
1

Spring 2024

1

Frequent Item Sets &

Association Rules

http://www.csd.uoc.gr/~hy562

University of Crete

2

Spring 2024

Some History

 Barcode technology allowed retailers to collect massive volumes of sales data

Basket data: transaction date, set of items bought

Data is stored in tertiary storage

 Leverage information for marketing

How to design coupons?

How to organize shelves?

 The birth of data mining!

Agrawal et al. (SIGMOD 1993) introduced the problem of mining a large

collection of basket data to discover association rules

Many papers followed…

3

Spring 2024

Example: Supermarket Shelf Management

 Goal: Process the sales data to find dependencies among items

Given a set of transactions, predict the occurrence of an item based on the

occurrences of other items in the transactions (association rules)

 Approach: Identify items that are bought together by sufficiently many customers

(frequent itemsets)

 The famous “diapers-and-beer” example:

If one buys diapers, then he is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!

Supermarket shelf management – Market-basket model:
Goal: Identify items that are bought together by
sufficiently many customers
Approach: Process the sales data collected with barcode
scanners to find dependencies among items
A classic rule:

If one buys diaper and milk, then he is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Rules Discovered:

 {Milk} --> {Coke}

 {Diaper, Milk} --> {Beer}

Rules Discovered:
{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}

4

Spring 2024

Example Dataset

 Download it

 https://drive.google.com/file/d/105NsvmCj_yQqkcQNDWaMD_v1et38

VwTd/view?usp=drive_link

 Check if you can identify association rules?

https://drive.google.com/file/d/105NsvmCj_yQqkcQNDWaMD_v1et38VwTd/view?usp=drive_link
https://drive.google.com/file/d/105NsvmCj_yQqkcQNDWaMD_v1et38VwTd/view?usp=drive_link

5

Spring 2024

The Market-Basket Model

 A large set of items, e.g., things sold in a store

I = {i1, i2, …, im}

 A large set of baskets/transactions,

e.g., things one customer buys in

one visit to the store

Bi a set of items, and Bi I

 Transaction Database T: a set of transactions B = {B1, B2, …, Bn}

 Our interest: Identify associations among “items”, not “baskets”

Supermarket shelf management – Market-basket model:
Goal: Identify items that are bought together by
sufficiently many customers
Approach: Process the sales data collected with barcode
scanners to find dependencies among items
A classic rule:

If one buys diaper and milk, then he is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Rules Discovered:

 {Milk} --> {Coke}

 {Diaper, Milk} --> {Beer}

6

Spring 2024

Application Examples of Association Rules

 Items = products; Baskets = sets of products someone bought in one transaction

Reveals typical buying behaviour of customers

Marketing and sales promotion (suggests tie-in “tricks”)

• product p appearing as rule’s consequent

− “what should be done to boost p sales?”

• product p’ appearing as rule’s antecedent

− “which products would be affected if we stop selling p’?”

Shelf management: position certain items strategically

Recommendations

• Amazon customers who bought X also bought Y

• Product Bundling (e.g., phone + case + car holder + charger)

 High support needed, or no €€’s

Only useful if many customers buy diapers and beer

7

Spring 2024

Market-Baskets and Associations

 A many-many mapping (association) between two kinds of things

E.g., 90% of transactions that purchase diaper & milk also purchase beer

 Given a set of baskets, discover association rules

The technology focuses on common events, not rare events (“long tail”)

 2-step approach

Find frequent itemsets

Generate association rules

Supermarket shelf management – Market-basket model:
Goal: Identify items that are bought together by
sufficiently many customers
Approach: Process the sales data collected with barcode
scanners to find dependencies among items
A classic rule:

If one buys diaper and milk, then he is likely to buy beer

Don’t be surprised if you find six-packs next to diapers!

