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Abstract—An approach to the joint estimation of sine-wave
amplitude modulation (AM) and frequency modulation (FM) is
described based on the transduction of frequency modulation into
amplitude modulation by linear filters, being motivated by the
hypothesis that the auditory system uses a similar transduction
mechanism in measuring sine-wave FM. An AM-FM estimation
algorithm is described that uses the amplitude envelope of the
output of two transduction filters of piecewise-linear spectral
shape. The piecewise-linear constraint is then relaxed, allowing a
wider class of transduction-filter pairs for AM-FM separation
under a monotonicity constraint on the filters’ quotient. The
particular case of Gaussian filters is shown to yield a closed-form
solution to AM-FM estimation while gammatone filters, used as
a simplified model of auditory filters, and measured auditory
filters, although not leading to a solution in closed form, provide
for iterative AM-FM estimation. Solution stability analysis and
error evaluation are performed and the FM transduction method
is compared with the energy separation algorithm, based on the
Teager energy operator, and the Hilbert transform method for
AM-FM estimation. Finally, a generalization to two-dimensional
(2-D) filters is described.

Index Terms—Amplitude and frequency modulation, auditory-
filter transduction, energy separation algorithm, FM-to-AM
transduction, gammatone filter, Teager energy operator.

I. INTRODUCTION

I N MODELS of the early stage of auditory processing, a
near constant-Q filterbank approximates frequency-tuned

cochlear filters; the amplitude envelope of each cochlear filter
output is determined and passed on to higher processing levels.
Although this simple model tracks amplitude fluctuations in
an input sine wave, it does not necessarily track frequency
modulations because the amplitude envelope of a frequency-
modulated sine wave is constant. A hypothesis given by Saberi
and Hafter [1] for the measurement of frequency modulation
by the auditory system is that the cochlear filters, and perhaps
higher level neurophysiological tuning curves, use transduction
of frequency modulation (FM) to amplitude modulation (AM);
the instantaneous frequency of the FM sweeps through the
nonflat passband of the filter, thus inducing a change in
the amplitude envelope of the filter output. Psychoacoustic
experiments by Saberi and Hafter indicate that FM and AM
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may be transformed into a common neural code in the brain
stem. Goldstein [2], using an approximate Bessel function
representation of FM, earlier demonstrated the importance of
auditory filter shape in locating the place within each filter
where FM modulation may be optimally detected; Bessel
components of the modulation are weighted according to
auditory filter slope, resulting in distinct amplitude envelopes
with different location of the components. Others such as
McEachern [3] have also argued for the importance of auditory
filter shape in detecting frequency modulation. When both AM
and FM are present simultaneously, these modulations are
combined nonlinearly within the filter-output envelope. This
paper addresses the problem of separating AM and FM from
the amplitude envelope of the output of transduction filters
whose spectral shape is motivated by the tuning curves of
typical auditory filters [4], [5].

The approach to AM-FM separation is based on the ampli-
tude envelope of the output of two linear transduction filters.
Separation algorithms are described for numerous classes
of discrete-time transduction-filters1 using the difference or
quotient of their output envelopes. In one case, the filters take
on a piecewise-linear spectral shape; under certain conditions,
the resulting solution to AM-FM separation is shown to
reduce to an early method of FM demodulation for radio
broadcasting, referred to asbalanced frequency discrimination
[6]. The AM-FM estimation method is then generalized to
allow transduction by way of nonpiecewise-linear spectral
shape. Although the amplitude envelope of such filter outputs
may be a nonlinear function of the desired AM and FM, the
relative amplitude of the two filter outputs provides a means
of AM-FM separation under a monotonicity constraint on
their quotient. Gaussian filters2 are a particular class of these
filters that can result in a closed-form solution. A second such
class are gammatone filters, used to represent auditory filter
dynamics [5]; although a closed-form solution is not found
for this case, as well as for measured auditory filters, a unique
solution to AM-FM separation exists over certain frequency
ranges, obtainable by table look-up and iterative methods.

It is important to emphasize that, although a motivation for
the paper’s approach is thepossibilitythat the human auditory
system exploits FM-to-AM transduction using the spectral
shapes of auditory filters, the actual mechanism for frequency

1The approaches of this paper are also valid in continuous time; however,
because the algorithms are implemented by digital computer, sampled data
representation is invoked.

2Possible use by the auditory system of the ratio of two Gaussian filter
outputs as a means for FM estimation was proposed independently by
McEachern [3].
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demodulation in the ear is not known, and there are several
candidates. For example, since the cochlea consists of a large
number of overlapping filters, the auditory system may track
the frequencies at which local maxima in the neural firing rate
occur. Shifts in the peaks of the excitation pattern could be
used to track frequency modulation of the input. On the other
hand, because an FM signal can be expressed as a sum of
sines through a Bessel function expansion, sine components
of the FM signal may be analyzed across as well as within
auditory filters. This Bessel function viewpoint was taken, for
example, in the early work of Goldstein [2] in recognizing
that differences between temporal amplitude envelopes from
auditory filters are potential cues for discriminating FM from
AM. These observations as well as more recent work, as for
example by Edwards and Viemeister [7], serve to illustrate the
complexity of the modeling problem. The algorithms of this
paper, therefore, do not purport to describe AM-FM separation
by the auditory system.

The paper is organized as follows. In Section II, the FM-to-
AM transduction mechanism is described for a class of linear
filters with an AM-FM sine input. In Section III, transduction
filters with piecewise-linear spectra are investigated. The am-
plitude envelopes of the output of two distinct transduction
filters are determined and their difference or quotient is used
in the AM-FM separation. In Section IV, the piecewise-
linear constraint is relaxed and the algorithms of Section
III are generalized for arbitrary linear-filter pairs. A solution
“sensitivity measure” is defined, which quantifies a change in
the solution with a perturbation in the filter or input signal. A
closed-form solution is then derived for the specific case of
Gaussian filters. In Section V, an error analysis is performed
for piecewise-linear and Gaussian filters, including the effect
of change in bandwidth, change in input carrier and modulation
frequencies, and addition of noise. A performance comparison
is made with the Hilbert transform method [8]–[10] and the
energy separation algorithm [11], based on the Teager energy
operator [12], for AM-FM separation. In Section VI, AM-
FM separation is performed with gammatone filters, used
as a simplified model of auditory filters, as well as with
measured auditory filters. In Section VII, a generalization
of the method to two dimensions is described, presenting
an AM-FM separation algorithm for a particular class of
two-dimensional (2-D) separable Gaussian filters. The paper
ends in Section VIII with a summary, current work, and a
speculative discussion.

