
HY673 - Spring 2024 Problem Set #1
Yannis Pantazis (12/03/2024)

Instructions

• Due date: Tuesday March 26th, 2023

• Submission via e-mail to the class account: hy673@csd.uoc.gr

• Provide one file with the written solutions.

• Provide one folder with code.

– The name of each file in the folder should indicate the respective exercise.

– Your code should run on colab.

• All assignments in this course are individual, not group, assignments. You may freely
discuss homework assignments with your fellow classmates. The final solutions, how-
ever, must be written entirely on your own. This includes programming assignments.

• You are allowed to use Generative Al Tools such as ChatGPT for help with homework
assignments for grammatical corrections only. To maintain academic integrity, students
must disclose any use of Al-generated material.

Problem 1 (Change of variable formula). Let X ∼ Exp(λ) be an exponential random
variable with parameter λ and let Y = X2.

(a) Calculate analytically the probability density function (pdf), fY (y), of Y using the
change of variable formula.

(b) Compute the histogram of the dataset {yi = g(xi) : xi ∼ Exp(0.5)}ni=1 with n =
100, 1000 & 104. Plot in the same figure and compare the estimated histogram with fY (y)
from (a). What do you observe as n increases?

(c) Repeat (b) using the dataset {yi = F−1
Y (ui) : ui ∼ U(0, 1)}ni=1 where FY (y) =∫ y

−∞ fY (z)dz is the cumulative distribution function. You are allowed to use the function

integrate()

of SymPy Python library for the estimation of the indefinite integral.

Problem 2 (Multivariate Gaussian). Assume that X = [X1, X2, X3]
T ∼ N (µ,Σ) where µ

is the mean vector and Σ is the covariance matrix.

(a) Compute the pdf of Y = X2 +X3 and the pdf of Z = [X1, Y ] assuming that both pdfs
are Gaussians.
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(b) Compute the conditional pdf

p(x1|x2 + x3 = 0)

(c) Numerically validate the result in (b) for µ = [0, 1,−1.5]T and

Σ =

 1 0.5 −0.8
0.5 0.9 −0.7
−0.8 −0.7 1.1

 .

To do so, generate n = 105 samples from the 3-dimensional pdf, define a stride via −ϵ <
x2 + x3 < ϵ for a small value of ϵ and then create a histogram for x1 using only the samples
that fall inside the stride. Compare the computed histogram with the solution in (b). What
percentage of the samples fall in the stride for ϵ = 0.1 and how many when it is set to
ϵ = 0.01?

Problem 3 (Maximum likelihood estimation). Generate and infer the parameters of an
autoregressive (AR) process.

(a) Simulate an AR(1) process which is given by the formula

xt = a0 + a1xt−1 + wt , t = 0, 1, 2, ..., T − 1

where wt is white noise (i.e., wt ∼ N (0, σ2) for all t and wt is independent of wt′ for all t, t
′

with t ̸= t′), σ = 1.0, a0 = 2.0, a1 = −1.5, x−1 = 0 and T = 1000.

(b) Write down the log-likelihood of the above AR(1) process for the parameter vector
θ = [a0, a1]

T .

(c) Compute analytically and then numerically using the simulated process from (a),
the maximum likelihood estimator. Plot the mean squared error between the numerically
estimated θ̂MLE and the ground truth as a function of T .

Problem 4 (Gaussian Mixture Model (GMM) with prior). (a) You will derive the Expectation-
Maximization (EM) algorithm when prior knowledge regarding the mean values is available.
Let

{
π, {µk}Kk=1, {Σk}Kk=1

}
be the parameters of a GMM model with K Gaussians and data

dimension d. Moreover, assume that each µk is independently sampled from a Gaussian
prior, µk ∼ N (µ0k, λ

−1Id), k = 1, ..., K where µ0k is the prior mean vector while λ is the
inverse variance and it is interpreted as the strength of the prior (e.g., larger values for λ
implies stronger prior). We assume no prior information regarding the weights, π and the
covariance matrices, {Σk}Kk=1.
Repeat the derivation steps of the EM algorithm starting from the maximization of the loga-
rithm of the a posteriori distribution

p
(
π, {µk}Kk=1, {Σk}Kk=1|x

)
∝ p

(
x|π, {µk}Kk=1, {Σk}Kk=1

)
× p

(
{µk}Kk=1

)
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where p({µk}Kk=1) is the (Gaussian) prior distribution for the mean vectors.
Hint: Only the formula for the mean vectors will be different.

(b) Generate n = 1000 samples from a GMM with K = 3 components using the ancestral
sampling algorithm (see Lecture 4). The mean vectors of the three equiprobable Gaussian
components are µ1 = [0, 1]T , µ2 = [1,−0.5]T and µ3 = [0, 0]T while the respective covariance
matrices being

Σ1 =

[
1 0.5
0.5 0.9

]
, Σ2 =

[
1 −0.8

−0.8 1.1

]
, and Σ3 =

[
1.5 1.3
1.3 1

]

(c) Use the equations derived in (a) and the data from (b) to estimate the parameters of
the GMM. Consider three cases:
i) Few data with strong correct prior (e.g., n ≈ 100 or less, µ0k ≈ µk and λ = O(103)),
ii) Few data with strong wrong prior (e.g., n ≈ 100 or less, µ0k ≈ µk + 1 and λ = O(103)),
iii) Many data with strong wrong prior (e.g., n ≈ 104, µ0k ≈ µk + 1 and λ = O(103)).

Problem 5 (Evidence lower bound (ELBO)). (a) Let p(x, z) be the joint pdf, p(x) be the
marginal pdf (or evidence) and p(z|x) be the posterior pdf. Assume also another conditional
pdf denoted by q(z|x). For all x, prove that

log p(x) = Eq(z|x)

[
log

p(x, z)

q(z|x)

]
+DKL

(
q(z|x) || p(z|x)

)
where DKL(· || ·) denotes the Kullback-Leibler divergence.

(b) Using the above formula from, prove the evidence lower bound for the GMM case
which reads (see also slides 18 & 19 in Lecture 4):

log pθ(x) ≥ Ep
θold

(z|x)
[
log pθ(x, z)

]
− Ep

θold
(z|x)

[
log pθold(z|x)

]
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