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Rules Discovered:

 {Milk} --> {Coke}

 {Diaper, Milk} --> {Beer}

8

Spring 2024

 In machine learning, X → Y usually implies a causal relationship

“a change in X (seen as cause) forces a change in Y (seen as effect)”

causation is complex and difficult to prove

 In rule mining, X → Y is an association relationship

“X is associated with Y ”

Much easier to calculate and prove

of less interest for medical research than for market research

 Association rules indicate only the existence of a statistical relationship

(correlation) between X and Y

They do not specify the nature of the relationship

Causation vs. Association

9

Spring 2024

Frequent Itemsets

 Find sets of items, called itemsets,

that appear “frequently” in the baskets

k-itemset: a set of k items

B1 = {b, c, m} is a 3-itemset

 A transaction Bi contains an itemset A = {i1, i2,…,ik}, if A Bi
B3= {b, c, d, m} contains the 3-itemset {b, c, m}

 Support of itemset A: the number (or fraction) of baskets containing all items in A

Support of {Milk} = 4

Support of {Milk, Diaper, Beer} = 2

 Frequent itemsets: sets of items that appear in at least s baskets

s is a given support threshold

Simplest question: Find sets of items that
appear together “frequently” in baskets
Support for itemset I: Number of baskets
containing all items in I

Often expressed as a fraction
of the total number of baskets

Given a support threshold s,
then sets of items that appear
in at least s baskets are called
frequent itemsets

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Support of

{Beer, Bread} = 2

10

Spring 2024

Example: Frequent Itemsets

 Items = {b, c, d, j, m}

 Support threshold s = 3 baskets

B1 = {m, c, b} B2 = {m, d, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, d, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {b}, {c}, {j}, {m},

, {c,j}{m,b}, {b,c}

11

Spring 2024

Association Rules

 An association rule is an implication of the form:

{i1,i2,…,ik} → {j1,j2,…,jl}, where

{i1,i2,…,ik}, {j1,j2,…,jl}, I, and
{i1,i2,…,ik} {j1,j2,…,jl} =

 If-then rules about the contents of baskets

{i1, i2,…,ik} → j means:

“if a basket contains all of i1,…,ik then it is likely to contain j”

 A general form of an association rule is Body→Head[Support,Confidence]

Antecedent, left-hand side (LHS), body

Consequent, right-hand side (RHS), head

Support, frequency

Confidence, strength

12

Spring 2024

Support and Confidence

 Support of the rule A → B: the frequency of the rule within all transactions in the

database T, i.e., the probability that a transaction contains the union of A and B

 support(A → B) = p(A B) = support({A,B})

 Confidence of the rule A → B: denotes the percentage of transactions that contain

B, among those that contain A, i.e., the conditional probability that a transaction

containing A also contains B

confidence(A → B) = p(B|A) = p(A B) / p(A)

= support({A,B}) / support({A})

Customer

buys diapers

Customer

buys both

Customer

buys beer

AB

13

Spring 2024

Example: Confidence

B1 = {m, c, b} B2 = {m, d, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, d, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → {c}

Support ({m, b}) = 4, Support ({m, b, c}) = 2

Confidence ({m, b} → c) = 2/4 = 50%

)support(

)support(
)conf(

I

jI
jI

=→

14

Spring 2024

Interesting Association Rules

 Not all high-confidence rules are interesting

The rule {i1, i2,…,ik}→milk may have high confidence for many

itemsets {i1, i2,…,ik}, because milk is purchased very often

(independent of the itemset) and the confidence will be very high

 Lift (originally called interest) of an association rule A→B is the difference

between its confidence and the fraction of baskets that contain B

Lift (A→B) = | conf(A→B) – Pr[B] |

Interesting rules are those with high positive or negative lift values thus

we take the absolute value

For uninteresting rules, the fraction of baskets containing itemset B will

be the same as the fraction of the subset baskets including A B

So confidence may be high, but interest low

15

Spring 2024

Example: Confidence and Lift

B1 = {m, c, b} B2 = {m, d, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, d, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → c

Confidence ({m, b} → c) = 2/4 = 50%

Lift ({m, b} → c) = |0.5 – 5/8| = 1/8

Item c appears in 5/8 of the baskets

Rule is not very interesting!

Lift (A→B) = |conf(A→B) – Pr[B]|

16

Spring 2024

Finding Association Rules

 Goal: Find all rules that satisfy the user-specified minimum support (minsup) and

minimum confidence (minconf)

support >= s AND confidence >=c

 Key Features

Completeness: find all rules

Mining with data on disk (not in memory)

 Hard part: Finding the frequent itemsets

If A → B has high support and confidence, then both A and B will be frequent

17

Spring 2024

How to Set the Appropriate MinSup?