II. TRANSDUCTION OF FM TO AM

Consider a discrete-time AM-FM sine wave of the form

(1)

where and are the carrier and modulation frequencies,
respectively, is the time-varying amplitude, and is
the index of modulation. The instantaneous frequency
is defined as the phase derivative,3 i.e.,

(2)

3More generally, the instantaneous frequency can be expressed as!(n) =
!c + Iq(n) whereq(n) is a bandlimited frequency modulation signal. For
the examples of this paper, however,q(n) is restricted to a sine.

which represents a discretized form of the continuous-time
derivative with time sampling in-
terval normalized to unity. Consider the class of discrete-
time filters with frequency response that is zero for

i.e., for Under the condition that
i.e., that the Fourier

transform of the “negative frequency component” of does
not leak into positive frequencies,4 then the output of the
discrete-time filter to the input sequence is given by

(3)

Observe that the filter output of the form (3) can be used for
“direct” AM-FM estimation with certain filters. For example,
suppose that is unity in the region of the FM. Then
the output is the analytic signal representation of the input, its
imaginary part being the Hilbert transform of Therefore,
the amplitude is simply and the frequency

can be computed by the derivative of the phase of
[8]–[10]. In discrete-time, this phase derivative can be

obtained approximately by first-differencing the unwrapped
phase or approximately through first-differences of the real
and imaginary parts of We return to the Hilbert transform
approach to AM-FM estimation in Section V.

The methods of this paper rely on only the amplitude enve-
lope, i.e., the magnitude of the output of by exploiting
the property of filtertransduction, i.e., the linear-filter output
can be obtained approximately by sweeping through the
filter’s transfer function. The approximation is given by [13]

(4)

where is given in (2). The magnitude of the error in this
approximation is written as (4) being
valid when the relative error Under this
condition, the amplitude envelope of the instantaneous output
is given by the approximation

(5)

where, for convenience, the factorin (4) has been discarded.
We see that in using the envelope of the output, it follows
that only the magnitude of the filter is used. The
approximation (5) is the basis for the AM-FM separation
methods of this paper.

An upper bound5 on the error can be expressed as
a function of the duration or temporal “localization” of the
filter and the temporal “smoothness” of and

4The approximation does not hold for very low carrier with
large frequency modulation. For this case, the Fourier transform of
[A(n)=2][e�j[! n+I sin(! n)]] � h(n) 6= 0 for !> 0; and thus (3) is
approximate. This distortion will influence the accuracy of any AM-FM
separation method that relies on (3) such as the Hilbert transform method, as
well as the methods described in this paper.

5An upper bound one(n) also serves as an upper bound onky(n)j�js(n)k
becauseky(n)j � js(n)k � jy(n) � s(n)j:



QUATIERI et al.: AUDITORY-MOTIVATED FILTERS 467

(a)

(b)

(c)

Fig. 1. Global error bounds for an AM-FM sine. (a) Waveform. (b) Bound with increasing FM. (c) Bound with decreasing bandwidth.

[13]. These conditions reflect the requirement that the varying
amplitude and frequency be almost constant over the duration
of the filter’s impulse response at each time instant, the input
sine appearing as an eigenfunction of the linear filter. An upper
bound on can be quantified (see Appendix A) as

(6)

where and are the second and fourth moments
of i.e.,

giving measures of time localization of and
are measures of the average rate of change of and
respectively; specifically, for an arbitrary signal

For an input of the form in (1), the error bound grows as the
change in instantaneous amplitude and modulating frequency
increases, or as the filter bandwidth decreases.

Fig. 1(a) shows an input sequence of (1) of amplitude
envelope with a 30 Hz modulation and tapered on each end
with a half cycle of a von Hann window. The instantaneous
frequency of this particular sequence has carrier
Hz, index of modulation and modulation frequency

Hz. This sequence serves throughout the paper as
the basis for a variety of experiments, but where the carrier
and modulation frequencies are varied. Fig. 1(b), in particular,
shows how the error bound (6) increases with increasing
the frequency modulation from 40 Hz to 190 Hz. A
Gaussian filter of the form is used as
the tranduction filter. Fig. 1(c), using the specific sequence of

Fig. 1(a) with frequency modulation held fixed at 70 Hz,
illustrates the increasing trajectory of the error bound for the
Gaussian transduction filter when its bandwidth is decreased,
i.e., the value of parameter is increased from 0.01 to 0.04.

The bound on the instantaneous error in (6) is a
single value, given in terms of a global measure of rate
of change in amplitude and frequency. Appendix A gives a
tighter, time-varying, error bound in terms of a local rate of
change in these functions; when the instantaneous amplitude
or frequency changes more rapidly, then the local error bound
becomes larger [13]. Both the global and local error bounds
give guidelines for predicting behavior of AM-FM separation
algorithms throughout the paper.

III. AM-FM S EPARATION WITH PIECEWISE-LINEAR FILTERS

Consider a frequency response with piecewise-linear
magnitude and arbitrary phase, one specific subset being
real and positive bandpass filters6 with a positive-sloped and
a negative-sloped region as illustrated in Fig. 2. The filter
characteristic in the positive-sloped region is expressed as

(7)

where denotes the frequency interval over which
has positive slope. It is assumed that the maximum and
minimum frequencies about i.e., fall within7

Under these conditions, using (5) and (7), the amplitude
of the filter output can be written approximately as

(8)
6In this paper, we study positive, zero-phase piecewise-linear, Gaussian, and

gammatone filters because they are localized about the time origin. Although
the filter phase is not used in the approximation (5), a nonzero-phase function
can increase the approximation error. Additional discussion on the use of
zero-phase filters is given in Section VI and Appendix A.

