkit.com/demo
- ✓ GPT-3
 - ✓ Generative Pre-trained Transformer
 - ✓ https://deepai.org/machine-learning-model/text-generator

(Natural) Language Generation

- ✓ Enormous model size (Trillion parameters?)
- ✓ Enormous & diverse training data
- ✓ Multimodal capabilities
- ✓ Context learning (a.k.a. prompting)
- ✓ Reinforcement learning
- ✓ Enormous performance
 - ✓ Coherence, relevance, proficiency
 - ✓ Safety & Ethics
 - ✓ Few steps from AGI

Geometric Design

✓ Just meshing around with GPT4 (ESA proposal)

Molecule/Drug/Protein Design

- ✓ MolGAN: An implicit generative model for small molecular graphs
 - De Cao & Kipf ICML 2018

Driving forces in GM progress

- ✓ Representation learning
 - ✓ Leveraging the exponential growth of data & of model's parameters via self-supervised learning
 - ✓ Gave raise to the Foundation Models
- ✓ Computational resources are also exponentially increasing.
- ✓ <u>Better understanding</u> of the models, algorithms act as key enablers.
- ✓ <u>Unlocks</u> *human* productivity & *creativity*.
- ✓ Ideally, it will <u>accelerate</u> the *scientific discovery process*.

Challenges in GMs

- ✓ Representation: How do we model the joint distribution of many random variables?
 - ✓ Need compact & meaningful representations
- ✓ Learning (a.k.a. quality assessment): What is the proper comparison metrics between probability distributions?
- ✓ Reliability: Can we trust the generated outcomes? Are they consistent?
- ✓ Alignment: Do they perform according to the input of the user?

Prerequisites

- ✓ <u>Very good knowledge</u> of *probability theory, multivariate calculus* & *linear algebra*.
- ✓ Intermediate knowledge regarding machine learning & neural networks.
- ✓ <u>Proficiency</u> in some *programming language*, preferable <u>Python</u>, is required.

Course Syllabus

- ✓ Basics in probability theory (1W)
 - ✓ Shallow generative models GMMs (1W)
- ✓ Exact (i.e., fully-observed) likelihood
 - ✓ AR models (1.5W)
 - ✓ Normalizing flows (1.5W)
- ✓ Approximate likelihood
 - ✓ VAEs (2W)
 - ✓ Diffusion/Score-based models (2W)
 - ✓ EBMs (1W)
- ✓ Implicit
 - ✓ GANs (2W)

Logistics

- ✓ *Teaching Assistant:* Michail Raptakis (PhD candidate)
- ✓ <u>Weekly Tutorial (Friday 10:00-12:00)</u>: Python/PyTorch basics, neural network architectures and training, solve problems to assist with homework, solve selected homework's problems.
- ✓ <u>Textbook:</u> **Probabilistic Machine Learning: Advanced Topics** by Kevin P. Murphy
 - ✓ https://probml.github.io/pml-book/book2.html
- ✓ Seminal papers will be distributed.

Grading policy

- ✓ *Final Exam* (**30**% of total grade)
 - ✓ Open notes
 - ✓ NO internet
- √ 5-6 series of <u>Homework</u> (40% of total grade)
 - ✓ Mix of theoretical and programming problems
 - ✓ Equally weighted
- ✓ *Project*: paper implementation & presentation (**30**% of total grade)
 - ✓ Implementation: **10**%
 - ✓ Final report: 10%
 - ✓ Presentation: **10**%

Project

- ✓ Select from a given list of papers or propose a paper (which has to be approved)
- ✓ Categories of papers:
 - ✓ Application of deep generative models on a novel task/dataset
 - ✓ Algorithmic improvements into the learning, inference and/or evaluation of deep generative models
 - √ Theoretical analysis of any aspect of existing deep generative models
- ✓ Groups of **up to 2 students** per project
- ✓ Computational resources might be provided (colab, local GPUs, etc.)

Introduction to Deep Generative Modeling

Lecture #1

HY-673 – Computer Science Dept, University of Crete

Professors: Yannis Pantazis & Yannis Stylianou

TAs: Michail Raptakis & Michail Spanakis