 Many real data sets have skewed support distribution

 If minsup is too high, we could miss

itemsets involving interesting rare items

(e.g., expensive products)

 If minsup is too low, it is computationally

expensive and the number of itemsets is

very large

 A single minsup threshold may not be always effective

18

Spring 2024

Association Rule Mining Task

Brute‐force approach:

 List all possible association rules

Given d unique items:

Total number of itemsets = 2d

Total number of ARs = R

 Compute the support and confidence for each rule

Prune rules that fail the minsup and minconf thresholds

 Computationally prohibitive!

19

Spring 2024

Compacting Output Rules:

Classes of Itemsets

 To reduce the number of rules we can

post-process and only output:

Maximal Frequent itemsets: no

immediate superset is frequent

 Can generate all frequent

itemsets (without support)

Closed itemsets: no immediate

superset has the same count (>0)

Can generate all frequent

itemsets and their support

 Alternately:

Free itemset: no immediate subset

has the same count (>0)

Maximal
frequent
itemsets

Frequent
closed
itemsets

Frequent
free
itemsets

Frequent
itemsets

20

Spring 2024

Example: Maximal/Closed

Count Maximal (s=3) Closed

A 4 No No

B 5 No Yes

C 3 No No

AB 4 Yes Yes

AC 2 No No

BC 3 Yes Yes

ABC 2 No Yes

Frequent, but

superset BC

also frequent

Frequent, and

its only superset,

ABC, not freq

Superset BC

has same count

Its only super-

set, ABC, has

smaller count

21

Spring 2024

21

Apriori Algorithm

22

Spring 2024

Reducing the Number of Candidates:

The Apriori algorithm
 Rules from the same itemset have equal support but can have different confidence

Thus, we may decouple the support and confidence

 Two steps:

Frequent Itemsets: Find all itemsets that have minimum support

 Key idea: anti‐monotonicity of support: A,B AB s(A) s(B)

Rule generation: Use frequent itemsets to generate rules

 For every subset A of a frequent itemset I, generate rule A → I \ A

 Variant 1: Perform a single pass to compute the rule confidence

• conf(A,B→C,D) = supp(A,B,C,D)/supp(A,B)

 Variant 2: Filter out bigger rules from smaller ones

• If A,B,C→D is below confidence, so is A,B→C,D

 Confidence of rules generated from the same itemset has an anti‐monotone property

• e.g., I = {A,B,C,D}: conf(ABC→D)conf(AB→CD)conf(A→BCD)

• Confidence is anti‐monotone w.r.t. number of items on the RHS of the rule

23

Spring 2024

Example

B1 = {m, c, b} B2 = {m, d, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, d, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Support threshold s = 3, confidence c = 0.75

 1) Frequent itemsets:

{b,m} {b,c} {c,m} {c,j} {m,c,b}

 2) Generate rules:

b→m: c=4/6 b→c: c=5/6 b,c→m: c=3/5

m→b: c=4/5 … b,m→c: c=3/4

 b→c,m: c=3/6

conf(A→B) = supp(A∪B)/supp(A)

24

Spring 2024

Frequent Itemset Generation
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there

are 2d possible

candidate itemsets

25

Spring 2024

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE
Pruned

supersets

Illustrating the Apriori Principle

26

Spring 2024

Rule Generation Example

27

Spring 2024

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{Bread,Milk,Diaper} 2

Items (1-itemsets)

Pairs (2-itemsets)

Triplets (3-itemsets)
Minimum Support = 3

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Market-Basket transactions

Example

(no need to generate
candidates involving Coke
or Eggs)

28

Spring 2024

A two-pass approach called
a-priori limits the need for
main memory
Key idea: monotonicity

If a set of items I appears at
least s times, so does every subset J of I.

Contrapositive for pairs:
If item i does not appear in s baskets, then no
pair including i can appear in s baskets

1/10/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 30

Candidate Generation

 Contrapositive for pairs: if item i does not

appear in s baskets, then no pair including i

can appear in s baskets

 Basic principle (Apriori):

An itemset of size k+1 is candidate to be

frequent only if all of its subsets of size k

are known to be frequent

 Main idea:

Construct a candidate of size k+1 by

combining two frequent itemsets of size k

Prune the generated k+1-itemsets that do

not have all k-subsets to be frequent

 So, how does Apriori find frequent pairs?