7The input spectrum, however, can fall outside this range.
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Fig. 2. FiltersH1(!) (left) andH2(!) (right) with piecewise-linear spectra.

where the FM is linearly transduced to an AM.
One approach to separating the AM and FM from the

nonlinear function of (8) is to utilize the amplitude envelope
of the output of two distinct filters of the form of in
(7). Consider two such discrete-time filters in their positive-
sloped regions, i.e., for where

The output amplitude envelopes for in the
intersection of the regions are then expressed as

for which expanded gives

(9)

Multiplying the top component of (9) by the follow-
ing equation pair results:

Differencing the equation pair, combining terms, and solving
for yields

(10)

from which is obtained using either component of (9).
Denoting the above denominator by the variable i.e.,

then (10) is valid under the condition
The condition can be shown to be equivalent to

constraining the two positively-sloped regions of the filters
to be “distinct” in the sense that they are not related by a scale
factor, i.e., If in (9), we set
and then the AM-FM separation algorithm reduces to
a discrete form of abalanced frequency discriminator, which
is a classical early method of FM demodulation for radio
broadcasting [6], [14] (see Appendix B).

Alternatively, the instantaneous frequency can be
estimated first, followed by the amplitude modulation
This can be performed by dividing the pair of (9), i.e.,

(11)

to obtain

(12)

from which can be estimated using either component
of (9). This alternative solution serves as a dual to (10) and
provides the motivation for the generalization given in the
following section.

IV. EXTENSION TO NONPIECEWISE-LINEAR FILTERS

In this section, the approach introduced through (11) is
extended to nonpiecewise-linear filters. Closed-form solutions
are derived for the special case of Gaussian-filter pairs.

A. Generalized Filter Structures

Consider arbitrary frequency responses, and
equal to zero for Using (5), the following equation
pair can be written:

(13)

Motivated by (11), we write

Defining

(14)

then whenever is invertible

(15)

An estimate of the amplitude envelope then follows from either
component of (13).

There will be a unique solution (15) when is strictly
monotonic in a frequency interval in which lies. The
derivative of can be expressed as

so that a sufficient condition8 for a unique solution in the
region of interest becomes

(16)

The condition (16), as we shall show, is similar to our previous
condition that was derived for a piecewise-linear
frequency response; hence the functional notation We

8The derivative may be zero at the borders of the region of interest and at
certain inflection points.
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(a)

(b)

Fig. 3. Example functions (a)g(!) and (b) its derivative_g(!) for three different solutions: unique (solid), two solutions (dash), and unstable (dash-dot).

can think of the reciprocal of as a solution “sensitivity
measure” defined by

(17)

A large value of implies a large change in the solution
for a small deviation in i.e., when the model

or the measurement is not exact.
also provides a means of determining when the solution

is ambiguous. Example functions and their derivatives
are illustrated in Fig. 3, giving conditions for a unique

solution (solid) and two solutions (dash) over a frequency
interval [0, 2000] Hz. The third case (dash-dot) also provides
for a unique solution, but unlike the first case (solid), the
solution in the midfrequency region is highly sensitive to
perturbations in the function or the measurement

When and are the linear functions used in
(9), then the condition in (16) is reduced to

which was obtained
in Section III through the dual solution. For this piecewise-
linear case, and the
sensitivity function that
increases with increasing frequency, as well as when the two
filters approach multiples of one another, i.e.,

B. Gaussian Filters

In general, determining the solution in (15) is a nonlinear
problem and thus perhaps requires iteration. There do exist,
however, classes of filters that yield closed-form solutions.
One such class is that of Gaussian filters of the form

and that are centered at
frequencies and respectively. For this filter pair, we
write

(18)

Two simplifying cases from the various solution possibilities
are: i) equal bandwidths with different center frequencies
and ii) equal center frequencies with different bandwidths.
Henceforth, we refer to and as “bandwidth factors”
because they control the filters’ bandwidth.

With equal bandwidth factors, i.e., taking the
logarithm of both sides of the latter part of (18), we obtain

and solving for

(19)

where Unlike the piecewise-
linear case, the input carrier and FM sweep is allowed to fall
anywhere within the region of filter overlap. The function

for the Gaussian pair can be derived as
so that a solution exits

whenever the bandwidth is nonzero and the center frequencies
are different, i.e., the filters are not related by a scale factor.9

The sensitivity function is given by
which increases with decreasing

frequency and with decreasing bandwidth or center frequency
spacing. Example functions and are illustrated in
Fig. 4.

An example of AM-FM separation is shown in Fig. 5. The
input sequence in (1) has an amplitude envelope with
a 30 Hz modulation and tapered on each end with a half
cycle of a von Hann window, and instantaneous frequency with
carrier Hz with modulation frequency
Hz and modulation index Two Gaussian filters of equal
bandwidth were selected at 900 Hz and 1100 Hz. The sequence

is filtered with the Gaussian-filter pair and the resulting
sequences and are used to compute The
frequency and amplitude estimates are shown superimposed
on the originals, illustrating accurate estimates except at the
edges of the nonzero interval. In these boundary regions, a
maximum error is expected since the smoothness of the input
amplitude envelope and instantaneous frequency
is minimum in these regions; i.e., the frequency derivative is
infinite at the beginning and end of the sine, and the amplitude
slope is largest at these time instants. Therefore, the upper
bound on the approximation error of (5) is largest in these
boundary regions (see Appendix A).

In the second class of Gaussian filters, filter center fre-
quencies are equal, i.e., and bandwidths

9More generally, the Gaussian filters can contain an arbitrary amplitude
scaling which manifests itself as simply a scaling ofU (!):
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(a)

(b)

Fig. 4. Functions (a)g(!) and (b) sensitivity measureS(!) for Gaussian-filter pair of Fig. 5(b).

