NEURAL NETWORKS APPLICATION TO SPEECH ENHANCEMENT

Muhammed Shifas PV

University of Crete, Dept of Computer Science shifaspv@csd.uoc.gr

CS-HY578: Speech Signal Processing, 9 May 2022

1/32

OUTLINE

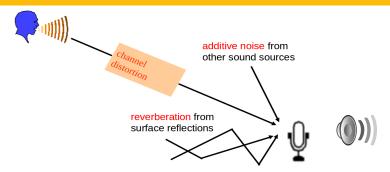
- 1 The Speech denoising Problem
- 2 Neural feature domain models
- 3 WAVEFORM DOMAIN MODELS: WAVENET AND FFTNET
- 4 Conclusion

◆ロト ◆問 ト ◆ 豊 ト ◆ 豊 ・ 夕 Q (?)

•00

- **1** The Speech denoising Problem
- 2 Neural feature domain models
- 3 WAVEFORM DOMAIN MODELS: WAVENET AND

Speech Denoising



• **Speech Denoise**: A common terms used on dealing with the non-speech interference

Traditional signal processing approach

- The noise and speech in the mixture will vary over the time
- The intensity of noise variations will be lower compared to the speech
- Traditional Approach: Estimate the variations of the noise over time and subtract.
 - -Spectral Substractions

Input: -Wiener filtering

◆ロト ◆部ト ◆草ト ◆草 ・ 釣りで

OUTLINE

- 2 Neural feature domain models
- 3 WAVEFORM DOMAIN MODELS: WAVENET AND

SHALLOW SE MODELS FOR LOW-END DEVICES: SECONDMENT AT SONOVA (OCT-NOV 2019)

SHORT TIME FOURIER TRANSFORM (STFT)

Fourier Theorem: Any signal can be represented as sum of complex periodic signals with different harmonics.

$$x[n] = \sum_{n=-\infty}^{\infty} X(\omega) e^{j\omega n}$$
 (1)

$$FT\{x[n]\} \equiv X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (2)

STFT: FT at short time instances.

$$\mathsf{STFT}\{x[n]\} \equiv X(m,\omega) = \sum_{n=-\infty}^{\infty} x[n]w[n-m]e^{-j\omega n} \qquad (3)$$

◆ロト ◆固ト ◆ 重ト ● ● 今へで

WHAT STFT REVEALS?

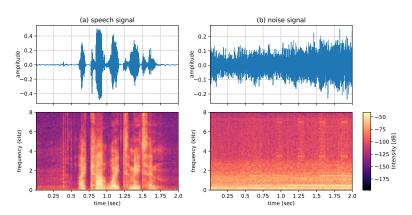


FIGURE: Time - Frequency representation of signals.

FEATURE DOMAIN MODELING

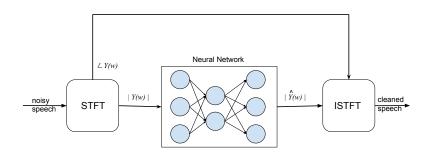
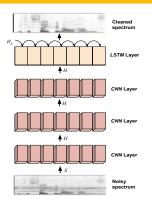


FIGURE: Feature domain SE framework

CONVOLUTIONAL RECURRENT SE 1



- Local spectral patterns are detected by convolution (CNN) layers
- Temporal dependency among frames are modelled by LSTM
- The kernel size in CNNs is customizable

FIGURE: CNN-LSTM SE architecture

- The network has low latency; frame size processing at each instant is 5ms.
- The 160 point FFT is calculated and the magnitude of half of these points are processed: due to spectral symmetry.
- Input is the noisy magnitude spectrogram and the objective is to get the clean magnitude at output.
- The noisy phase is used for the reconstruction of the clean prediction at the output.

MODEL LAYER DETAILS

TABLE: Number of parameters at each layer

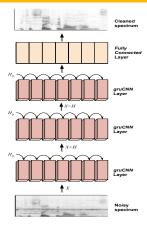
Layer	Kernal size	Params	
Convolution	[3X3]	1X[3X3]X256	
Convolution	[3X3]	256X[3X3]X256	
Convolution	[3X3]	256X[3X3]X256	
FC-LSTM	[80X256]	[80X256]X256X 11	
FC-Layer	[256X81]	[256X81]	
Total		12 Million	

* ロト 4 日 ト 4 恵 ト 4 恵 ト 東 *シ Q で
shifaspv@csd.uoc.gr Neural Models 13/32

Output:

15/32

RECURRENT CONVOLUTION SPEECH ENHANCEMENT



- Temporal dependencies over time is being modelled at feature extraction stage
- with gruCNN cell dependencies in local patches of the spectrum can be detected
- While the model complexity is reduced up to 60%.