A two-pass approach limiting the need for

main memory counts

29

Spring 2024

Apriori Algorithm

item counts

Pass 1 Pass 2

frequent items

 Pass 1: Read baskets and count in main

memory the occurrences of each item

Requires only memory proportional

to #items

Items that appear at least s times

(minsup) are the frequent items

 Pass 2: Read baskets again and count

in main memory only those pairs where

both elements were found in Pass 1 to

be frequent

Requires memory proportional to square

of frequent items only (for counts)

Plus a list of the frequent items (so you

know what must be counted)

counts of pairs

of frequent items

M
a

in
 M

e
m

o
ry

30

Spring 2024

Frequent Triples, Etc.

 For each k, we construct two sets of k–itemsets:

Ck = candidate k–itemsets: supersets of (k-1)-itemsets with support > s

Lk = the set of truly frequent k-itemsets

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

First
pass

Second
pass

All
items

All pairs
of items
from L1

Count
the pairs

…
Count

the items

Frequent
1-itemsets

Frequent
2-itemsets

31

Spring 2024

Level-wise approach
Ck = candidate k-itemsets

Lk = frequent k-itemsets

Candidate

generation

Frequent

itemset

generation

1. k = 1, C1 = all items

2. While Ck not empty

3. Scan the database to find which itemsets

in Ck are frequent and put them into Lk

4. Use Lk to generate a collection of

candidate (k+1)-itemsets Ck+1

5. k = k+1

The Apriori algorithm

32

Spring 2024

Recall: Example from Last time

B1 = {m, c, b} B2 = {m, d, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, d, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets (s = 3):

{b}, {c}, {j}, {m}

{b,m} {b,c} {c,j} {c,m}

{b,c,m}

 How we can compute them with Apriori?

33

Spring 2024

Apriori Execution Example

Database
TDB 1st scan

C1 L1

L2

C2 C2
2nd scan

C3

L3
3rd scan

Tid Items

10 b, c, m

20 d, j, m

30 b, c, m, n

40 c, j

50 b, d, m

60 b, c, j, m

70 b, c, j

80 b, c

Itemset sup

{b} 6

{c} 6

{d} 2

{j} 4

{m} 5

{n} 1

Itemset sup

{b} 6

{c} 6

{j} 4

{m} 5

Itemset

{b, c}

{b, j}

{b, m}

{c, j}

{c, m}

{j, m}

Itemset sup

{b, c} 5

{b, j} 2

{b, m} 4

{c, j} 3

{c, m} 3

{j, m} 2

Itemset sup

{b, c} 5

{b, m} 4

{c, j} 3

{c, m} 3

Itemset

{b, c, m}

{b, c, j}

{b, m, j}

{c, m, j}

Itemset sup

{b, c, m} 3

Itemset sup

{b, c, m} 3

{b, c, j} 2

{b, m, j} 1

{c, m, j} 1

C3

s = 3

34

Spring 2024

 Dynamic itemset counting

Add new candidate itemsets only when all of the subsets are estimated

to be frequent

 Transaction Reduction

A transaction that does not contain any frequent k-itemset is useless in

subsequent scans

 Hash-based itemset counting

A k-itemset whose corresponding hashing bucket count is below the

threshold cannot be frequent

 Partitioning

Any itemset that is potentially frequent in DB must be frequent in at

least one of the partitions of the DB

 Sampling

Mining on a subset of given data, lower support threshold and consider

a method to determine completeness

How to Improve Apriori Efficiency?

35

Spring 2024

35

Improvements to Apriori

36

Spring 2024

Observations

 In pass 1 of the Apriori algorithm

only individual item counts are stored

remaining memory is unused

 In pass 2, the pair (i,j) may not be frequent even if i and j are frequent

but we must still count its frequency (hence need to store it in memory)

 Can we use the idle memory (in pass 1) to reduce the memory required in

pass 2?

37

Spring 2024

PCY (Park-Chen-Yu) Algorithm

 Pass 1 of PCY: In addition to item

counts, maintain a hash table with as

many buckets as can fit in memory

Each pair of items is hashed to

one bucket

Collisions are possible!