(a)

(b)

(c)

(d)

Fig. 5. Example of AM-FM estimation. (a) Original sequence. (b) Gaussian filters. (c) Superimposed original (solid) and estimated (dash) frequency.
(d) Superimposed original (solid) and estimated (dash) amplitude.

are unequal, i.e., for which case two solutions are
possible. Taking the logarithm of both sides of the latter part
of (18), we obtain

and solving for

(20)

where The ex-
pression (20) is meaningful provided This con-
dition, however, is always satisfied, which is proven by
observing that when then

Therefore, so that
Likewise, when then

Therefore, so that The
two solutions of (20) reflect the parabolic shape of

about the center frequency The corre-
sponding sensitivity measure is given by

giving infinite sensitivity at
where the slope of is zero (see Fig. 6). Although

there are generally two solutions, when is known to fall
to the right or to the left of the center frequency then a
unique solution can be found.10

10Even when!(n) straddles!o; by changing the sign in (20) whenever
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(a)

(b)

Fig. 6. Functions (a)g(!) and (b) sensitivity measureS(!) for Gaussian-filter pair of Fig. 7(a).

(a)

(b)

(c)

Fig. 7. Example of AM-FM estimation with Gaussian filters at same center frequency. (a) Gaussian filters. (b) Superimposed original (solid) and estimated
(dash) frequency. (c) Superimposed original (solid) and estimated (dash) amplitude.

An example of AM-FM separation is shown in Fig. 7. The
input sequence is the same as in the previous example
with Hz, Hz, and a 30 Hz AM.
Two Gaussian filters centered at 800 Hz were selected with
bandwidth factors and In this
case, the condition is satisfied so that the correct
solution is given by The frequency and
amplitude estimates are shown superimposed on the originals,
with maximum error, as before, at the beginning and end of
the sine input.

V. ERROR EVALUATION

In this section, a flavor is obtained for the performance of
the piecewise-linear and Gaussian-filter pairs with respect to
filter bandwidth, modulation frequency, and noise addition.
Comparisons are made with the Hilbert transform method

u(n) � 0; we can obtain the modulation component� u(n) to within a
sign factor.

[8]–[10] and energy separation algorithm [11] for AM-FM
estimation.

A. Filter Bandwidth

As the bandwidth of the filters narrows, one expects
the performance of the technique to decline because the
conditions under which the separation was derived become
less valid; the “localization” of the filter responses is
reduced with decreasing filter bandwidth. Furthermore, the
sensitivity increases with decreasing bandwidth. To
obtain a feeling for the change in performance with decreasing
filter bandwidth, a piecewise-linear filter pair configuration
was first constructed, similar to that of Fig. 2. To characterize
each filter, we first define a frequency vector
Hz, where is the location at which the positive-sloped
region intersects the frequency axis, is the location at which
the negative-sloped region intersects the frequency axis, and

is the location at which the two regions intersect. The filter
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(a)

(b)

Fig. 8. FM estimation with piecewise-linear filter of varying bandwidth. (a) Mean-squared FM error (in Hz) for a 2000 Hz (dash) and 3000 Hz (solid) carrier
as function of varying frequency cutoff!l:. (b) Denominator termU = a2b1 � a1b2 as a function of varying frequency cutoff!l:

Fig. 9. Example of mean-squared FM error (in Hz) for 2500 Hz carrier (solid) and 250 Hz carrier (dash) with decreasing Gaussian filter bandwidth.

has a fixed frequency vector
Hz, and the filter has a variable frequency vector

Hz, i.e., is identical to
but where is allowed to vary. The variable of
is swept through the range of values 500 Hz to 2000 Hz
in increments of 100 Hz. The input signal is identical
to that of Fig. 5 except for the carrier frequency and a 50
Hz FM. Fig. 8(a) gives the mean-squared error in the FM
estimate as a function of the variable for a carrier of 2000
Hz and 3000 Hz. As predicted from (6), there is a general
upward trend in the FM error as increases.11 There is
also an abrupt increase in the FM error as the varying cutoff
frequency of filter approaches Hz of

As the frequencies merge at 1000 Hz, the denominator
term of (10) becomes zero, as illustrated in
Fig. 8(b), resulting in an unstable solution because the two
filters become close to identical.12 In this case, the sensitivity
measure approaches
infinity. Similar trends are obtained for AM estimation error.
The observed increase in error with decreasing carrier is a
function of the particular filter-pair configuration; AM-FM
estimation for a low carrier can be improved with an alternate
configuration as illustrated in a following section.

Error evaluation was also performed with a Gaussian-filter
pair configuration, similar to that of Fig. 5(b), where the
bandwidth was made variable. The bandwidth factoris swept

11In addition, the error increases more rapidly for the 2000 Hz carrier
because the regions of linearity in the filter pair are exceeded sooner.

12The varying cutoff!l did not exactly meet the 1000 Hz cutoff ofH2(!)

because of the discrete increments with which the frequency changes in this
simulation.

through the range of values to 0.05 corresponding
to decreasing bandwidth. The input sequence is of the
form of Fig. 5. Fig. 9 gives the mean-squared error in the
FM estimate as a function of bandwidth for the two different
carrier frequencies of 2500 Hz and 250 Hz. In each case,
the Gaussian-filter pair is centered at the carrier with a 200
Hz separation of the two filter peaks. As predicted, there is
a general upward trend in the FM error as the bandwidth
decreases. A similar error trend occurs for the AM estimate.