FIGURE: gruCNN SE

²PV. Muhammed Shifas, Santelli, C., and Stylianou, Y. (2019) Towards a Neural-Based Single Channel Speech Enhancement Model for Hearing-Aids. In ICA 2019 Proceedings, pp. 5745-5748. DOI: 10.18154/RWTH-CONV-239594 shifaspv@csd.uoc.gr Neural Models

MODEL LAYER DETAILS

TABLE: Model Parameter count

Layer	Kernal size	Params	
Convolution	[3X3]	1X[3X3]X256	
gruCNN	[3X3]	3X[3X3]X256	
gruCNN	[3X3]	3X[3X3]X256	
FC-Layer	[256X81]	[256X81]	
Total		4 Million	

ENHANCEMENT IN NOISES WITH DIFFERENT SPECTRAL DISTRIBUTION

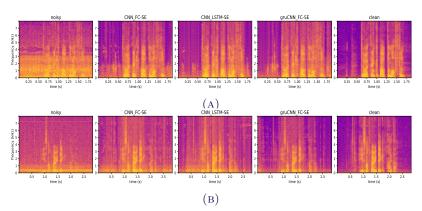


FIGURE: Model enhancement in two different noise types.

*ロト・(ラト・(恵)・(恵)・(恵)・(恵)・(恵)・(恵)・(恵)・(恵)・(恵)・(17/32 Neural Models 17/32

OBJECTIVE EVALUATION SCORE

TABLE: Objective measures comparing the performance

Noise level	Metric	Noisy	CNN_FC-SE	CNN_LSTM-SE	gruCNN_FC-SE
	PESQ	1.20	1.41	1.51	1.57
2.5 dB	STOI	0.68	0.71	0.72	0.74
2.5 ub	COVL	1.58	1.96	2.15	2.22
	SSNR	- 3.63	2.39	3.20	3.94
	PESQ	1.49	1.87	2.01	2.08
12.5 dB	STOI	0.77	0.78	0.79	0.80
12.5 UD	COVL	2.11	2.59	2.74	2.83
	SSNR	3.24	7.61	7.85	8.96
	PESQ	2.27	2.47	2.58	2.66
22.5 dB	STOI	0.85	0.83	0.84	0.85
22.J UD	COVL	3.05	3.20	3.30	3.41
	SSNR	12.26	11.21	11.14	12.83

SUBJECTIVE RATING

- 0: very bad quality with very annoying artifacts
- 1: bad quality annoying artifacts
- 3: medium quality with artifacts
- 4: good quality with little artifacts
- 5: very good quality with no artifacts

TABLE: Mean opinion score (MOS) with standard error

Metric	Noisy	CNN_FC-SE	CNN_LSTM-SE	gruCNN_FC-SE	Clean
MOS	$2.01{\pm}0.97$	$2.75{\pm}0.92$	$2.77{\pm}0.89$	$3.16 {\pm} 0.92$	4.86±0.42

・ロト・ロト・モー 夏 かくで Shifaspy@csd.uoc.gr Neural Models 19/32

ENHANCED SAMPLES

https://www.csd.uoc.gr/~shifaspv/IEEE_Letter-demo

- 2 Neural feature domain models
- 3 WAVEFORM DOMAIN MODELS: WAVENET AND FFTNET

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient
- Recently, the Resideual Network reported to overcome the
- The WaveNet and FFTNet are two sample domain models
- It models the dependency of a sample at t on the r previous

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient vanishing, and gradient burst.
- Recently, the Resideual Network reported to overcome the
- The WaveNet and FFTNet are two sample domain models
- It models the dependency of a sample at t on the r previous

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

Neural Models shifaspv@csd.uoc.gr 22/32

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient vanishing, and gradient burst.
- Recently, the Resideual Network reported to overcome the vanishing gradient
- The WaveNet and FFTNet are two sample domain models
- It models the dependency of a sample at t on the r previous

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient vanishing, and gradient burst.
- Recently, the Resideual Network reported to overcome the vanishing gradient
- The WaveNet and FFTNet are two sample domain models proposed as Vocoders (TTS)^a
- It models the dependency of a sample at t on the r previous

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient vanishing, and gradient burst.
- Recently, the Resideual Network reported to overcome the vanishing gradient
- The WaveNet and FFTNet are two sample domain models proposed as Vocoders (TTS)^a
- It models the dependency of a sample at t on the r previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