Every time a pair is met in a

basket, increase the count of its

bucket in the hash table by 1

 Pass 2 of PCY: we only count
pairs that hash to frequent buckets

 Multistage improves PCY (later)

Hash

table

item counts

Bitmap

Pass 1 Pass 2

frequent items

Counts of

candidate

 pairs

38

Spring 2024

PCY Algorithm – Pass 1

FOR (each basket) {

FOR (each item in the basket)

add 1 to item’s count;

FOR (each pair of items) {

hash the pair to a bucket;

add 1 to the count for that bucket

}

}

 Pairs of items need to be generated

 Before Pass 1 Organize Main Memory

Space to count each item: One (typically) 4-byte integer per item

Use the rest of the space for as many integers, representing buckets,

as we can

New

in

PCY

39

Spring 2024

 We are not just interested in the presence of a pair

 but also if its support is ≥ s

 If a bucket contains a frequent pair, then the bucket is surely frequent

 A bucket can be frequent even without any frequent pair (false positives)

→We cannot eliminate any member (pair) of a “frequent” bucket

 If a bucket is not frequent, no pair in that bucket could possibly be frequent

For a bucket with total count < s, none of its pairs can be frequent

→We can safely eliminate pairs of non-frequent buckets

Observations about Buckets

40

Spring 2024

PCY Algorithm – Between Passes

 In pass 2, only count pairs that hash to frequent buckets

We must count again because:

 we did not keep the information on the pairs

 collisions are possible

We do not need the count information from pass 1 any more

What we need is an indication on whether a pair is possibly frequent or not

 Bit vector serves this purpose well (and consumes less space)

1 means bucket count exceeds the support s (it is frequent); 0 for non-frequent

The hash value now corresponds to the bit position

 4-byte (32-bit) integers are replaced by bits → bit-vector requires 1/32 of memory

 Also, decide which items are frequent and list them for the second pass

41

Spring 2024

PCY Algorithm – Pass 2

 Count all pairs {i,j} that meet

the conditions for being a

candidate pair:

 Both i and j are

frequent items

 The pair {i, j}, hashes

to a bucket whose bit in

the bit vector is 1

 Both conditions are necessary

for the pair to have a chance of

being frequent

Hash

table

item counts

Bitmap

Pass 1 Pass 2

frequent items

Hash table

for pairs

M
a
in

 m
e
m

o
ry

Counts of

candidate

pairs

42

Spring 2024

Refinement: A Multistage Algorithm

 Limit the number of candidates to be counted

Remember: memory is the bottleneck

Still need to generate all itemsets but we only want to count/keep track of the

ones that are frequent

 Key idea: After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of

PCY

i and j are frequent, and

{i,j} hashes to a frequent bucket from Pass 1

 On middle pass, fewer pairs contribute to buckets, so fewer false positives –

frequent buckets with no frequent pair

 Uses several successive hash tables---requires more than two passes

43

Spring 2024

Multistage Picture

First

hash table

item counts

Bitmap 1 Bitmap 1

Bitmap 2

freq. items freq. items

Counts of

candidate

 pairs

Pass 1 Pass 2 Pass 3

Count items

Hash pairs {i,j}

Hash pairs {i,j}
into Hash2 iff:

 i,j are frequent,

 {i,j} hashes to

 freq. bucket in B1

Count pairs {i,j} iff:

i,j are frequent,

{i,j} hashes to

freq. bucket in B1

{i,j} hashes to

freq. bucket in B2

First

hash table
Second

hash tableM
a

in
 m

e
m

o
ry

44

Spring 2024

Multistage – Pass 3

 Count only those pairs {i,j} that satisfy these candidate pair conditions:

 Both i and j are frequent items

 Using the first hash function, the pair {i,j} hashes to a bucket whose bit in

the first bit-vector is 1

 Using the second hash function, the pair hashes to a bucket whose bit in the

second bit-vector is 1

 Important Points

 The two hash functions have to be independent

 We need to check both hashes on the third pass

 If not, we would wind up counting pairs of frequent items that hashed first to

an infrequent bucket but happened to hash second to a frequent bucket

• reduces the number of false positives!

45

Spring 2024

Refinement: The Multihash Algorithm

 Key idea: use several independent

hash tables on the first pass

 Risk: halving the number of buckets

doubles the average count

We have to be sure most buckets

will still not reach count s

 If so, we can get a benefit like

multistage, but in only 2 passes!