B. Source Sensitivity

In the next experiment set, the modulation frequency
is varied and the filter pair is kept fixed. Both piecewise-
linear and Gaussian filter-pair configurations, similar to those
in Fig. 2 and 5, respectively, are tested for the input carriers of
2500 Hz and 250 Hz. For the 2500 Hz carrier, the piecewise-
linear filters are characterized by frequency offsets

Hz and Hz. The
Gaussian filters have a fixed bandwidth factor and
center frequencies 2400 Hz and 2600 Hz. For the 250 Hz
carrier, the linear-filter pair configuration has the form13 shown
in Fig. 10, with frequency vectors Hz and

Hz, where the negative-going filter slopes
are used for transduction. The Gaussian filters are centered
at 150 Hz and 350 Hz. Fig. 11(a) shows the mean-squared
FM error with FM increasing from 30 Hz to 170 Hz for the
2500 Hz carrier. The FM error increases as the modulation
frequency increases because the input “smoothness” condi-
tion for the approximation of (13) becomes less valid (see

13Interestingly, this shape is similar to that of auditory filters for very low
characteristic frequency.
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Fig. 10. FiltersH1(!) (lower) andH2(!) (upper) with piecewise-linear spectra used for AM-FM estimation with low-frequency carrier.

(a)

(b)

Fig. 11. Example of mean-squared FM estimation error (in Hz) with varying FM modulation frequency for FM linear transduction (circles), Gaussian
transduction (solid), energy separation (dash-dot), and Hilbert transform (dash) mentods. (a) 2500 Hz carrier. (b) 250 Hz carrier.

Appendix A). Fig. 11(b) shows the FM error for the piecewise-
linear and Gaussian transduction filters with the 250 Hz carrier,
illustrating a similar increasing error trend.

A comparison with two standard AM-FM estimation
methods, the discrete energy separation algorithm (DESA)
[11], based on the Teager energy operator [12], and the
Hilbert transform-based method [8]–[10], [15], is also shown
in Fig. 11. The energy separation algorithm in discrete time
is given by

where the Teager energy operator is given by the
three-point function

Prior to these operations a short five-point FIR smoothing is
applied to and to reduce esti-
mation error [11]. Given a real AM-FM continuous-time signal

an alternative approach to estimate its
envelope and instantaneous frequency is
to use the Hilbert transform of Specifically, if
is the Fourier transform of its Hilbert transform is the
signal with Fourier transform
The related complex-valuedanalytic signalis

Thus the Hilbert transform can provide an envelope
and instantaneous frequency and

respectively. In discrete
time, the amplitude is given by samples of and the

instantaneous frequency is approximated14 by a first-backward
difference on samples of the unwrapped phase of

i.e.,

where represents a discretized unwrapped phase ob-
tained by tracking jumps in the principal phase function
(calculated modulo of [8]. The Hilbert transform
was designed with the Parks–McClellan minimax error-based
algorithm [8], constrained to give smooth transition bands
near and to avoid aliasing in the Hilbert
transform time-domain response. For the bandpass test signals,
this design reduces error in the discrete-time phase derivative.

The three methods of AM-FM estimation, based on filter
transduction, the energy separation algorithm, and Hilbert
transform, generally yield different estimates. As seen in
Fig. 11, the FM transduction methods overall give the lowest
FM mean-squared error for the low carrier. The Hilbert trans-
form method, however, is very close to these in performance.
For the high carrier, the linear transduction method gives the
least error, while the Gaussian transduction method gives an
error between that from the energy separation algorithm and
Hilbert transform method. It was observed that the mean-
squared FM error for the transduction methods is dominated
by the error at the waveform edges where there is maximum
change in frequency and amplitude; this is consistent with
the local error bound of Appendix A. The energy separa-
tion algorithm, on the other hand, gives the least observed

14Alternatively, the phase derivative can be approximated using samples of
_�(t) = [x(t) _̂x(t) + _x(t)x̂(t)]=r2(t) where samples of the derivatives_x(t)
and _̂x(t) are approximated by first-backward differences. Using this method,
empirical results comparable to first-differencing unwrapped phase samples
were obtained.
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(a)

(b)

Fig. 12. Example of mean-squared FM estimation error (in Hz) with varying FM modulation frequency in 30 dB SNR Gaussian noise, for FM linear
transduction (circles), Gaussian transduction (solid), energy separation (dash-dot), and Hilbert transform (dash) methods. (a) 2500 Hz carrier.(b) 250 Hz carrier.

instantaneous error at these boundary points because, for
each output sample, it uses an extremely short window (five
samples in duration), which allows it to nearly instantaneously
adapt during signal transitions. Consequently, a different error
criterion more severely penalizing maximum instantaneous
error would likely change the relative performance of these
methods.15

C. Robustness in Noise

A comparison of the transduction methods with the energy
separation algorithm and Hilbert transform technique was also
carried out in a noise background. Because the transduction-
filter methods implicitly remove much of the input noise, in
order to test the methods in a comparable noise level, the
noise background was generated by bandpass filtering white-
Gaussian noise with a Gaussian filter of bandwidth equal to
the smallest of the two Gaussian transduction filters. This
bandpass noise was added to the signal and the resulting
sum used as input to the AM-FM estimation algorithms.
Specifically, the AM-FM signal of the previous example with
a carrier of 2500 Hz and 250 Hz was corrupted by the additive
bandpass Gaussian noise at a signal-to-noise ratio (SNR)16 of
approximately 30 dB. The results are shown in Fig. 12 for
the same four methods of Fig. 11. For the low carrier, the
two transduction methods with piecewise-linear and Gaussian
filters give performance which is comparable to the Hilbert
transform technique, the energy separation algorithm showing
the greatest noise sensitivity. For the high carrier, the Gauss-
ian transduction filters give the best performance, while the
linear transduction filter and Hilbert transform methods give
comparable performance with the greatest error. Similar trends
occur for an SNR of 20 dB, but with larger error.

In the transduction methods, one can displace filter pairs to
invoke transduction along different filter regions. For example,
displacing the Gaussian filters relative to the 2500 and 250 Hz

15In addition to different error criteria, one might explore different filter
configurations as, for example, the complementary piecewise-linear filter pair
of Armstrong’s balanced frequency discriminator. The filters of this paper
were selected for their resemblance to auditory filters.