SAMPLE DOMAIN MODELS

- Neural models are developed to operates on sample domain.
- It was difficult initially due to the constraints like gradient vanishing, and gradient burst.
- Recently, the Resideual Network reported to overcome the vanishing gradient
- The WaveNet and FFTNet are two sample domain models proposed as Vocoders (TTS)^a
- It models the dependency of a sample at t on the r previous samples as:

$$f(y_t|x_{t-1},\ldots,x_{t-r}) \tag{4}$$

• The models differ on how this dependency is achieved

ahttps://deepmind.com/blog/wavenet-generative-model-raw-audio/

THE WAVENET ARCHITECTURE

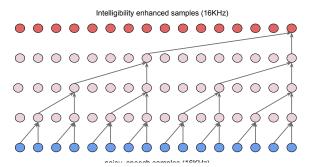


FIGURE: Causal Wavenet architecture

THE FFTNET ARCHITECTURE

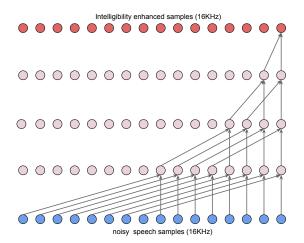


FIGURE: Causal FFTNet architecture

MODEL DETAILS

- Causal architecture: the current sample does not depend on the future samples.
- Target is the clean samples corresponding to the noisy input signal.

The loss function

• Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

- Causal architecture: the current sample does not depend on the future samples.
- Target is the clean samples corresponding to the noisy input signal.

Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

4 D > 4 A > 4 B > 4 B > B

- Causal architecture: the current sample does not depend on the future samples.
- Target is the clean samples corresponding to the noisy input signal.

Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

4 D > 4 A > 4 B > 4 B > B

MODEL DETAILS

- Causal architecture: the current sample does not depend on the future samples.
- Target is the clean samples corresponding to the noisy input signal.

The loss function

Loss function: Mean Absolute Error (time domain):

$$L(x^{(k)}, y^{(k)}) = \frac{1}{T^{(k)} - 2r} \sum_{t=r}^{T^{(k)} - r} |y_t^{(k)} - \hat{y}_t^{(k)}|$$

4□ → 4□ → 4 □ → 4 □ → 9 0 ○

DATA

- Noisy and clean files has been selected from NSDTSEA dataset³
- It consists of 20 native speakers speaking 400 different sentences
- Noisy set composed of 20 different environmental noises mixed with clean speech with different SNR points

³Valentini-Botinhao, Cassia. "Noisy speech database for training speech enhancement algorithms and TTS models." (2017)

OBJECTIVE EVALUATION

Metric	Noisy	SEGAN	SE-WaveNet	SE-FFTNet
PESQ	1.96	2.24	2.23	2.54
LSD	1.48	1.17	1.22	1.04
STOI	0.28	0.87	0.86	0.87

THE PROCESSED SAMPLES

https://www.csd.uoc.gr/~shifaspv/IS2019-demo.html

REFERENCES

- Padinjaru Veettil, M.S., Santelli, C., and Stylianou, Y. (2019) Towards a Neural-Based Single Channel Speech Enhancement Model for Hearing-Aids. In ICA 2019 Proceedings, pp. 5745-5748. DOI: 10.18154/RWTH-CONV-239594
- Muhammed Shifas, P. V., Adiga, N., Tsiaras, V., and Stylianou, Y. (2019). A Non-Causal FFTNet Architecture for Speech Enhancement. Proc. Interspeech 2019, p. 1826-1830. DOI: 10.21437/Interspeech.2019-2622.

4 D > 4 A > 4 B > 4 B > B shifaspv@csd.uoc.gr Neural Models 29/32

OUTLINE

- 2 Neural feature domain models
- 3 WAVEFORM DOMAIN MODELS: WAVENET AND
- 4 CONCLUSION

- Discussed in details the basic neural architectures
- Talked about feature domain models for speech enhancement: Aiming to computational constraint applications
- We have seen how to model the recurrency inside the feature extraction block.
- It has the potential to be implemented in the DSP processor for hearing aid.
- Discussed about the advanced wavefrom domain model:
 WaveNet and FETNet

- Discussed in details the basic neural architectures
- Talked about feature domain models for speech enhancement: Aiming to computational constraint applications
- We have seen how to model the recurrency inside the feature extraction block.
- It has the potential to be implemented in the DSP processor for hearing aid.
- Discussed about the advanced wavefrom domain model:
 WaveNet and FETNet

- Discussed in details the basic neural architectures
- Talked about feature domain models for speech enhancement: Aiming to computational constraint applications
- We have seen how to model the recurrency inside the feature extraction block.
- It has the potential to be implemented in the DSP processor for hearing aid.
- Discussed about the advanced wavefrom domain model:
 WaveNet and FFTNet

- Discussed in details the basic neural architectures
- Talked about feature domain models for speech enhancement: Aiming to computational constraint applications
- We have seen how to model the recurrency inside the feature extraction block.
- It has the potential to be implemented in the DSP processor for hearing aid.
- Discussed about the advanced wavefrom domain model:
 WaveNet and FFTNet

- Discussed in details the basic neural architectures
- Talked about feature domain models for speech enhancement: Aiming to computational constraint applications
- We have seen how to model the recurrency inside the feature extraction block.
- It has the potential to be implemented in the DSP processor for hearing aid.
- Discussed about the advanced wavefrom domain model:
 WaveNet and FFTNet

Thanks for your attention