First hash

table

Second

hash table

Item counts

Bitmap 1

Bitmap 2

Freq. items

Counts of

candidate

 pairs

Pass 1 Pass 2

First

hash table

Second

hash table

M
a
in

 m
e
m

o
ry

46

Spring 2024

 Numerous approaches and refinements have been studied to keep memory

consumption low

PCY and its refinements (multistage, multihash)

 Either multistage or multihash can use more than two hash functions

In multistage, there is a point of diminishing returns, since the bit-vectors

eventually consume all of main memory

For multihash, the bit-vectors occupy exactly what one PCY bitmap does, but too

many hash functions makes all counts > s

So far, …

47

Spring 2024

47

Limited Pass Algorithms

48

Spring 2024

 APriori, PCY, etc., take k passes to find frequent k-itemsets

 Can we use fewer passes?

 Use 2 or fewer passes for ALL sizes, but may miss some frequent itemsets

Approximate solutions

Simple algorithm: Use random sampling

Savasere, Omiecinski, and Navathe (SON) algorithm

Toivonen

All (Or Most) Frequent Itemsets in

< 2 Passes

49

Spring 2024

Random Sampling

 Take a random sample of the market baskets

 Load the sample in main memory

no disk I/O each time you increase the size of itemsets

 Use as your support threshold s a suitable, scaled-back

number

E.g., if your sample is 1/100 of the baskets, use s/100 as

your support threshold instead of s

be sure you leave enough space for counts

 Run Apriori or one of its improvements (for itemsets of all

sizes, not just pairs)

Copy of

sample

baskets

Space

 for

counts

Main Memory

50

Spring 2024

 False positives: Itemset may be frequent in the sample but not in the entire dataset

(because of the reduced minsup threshold)

Run a second pass through the entire dataset to verify that the candidate pairs

are truly frequent

Results in eliminating false positives

 False negatives: Itemset is frequent in the original dataset but not picked out from

the sample

Scanning the whole dataset a second time does not help

Using smaller threshold helps catch more truly frequent itemsets, but requires

more space

Random Sampling: Option

51

Spring 2024

SON Algorithm

 Instead of one random sample, process the entire dataset in memory-sized chunks

 An itemset becomes candidate if it is found to be frequent in at least one chunk

using a scaled-back support threshold (e.g., s/p, where p is the number of chunks)

 On a second pass, count all the candidate itemsets and determine which ones are

truly frequent in the entire set

No false positives again

 Key “monotonicity” idea: an itemset cannot be frequent in the entire set of baskets

unless it is frequent in at least one chunk

A chunk contains a fraction 1/p of whole file (number of chunks is p)

If an itemset is not frequent in any chunk, then the support in each subset is less

than s * 1/p = s/p (the scaled-back support threshold)

Hence, the support in whole file is less than s/p * p = s

 not frequent!

52

Spring 2024

SON Distributed Version

 SON lends itself to distributed data mining

MapReduce

 Baskets distributed among many nodes

Subsets of the data may correspond to one or more chunks in distributed file

system

Compute frequent itemsets at each node

Phase 1: Find candidate itemsets

Distribute candidates to all nodes

Accumulate the counts of all candidates

Phase 2: Find true frequent itemsets

53

Spring 2024

 Map

Input is a chunk/subset of all baskets; fraction 1/p of total input file

Find itemsets frequent in that subset:

Use support threshold = s / p

Output is set of key-value pairs (FrequentItemset,1) where

FrequentItemset is found from the chunk

 Reduce

Each reducer is assigned a set of keys (itemsets)

Produce keys that appear one or more times

Frequent in some subset; these are candidate itemsets

SON MapReduce: Phase 1

54

Spring 2024

 Map

Each Map task takes a chunk of the total input data file as well as the output of

Reduce tasks from Phase 1

All candidate itemsets go to every Map task

Output pairs (CandidateItemset,support) where the support of the

CandidateItemset is computed among the baskets of the input chunk

 Reduce

Each Reduce task is assigned a set of keys, which are candidate itemsets

Sums associated values for each key: total support for CandidateItemset

 If total support of itemset >=s, emit itemset and its count

SON MapReduce: Phase 2

55

Spring 2024

www.hadooptpoint.com/finding-frequent-itemsets-using-hadoop-mapreduce-model/

SON MapReduce (2 in 1)