16SNR is defined as the ratio of the variance of the signal and bandpass
noise in dB. The variance of the input signal is obtained by averaging power
over its nonzero region, while the noise variance is obtained by averaging
power of the bandpass-filtered white noise.

carrier by 100 Hz to the left gave a noticeable error increase,
while displacing to the right by 100 Hz made little change,
consistent with the sensitivity measure for this Gaussian
pair. Performance with such change in filter location, both with
and without a noise background, requires further study.

VI. AM-FM SEPARATION WITH AUDITORY-LIKE FILTERS

Motivation for the AM-FM estimation algorithms of this
paper is the hypothesis that the auditory system uses FM-
to-AM transduction in measuring sine-wave FM. Although
the auditory system may not indeed exploit FM transduction
to separate AM and FM, nevertheless, it is of interest to
determine whether AM-FM separation can be performed with
gammatone filters, used as simplified models of auditory
filters, as well as with measured auditory filters. Such filters
also serve to demonstrate the approach when a closed-form
solution does not exist, and thus where an iterative solution
is useful.

A. Gammatone Filters

A gammatone-filter impulse response, used to model both
cochlear and neurophysiological tuning curves [5], [16], [17],
is the product of a gammatone distribution and a tone, and in
continuous time is expressed as

Fig. 13(a) shows the discrete Fourier transform magnitude
of a pair of gammatone filters.17 For two closely spaced
discrete-time gammatone filters, and the function

was not found amenable
to a closed-form solution for Several other proposed
expressions for the magnitude of the auditory-filter transfer
functions were also considered. For example, an alternative to
gammatone filters is the rounded exponential (roex) filter [19]
given by Although simpler
in form than the gammatone filter, the roex transduction filter
also was not found to provide a closed-form solution to AM-
FM separation. Nevertheless, in these cases, one can use an

17Discrete-time gammatone filters were obtained from the auditory toolbox
developed by Slaney [18]. Filter order depends on its characteristic frequency
and ranges fromN = 2 to N = 32: In approximately simulating auditory
filters, bandwidth of the gammatone filters increases logarithmically with
increasing characteristic frequency.
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(a)

(b)

(c)

Fig. 13. Example of AM-FM estimation using gammatone filters for 3450 Hz carrier. (a) Frequency response of gammatone-filter pair and AM-FM sine
input. (b) Superimposed original (solid) and estimated (dash) frequency. (c) Superimposed original (solid) and estimated (dash) amplitude.

iterative solution procedure, provided that meets our
monotonicity condition for invertibility.

One approach to recovering using such filter pairs
is to first compute from and using
a large discrete Fourier transform (DFT).18 Given such
a fine frequency sampling of i.e.,
with small is obtained through a table look-up
procedure followed by iterative refinement. Specifically, for

each we first obtain the closest
to denoted by An estimate of is expressed

as which can be refined by iteration. In
Newton’s method [20], in particular, we first form the function

from which we obtain the derivative
The refined frequency estimate

is then obtained as where
and are estimated for noninteger frequencies by
interpolation.

FM estimation by table look-up, followed by ten passes of
the Newton iterative refinement, was applied to the AM-FM
sine of the form of Fig. 5 with a carrier of 3450 Hz and 70 Hz
FM. Two gammatone transduction filters with characteristic
frequencies at 3370 Hz and 3420 Hz [see Fig. 13(a)] were
applied. The function was obtained by computing
and with an 8192-point DFT, and was found to
be monotonic, and thus invertible, within the overlapping
frequency range. This monotonicity property was found em-
pirically to hold generally for closely spaced gammatone-filter
pairs. The AM-FM estimates are shown in Figs. 13(b) and (c).
The sensitivity measure corresponding to in this case was
found to be minimum in the region near 3450 Hz. Indeed, the
Newton iteration used in Fig. 13 did not noticeably reduce the

18Zero phase is attached to the filtersH1(!) and H2(!): This phase
function is motivated in Section VI-B, where this same zero-phase selection
is made for measured auditory filters.

error in the AM-FM estimates when compared with the coarser
initial table-lookup procedure. However, as the carrier moves
away from 3450 Hz, the sensitivity to quantization introduced
by the table look-up procedure increases, and as a consequence
the Newton iteration gives a noticeable error reduction.

Finally, from our results with decreasing bandwidth, we
expect gammatone filters of small characteristic frequency to
be more prone to estimation error in the separation process due
to their smaller bandwidth. An example is shown in Fig. 14
with filter characteristic frequencies 334 Hz and 368 Hz. The
input signal has a 350 Hz carrier and 25 Hz FM. The function

and the sensitivity measure similar to those at 3370
Hz and 3420 Hz of the above high-frequency gammatone-filter
pair, have minimum sensitivity about midway between the two
characteristic frequencies.19

B. Measured Auditory Filters

In previous sections, the transduction mechanism was il-
lustrated with piecewise-linear, Gaussian, or gammatone-filter
spectral shape. In this section, FM-to-AM transduction is
demonstrated with filters derived from measured auditory-
nerve tuning curves. The tuning curves represent the threshold
of auditory-nerve discharge at different characteristic frequen-
cies, with sound pressue level as a function of frequency, and
were obtained from measurements on cats [21], warped to
fall within the human frequency range. Auditory-filter impulse
responses were obtained by first inverting each tuning curve to
form a spectral magnitude. Because the magnitude values are
measured on a logarithmic scale, the values were then inter-
polated to 512 uniform samples over a 5000 Hz bandwidth. A
zero-phase function was attached to the spectrum and a 1024-

19AlthoughS(!) has this property for our two gammatone-filter examples,
this property does not hold for arbitrary gammatone-filter pairs. Monotone
decreasing and increasing sensitivity measures were also observed.
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(a)

(b)

(c)

Fig. 14. Example of AM-FM estimation using gammatone filters for 350 Hz carrier. (a) Frequency response of gammatone-filter pair and AM-FM sine input.
(b) Superimposed original (solid) and estimated (dash) frequency. (c) Superimposed original (solid) and estimated (dash) amplitude.

point inverse DFT applied to obtain an impulse response.20 The
filter characteristic frequencies are nonuniformly spaced, being
finely spaced in the low-frequency end, e.g., 10 Hz spacing,
and more widely spaced in the high-frequency end, e.g., 200
Hz spacing.

