
Spring 2024

1

Relational Data Processing on

MapReduce

http://www.csd.uoc.gr/~hy562

University of Crete

Spring 2024

2

12+ TBs

of tweet data
every day

25+ TBs of
log data every day

generated by a new
user being added

every sec. for 3 years

?
 T

B
s
 o

f

d
a
ta

 e
v
e
ry

 d
a
y

2+

billion

people on

the Web

by end

2011

30 billion RFID

tags today

 (1.3B in 2005)

4.6

billion

camera

phones

world wide

100s of

millions

of GPS

enabled

devices sold

annually

76 million smart

meters in 2009…

 200M by 2014

Peta-scale Data Analysis

4 billion views/day
YouTube is the 2nd most used

search engine next to Google

© 2014 IBM Corporation

Spring 2024

3

Big Data Analysis

 A lot of these datasets have some

structure

Query logs

Point-of-sale records

User data (e.g., demographics)

…

 How do we perform data analysis at

scale?

Relational databases and SQL

MapReduce (Hadoop)

Spring 2024

4

Relational Databases vs. MapReduce

 Relational databases:

Multi-purpose: analysis and transactions; batch and interactive

Data integrity via ACID transactions

Lots of tools in software ecosystem (for ingesting, reporting, etc.)

Supports SQL (and SQL integration, e.g., JDBC)

Automatic SQL query optimization

 MapReduce (Hadoop):

Designed for large clusters, fault tolerant

Data is accessed in “native format”

Supports many query languages

Programmers retain control over performance

Spring 2024

6

Parallel Relational Databases

vs. MapReduce

 Parallel relational databases

Schema on “write”

Failures are relatively infrequent

“Possessive” of data

Mostly proprietary

 MapReduce

Schema on “read”

Failures are relatively common

In situ data processing

Open source

Shared-nothing architecture for parallel processing

Hadoop v2.0 (YARN) architecture

Spring 2024

8

MapReduce vs Parallel DBMS

Parallel DBMS MapReduce

Schema Support ✓ Not out of the box

Indexing ✓ Not out of the box

Programming Model
Declarative

(SQL)

Imperative

(C/C++, Java, …)

Extensions through

Pig and Hive

Optimizations

(Compression, Query

Optimization)

✓ Not out of the box

Flexibility Not out of the box ✓

Fault Tolerance
Coarse grained

techniques
✓

[Pavlo et al., SIGMOD 2009, Stonebraker et al., CACM 2010, …]

Spring 2024

9

Database Workloads

 OLTP (online transaction processing)

Typical applications: e-commerce, banking, airline reservations

User facing: real-time, low latency, highly-concurrent

Tasks: relatively small set of “standard” transactional queries

Data access pattern: random reads, updates, writes (involving

relatively small amounts of data)

 OLAP (online analytical processing)

Typical applications: business intelligence, data mining

Back-end processing: batch workloads, less concurrency

Tasks: complex analytical queries, often ad hoc

Data access pattern: table scans, large amounts of data involved per

query

Spring 2024

10

One Database or Two?

 Downsides of co-existing OLTP

and OLAP workloads

Poor memory management

Conflicting data access patterns

Variable latency

 Solution: separate databases

User-facing OLTP database for high-

volume transactions

Data warehouse for OLAP workloads

How do we connect the two?

Spring 2024

11

OLTP/OLAP Integration

 OLTP database for user-facing transactions

Retain records of all activity

Periodic ETL (e.g., nightly)

 Extract-Transform-Load (ETL)

Extract records from source

Transform: clean data, check integrity, aggregate, etc.

Load into OLAP database

 OLAP database for data warehousing

Business intelligence: reporting, ad hoc queries, data mining, etc.

Feedback to improve OLTP services

OLTP OLAP

ETL
(Extract, Transform, Load)

Spring 2024

12

OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop here?

What about here?

Spring 2024

13

OLTP/OLAP/Hadoop Architecture

 Why does this make sense?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop

Spring 2024

14

ETL Bottleneck

 Reporting is often a nightly task:

ETL is often slow

processing 24 h of data may take longer than 24 h!

 Often, with noisy datasets, ETL is the analysis!

ETL necessarily involves brute-force data scans: L, then E and T?

 Using Hadoop:

Most likely, you already have some data warehousing solution

Ingest is limited by speed of HDFS

Scales out with more nodes

Massively parallel and much cheaper than parallel databases

Ability to use any processing tool

ETL is a batch process anyway!

Spring 2024

15

MapReduce Algorithms

for Processing Relational Data

Spring 2024

18

Working Scenario

 Two tables:

User demographics (gender, age, income, etc.)

User page visits (URL, time spent, etc.)