6

56

Spring 2024

Toivonen’s Algorithm

 A heuristic algorithm for finding frequent itemsets

 Given sufficient main memory, uses one pass over a small sample and one full

pass over data

No false positives (always check against the whole)

 BUT, there is a small chance of false negatives

May not identify some frequent itemsets

 Then must be repeated with a different sample until it gives an answer

small number of iterations needed

57

Spring 2024

Toivonen’s Algorithm – First Pass

 Start as in the random sampling algorithm, but lower the threshold slightly for the

sample

For fraction p of baskets in sample, use 0.8ps (0.9ps) as support threshold

 Goal: avoid missing any itemset that is frequent in the full set of baskets

The smaller the threshold the more memory is needed to count all candidate

itemsets and the less likely the algorithm will not find an answer

 First pass: Find the itemsets that are frequent in a sample, AND the itemsets that

are in the negative border of that sample

Negative border: An itemset is in the negative border of a sample if

 it is not frequent in that sample,

 but all its immediate subsets are

58

Spring 2024

Example: Negative Border

 ABCD is in the negative border if and only if:

1. It is not frequent in the sample, but

2. ABC, BCD, ACD, and ABD are

 A is in the negative border if it is not frequent in the sample

 Because its immediate subset is the empty set (always frequent)

 unless there are fewer baskets than the support threshold (silly case)

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets

in a sample

59

Spring 2024

Toivonen’s Algorithm – Second Pass

 In a second pass, count all candidate frequent itemsets from the first pass, and

also count their negative border

 If no itemset from the negative border turns out to be frequent, then the candidates

found to be frequent in the whole data are exactly the frequent itemsets

 What if we find that something in the negative border is actually frequent?

We must start over again!

 Try to choose the support threshold so the probability of failure is low, while the

number of itemsets checked on the second pass fits in main-memory

60

Spring 2024

Theorem 1

 Given a data set D and a sample S ⊆ D,

if there is an itemset T that is frequent in D but not frequent in S, then

there is an itemset T’ that is frequent in D and is in the negative border of S

False negatives appear in the negative border

 Proof (by contradiction): Suppose that:

1. There is an itemset T∈S that is frequent in D but not frequent in S, and

2. No itemset in the negative border of S is frequent in D

 Let T’ be an immediate subset of T that is not frequent in S

 All subsets of T are also frequent in D (T is frequent + anti-monotonicity of supp)

 T’ is frequent in D

 Thus, T is in the negative border of S (else not “immediate subset”)

61

Spring 2024

Theorem 2

 Given a data set D and a sample S ⊆ D,

if there is an itemset T that is frequent in D and is in the negative border of S,

then there is an itemset that is frequent in D but not frequent in S

By definition, any itemset in the negative border of S is not frequent in S.

Hence T is frequent in D but not frequent in S

 During the second pass of the algorithm, if we found an itemset T of the negative

border to be frequent in D, then we can assume by this theorem that there is an

itemset that is frequent in D but not frequent in S;

in such a case, we are forced to restart the algorithm as we have already

failed to discover at least one itemset that is frequent in D

 If we found no itemset of the negative border to be frequent in D, then by the

previous theorem we are permitted to terminate the algorithm as we have

discovered all the frequent itemsets of D

62

Spring 2024

If Something in the Negative Border

is Frequent . . .

…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets

from Sample

We broke through the

negative border. How

far does the problem

 go?