In one example, AM-FM separation was performed using a
measured auditory-filter pair with characteristic frequencies of
998 Hz and 1056 Hz. The input sine has carrier of 1050 Hz
with a 60 Hz FM. The filter frequency responses are shown
in Fig. 15(a) where the measurements are seen to be more
skewed than those of the gammatone filters.21 The function

computed with an 8192-point DFT, was found to be
monotonic over the region in which the two filters overlap, and
thus is invertible. The table look-up procedure was applied,
and the resulting AM-FM estimates are given in Fig. 15(b)
and (c). Increasing the modulation frequency above 60 Hz
quickly resulted in significant error. In other examples where
the characteristic frequencies of the auditory-filter pair were
lowered, the allowed FM for accurate estimation decreases, as
expected because the filter bandwidth decreases.

VII. T WO-DIMENSIONAL GENERALIZATION

In this section, a two-dimensional (2-D) generalization of
the AM-FM separation method is described. Such an approach
may enhance methods that rely on 2-D channel filters for
the measurement of 2-D signal frequency that give image
orientation, roughness, and flow patterns [22]. One expression

20The zero-phase response is localized about the time origin, and is
amenable to small transduction approximation error. Furthermore, we have
shown empirically that attaching a minimum-phase construction to the fre-
quency response increases error in the AM and FM estimates (see Appendix
A). Discarding the phase, however, does not of course imply that the auditory
system makes no use of the phase of auditory filters.

21Auditory filters may be more accurately modeled by a chirped gam-
matone. The addition of a chirp is responsible for the spectral skewness
[17].

for a 2-D discrete-time AM-FM sine wave is given by

(21)

where and are the carrier and modulation frequencies
for the first dimension, and are the carrier and
modulation frequencies for the second dimension, is
the time-varying amplitude, and and are the indices of
modulation. The instantaneous frequency is defined as
the phase derivative, i.e.,
and likewise for the instantaneous frequency Consider
the class of 2-D filters with frequency response
that is zero for and i.e., for

and The output of a filter to the
input sequence can be approximated by

under conditions analogous to the
1-D case of Section II.

For 2-D frequency responses and
generalizing (13), the following equation pair is written:

(22)

and thus

Defining

(23)

An estimate of and can be obtained by solving
The amplitude envelope can then

be obtained through (22). The amplitude of two filter outputs,
however, may not be sufficient to estimate the 2-D AM and
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(a)

(b)

(c)

Fig. 15. Example of AM-FM estimation using measured auditory filters for 1050 Hz carrier. (a) Frequency response of measured auditory-filter pair and
AM-FM sine input. (b) Superimposed original (solid) and estimated (dash) frequency. (c) Superimposed original (solid) and estimated (dash) amplitude.

FM; a third filter output amplitude may be required as shown
in the following example.

Consider two 2-D separable Gaussian filters of the form
and

Then with some tedious algebra, the
relation can be
written as

which represents one equation in two unknowns.
Thus, a third filter output amplitude

with
when paired with

leads to the relation

which can be solved for and through

(24)

where and are functions of
as well as of the filters’

center frequencies and bandwidth. This relation can be
solved whenever the matrix on the right side of (24) is
invertible, thus imposing a certain structure on the placement
of the Gaussian filters and their relation to one another.
For example, the center frequencies of
and cannot both fall on a 45 line,
i.e., and Additionally,
if the three Gaussian filters fall on a radial line, i.e.,

and then
imposing the condition that the determinant of the matrix of
(24) not equal zero, a solution does not exist when
Conditions for a unique solution are therefore generally more
complex than in the 1-D case.

VIII. D ISCUSSION

This paper has described an approach to AM-FM estimation
based on FM-to-AM transduction. The generalization from
piecewise-linear filters focused first on the class of Gaussian
filters for which a closed-form solution to AM-FM separation
exists. For gammatone and measured auditory filters, where a
closed-form solution was not possible, AM-FM separation was
achieved by a table look-up procedure and iterative refinement.
Properties of the approach were described, including solution
stability, error evaluation, and comparative performance with
two standard methods.

Further properties and generalizations of the method have
yet to be addressed. These include a more thorough analysis of
the relation of temporal resolution to transduction filter param-
eters, a better understanding of the importance of filter phase
in the transduction process, further analysis and reduction of
the dependence of “smoothness” assumptions on and

under which and an extension to
a more general class of filters and inputs. Design of filter
pairs that minimize solution sensitivity measure with
respect to place of transduction, further generalizations to
two dimensions, and improved robustness by increasing the
number of transduction filters are other fascinating areas being
examined. For example, robustness of the FM transduction
method in noise was improved by averaging AM-FM estimates
derived from multiple piecewise-linear filter pairs; with 25
filter pairs about a 3 dB improvement in SNR was obtained
in estimating a 70 Hz modulation around a 2000 Hz carrier
at a 20 dB SNR.

The approach of this paper was motivated by the hypothesis
that the auditory system exploits an FM transduction mech-
anism [1]. It is interesting to conjecture, therefore, on how
the algorithmic results of this paper might be interpreted in
the context of auditory signal transduction and measurement
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(a)

(b)

(c)

(d)

Fig. 16. Example of local error bound of FM-to-AM transduction. (a) Waveform. (b) Amplitude envelope derivative. (c) Frequency modulation derivative.
(d) Local error bound.

of modulation. One such speculation is that the amplitude
envelope of an auditory filter’s output is related to the “energy”
required to generate the input sine wave. This interpretation
can be argued by setting the offset term in (8) and
observing that the result is proportional to theproduct of
the input sine-wave amplitude and frequency. This product
when squared can be shown to be the energy, i.e., the sum of
potential and kinetic energy, stored by a harmonic oscillator
required to generate an input sine [12], which may provide
a robust representation for further auditory stages. A second
example is the differencing or dividing of two filter amplitude
envelope outputs, which may also have relevance in the
auditory context since differences across auditory filters may
be exploited in enhancing spectral resolution [3], [23]. As
such, in further relating the AM-FM estimator to the auditory
mechanism, one may wish to compare the accuracy of the
estimator with human psychophysical performance.