63

Spring 2024

Toivonen’s Algorithm

 Provides a simplistic framework for discovering frequent itemsets in large data

sets while also providing enough flexibility to enable performance optimizations

directed towards particular data sets

 Allows the discovery of all frequent itemsets through a sampling process

 Numerous optimizations and approximations can be made to improve the

algorithm's performance on data sets with particular properties

E.g., using a slightly lowered threshold will minimize the omission of itemsets

that are frequent in the entire dataset

 such omissions result in additional passes through the algorithm

The support threshold should also be kept reasonably high

 so that the counts for the itemsets in the second pass fit in main memory

64

Spring 2024

Summary

 Market-Basket Data and Frequent Itemsets

Many-to-Many relationship

 Associating rules

Confidence and Support

 The Apriori Algorithm

Combine only frequent subsets

 The PCY algorithm

Hash pairs to reduce candidates

 Multi-stage and Multi-hash algorithm

Multiple hashes

 Randomized and SON algorithm

Sample, divide into chunks and treat as samples by MapReduce

 Toivonen’s Algorithm

Negative Border

65

Spring 2024

References

 CS246: Mining Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff

Ullman, Stanford University, 2014

 CS5344: Big Data Analytics Technology, TAN Kian‐Lee, National University of

Singapore 2014

 CS059: Data Mining, Panayiotis Tsaparas University of Ioannina, Fall 2012

66

Spring 2024

Research on Pattern Mining: A Road Map

	Διαφάνεια 1: Frequent Item Sets & Association Rules
	Διαφάνεια 2: Some History
	Διαφάνεια 3: Example: Supermarket Shelf Management
	Διαφάνεια 4: Example Dataset
	Διαφάνεια 5: The Market-Basket Model
	Διαφάνεια 6: Application Examples of Association Rules
	Διαφάνεια 7: Market-Baskets and Associations
	Διαφάνεια 8: Causation vs. Association
	Διαφάνεια 9: Frequent Itemsets
	Διαφάνεια 10: Example: Frequent Itemsets
	Διαφάνεια 11: Association Rules
	Διαφάνεια 12: Support and Confidence
	Διαφάνεια 13: Example: Confidence
	Διαφάνεια 14: Interesting Association Rules
	Διαφάνεια 15: Example: Confidence and Lift
	Διαφάνεια 16: Finding Association Rules
	Διαφάνεια 17: How to Set the Appropriate MinSup?
	Διαφάνεια 18: Association Rule Mining Task
	Διαφάνεια 19: Compacting Output Rules: Classes of Itemsets
	Διαφάνεια 20: Example: Maximal/Closed
	Διαφάνεια 21: Apriori Algorithm
	Διαφάνεια 22: Reducing the Number of Candidates: The Apriori algorithm
	Διαφάνεια 23: Example
	Διαφάνεια 24: Frequent Itemset Generation
	Διαφάνεια 25
	Διαφάνεια 26: Rule Generation Example
	Διαφάνεια 27: Example
	Διαφάνεια 28: Candidate Generation
	Διαφάνεια 29: Apriori Algorithm
	Διαφάνεια 30: Frequent Triples, Etc.
	Διαφάνεια 31
	Διαφάνεια 32: Recall: Example from Last time
	Διαφάνεια 33: Apriori Execution Example
	Διαφάνεια 34: How to Improve Apriori Efficiency?
	Διαφάνεια 35: Improvements to Apriori
	Διαφάνεια 36: Observations
	Διαφάνεια 37: PCY (Park-Chen-Yu) Algorithm
	Διαφάνεια 38: PCY Algorithm – Pass 1
	Διαφάνεια 39: Observations about Buckets
	Διαφάνεια 40: PCY Algorithm – Between Passes
	Διαφάνεια 41: PCY Algorithm – Pass 2
	Διαφάνεια 42: Refinement: A Multistage Algorithm
	Διαφάνεια 43: Multistage Picture
	Διαφάνεια 44: Multistage – Pass 3
	Διαφάνεια 45: Refinement: The Multihash Algorithm
	Διαφάνεια 46: So far, …
	Διαφάνεια 47: Limited Pass Algorithms
	Διαφάνεια 48: All (Or Most) Frequent Itemsets in < 2 Passes
	Διαφάνεια 49: Random Sampling
	Διαφάνεια 50: Random Sampling: Option
	Διαφάνεια 51: SON Algorithm
	Διαφάνεια 52: SON Distributed Version
	Διαφάνεια 53: SON MapReduce: Phase 1
	Διαφάνεια 54: SON MapReduce: Phase 2
	Διαφάνεια 55: SON MapReduce (2 in 1)
	Διαφάνεια 56: Toivonen’s Algorithm
	Διαφάνεια 57: Toivonen’s Algorithm – First Pass
	Διαφάνεια 58: Example: Negative Border
	Διαφάνεια 59: Toivonen’s Algorithm – Second Pass
	Διαφάνεια 60: Theorem 1
	Διαφάνεια 61: Theorem 2
	Διαφάνεια 62: If Something in the Negative Border is Frequent . . .
	Διαφάνεια 63: Toivonen’s Algorithm
	Διαφάνεια 64: Summary
	Διαφάνεια 65: References
	Διαφάνεια 66: Research on Pattern Mining: A Road Map