In spite of these intriguing possibilities, it is important
to emphasize, as we have done in the introduction, that
the use of FM-to-AM transduction in aural perception is
speculative, the motivating experiments [1] indicating that
this possibility provides simply one candidate mechanism
for auditory FM demodulation. Even if this transduction is
exploited, the mechanism may not be a linear one as this
paper suggests. For example, the demodulation assumes that
the filter shapes are constant. In the cochlea, however, there
is a fast-acting automatic gain control (AGC) that provides
compression in the main part of the filter passband (the tip of

the filter), while leaving the gain in the low-frequency portion
of the filter (the tail) unaffected. The compression may be
the result of an almost instantaneous saturating nonlinearity
in the cochlear mechanics [24], and could both introduce
fluctuations in the system output for a low-frequency sinusoid
with constant amplitude and reduce the fluctuations in a
AM-FM modulated tone. Incorporating the influence of such
a nonlinearity will be essential in understanding the full
complexity of transduction by the auditory system.

APPENDIX A
ERROR BOUNDS ON FM TRANSDUCTION

In this Appendix, error bounds are given on the approxima-
tion (4) that is the output of the transduction filter to a
modulated complex sine input22 with amplitude envelope
and instantaneous frequency i.e.,

When no modulation is present, i.e., the
amplitude and frequency modulation are constant, then

and is an eigenfunction to the linear filter, the
output being [8]. For an input
with a time-varying amplitude and frequency, we expect a
similar relation when the modulating amplitude and frequency
are “slowly-varying” and the filter is of “short duration.” Under
these conditions, the modulated input will appear as a sine of
approximately constant amplitude and frequency, being

22The simplifying case considered in the examples throughout this paper
is x(n) = A(n)ej[! n+I sin(! n)]

: The bounds given in this appendix,
however, apply to a more general signal class.
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referred to as a “pseudoeigenfunction” of The output
can therefore be expressed as

(25)

In order to state quantitatively the conditions under which
the approximation is valid [13], we first define the functions

(26)

and

(27)

The function measures the extent, i.e., the “localiza-
tion” of while the function measures the “smooth-
ness” of the signal Given the approximation error as

an error bound can be expressed in
terms of these functions as

(28)

so that the error bound23 is a function of the time localization
of equivalently the smoothness of and theglobal
smoothness of the envelope and frequency trajectories of

Although this measure involves infinite limits on the
summation in and it does provide a meaningful
upper error bound, since the signal is typically of finite extent,
and even when large in extent, the bound may be small
(especially in a comparative sense), as in the case of a sine
wave with small frequency or amplitude modulation.

An error bound can also be obtained as a function of time
in terms of thelocal smoothness properties of amplitude and
frequency. Specifically [13]

(29)

where the filter localization is reflected in and the
input smoothness in and If is of short
duration, then the inner sum in (29) (the limits on the inner
sum are a function of the index) away from the center
of mass of has small weight; thus, a local average
is taken on amplitude and frequency, rather than the global
average of (29). Derivatives and in the above
equations are assumed samples of continuous counterparts or
approximations derived from first and second differences of
discrete functions. Further discussion of the error bounds are
found in [13].

23The constant(�=
p
3) = �p6=0 (1=p2) and is a consequence of the

infinite sum in (26) [13].

An example of a local error bound is illustrated in Fig. 16
for the same sequence of Fig. 1(a). The instantaneous
frequency has carrier Hz with modulation fre-
quency Hz. A Gaussian filter of the form

with center frequency at 1000 Hz is used as the
transduction filter. Fig. 16 shows that, as predicted from (29),
the error bound is largest where the amplitude and frequency
derivatives are largest, i.e., at the signal edges.

Observe that both the magnitude and the phase of
play a role in determining the validity of the transduction
approximation. From the expression for we see that
the presence of phase can increase the moments of
about the origin, and thus increase the error bound. Therefore,
for the study of this paper, we have constrained the class
of filters to be zero-phase, having the property of being
localized about the time origin. For example, the minimum-
phase counterparts to the zero-phase gammatone and auditory
transduction filters used in this paper were found to increase
the AM-FM estimation error, even though the magnitude of
the transduction approximation is used, phase being discarded.
This is consistent with our measurement that the associated
impulse responses have larger second moments than their
zero-phase counterparts, and thus contribute to a larger error
bound. Additional study is needed to further understand the
importance of filter phase in the transduction process.

APPENDIX B
BALANCED FREQUENCY DISCRIMINATION

In an early method of FM demodulation introduced by
Armstrong [6] for radio broadcasting, FM-to-AM transduction,
approximately linear, was applied to a flattened waveform;
differencing the output of two complementary filters was used
to eliminate undesired bias in the FM estimate. This method
of FM estimation is referred to as abalanced frequency
discriminator.

In a discrete-time analog to the continuous-time balanced
frequency discriminator [6], [14], two piecewise-linear filters
are used with complementary positive- and negative-sloped
regions of the form

(30)

where denote the frequency intervals over which
and have positive and negative slopes, respec-

tively, and where is the carrier frequency of the input sine,
which is assumed to have constant amplitudeand time-
varying input frequency To eliminate the “bias” term
the difference in the amplitude of the output of the two filters
is taken and reduces to

(31)

where is the desired modulation frequency
around the carrier and which represents the message signal
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in FM broadcasting. When is time-varying, then it can
be estimated from the sum , which
can then be used to separate from of (31).
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