 Analyses we might want to perform:

Statistics on demographic characteristics

Statistics on page visits

Statistics on page visits by URL

Statistics on page visits by demographic characteristic

…

Spring 2024

19

Relational Algebra

www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/4-RelAlg/intro.html

Spring 2024

20

Projection

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

π S (R)

Spring 2024

21

Projection in MapReduce

 Easy!

Map over tuples, emit new tuples with the projected attributes

For each tuple t in R, construct a tuple t’ by eliminating those

components whose attributes are not in S, emit a key/value pair (t’, t’)

No reducers (reducers are the identity function), unless for regrouping or

resorting tuples

the Reduce operation performs duplicate elimination

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!

Spring 2024

22

Selection

R1

R2

R3

R4

R5

R1

R3

σ C (R)

Spring 2024

23

Selection in MapReduce

 Easy!

Map over tuples, emit only tuples that meet selection criteria

For each tuple t in R, check if t satisfies C and if so, emit a key/value

pair (t, t)

• equivalent in Spark: filter()

No reducers (reducers are the identity function), unless for regrouping or

resorting tuples

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds:

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!

Spring 2024

24

Set Operations in Map Reduce

 R(X,Y) ⋃ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t])

Always emit (t,t)

We perform duplicate elimination

 R(X,Y) ⋂ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t])

Emit (t,t) in the former case and nothing (t, NULL) in the latter

 R(X,Y) \ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t, R or S)

Reduce: receive (t,[R]) or (t,[S]) or (t,[R,S])

Emit (t,t) only when received (t,[R]) otherwise nothing (t, NULL)

Spring 2024

25

Group by… Aggregation

 Example: What is the average time spent per URL?

 In SQL:

SELECT url, AVG(time) FROM visits GROUP BY url

 In MapReduce: Let R(A, B, C) be a relation to which we apply γA,θ(B)(R)

The map operation prepares the grouping e.g., emit (url, time) pairs

The grouping is done by the framework

The reducer computes the aggregation (e.g. average)

Eventually, optimize with combiners

Simplifying assumptions: one grouping attribute and one aggregation

function

Spring 2024

26

Relational Joins

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3

R S

Spring 2024

27

Types of Relationships

One-to-OneOne-to-ManyMany-to-Many

Spring 2024

28

Join Algorithms in MapReduce

 “Join” usually just means equi-join, but we also want to support other join

predicates

 Hadoop has some built-in join support, but our goal is to understand

important algorithm design principles

 Algorithms

Reduce-side join

Map-side join

In-memory join

Striped variant

Memcached variant

Spring 2024

29

Reduce-side Join

29

Relation S Relation R Different join keys

HDFS stores data blocks

(Replicas are not shown)

MapperMMapper2Mapper 1 Mapper3

- Each mapper processes

one block (split)

- Each mapper produces

the join key and the

record pairs

Reducer 1 Reducer 2 Reducer N
Reducers perform

the actual join

Shuffling and Sorting Phase
Shuffling and sorting

over the network

Spring 2024

31

Reduce-side Join: 1-to-1

Note: no guarantee if R is going to come first or S!

R1

R4

S2

S3

R1

R4

S2

S3

keys values

R1

R4

S2

S3

keys values

Map

Reduce

Spring 2024

32

Reduce-side Join: 1-to-Many

 What’s the problem?

R is the one side, S is the many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …

Spring 2024

39

Map-side (in-memory) Join

Relation S Relation R Different join keys

39

Distribute the smaller

relation to all nodes

Mapper NMapper 1 Mapper 2

Load one dataset into

memory, stream over

other datasetMapper 3

Spring 2024

40

Map-side (in-memory) Join

 MapReduce implementation

Distribute R to all nodes

Map over S, each mapper loads R in memory, hashed by join key

For every tuple in S, look up join key in R

No reducers, unless for regrouping or resorting tuples

 Downside: need to copy R to all mappers

Not so bad, since R is small

Spring 2024

44

Reducer-Centric Cost Model

 Difference between join implementations starts with Map output

Spring 2024

50

Join Implementations on MapReduce

Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. 2014. Distributed
data management using MapReduce. ACM Comput. Surv. 46, 3, January 2014

Spring 2024

51

Processing Relational Data: Summary

 MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by shuffle/sort

in MapReduce

Selection, projection, and other computations (e.g., aggregation), are

performed either in mapper or reducer

 Complex operations require multiple MapReduce jobs

Example: top ten URLs in terms of average time spent

Opportunities for automatic optimization

 Multiple strategies for relational joins

Spring 2024

52

Evolving Roles for Relational

Database and MapReduce

Spring 2024

53

Need for High-Level Languages

 Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow

Analysts don’t want to (or can’t) write Java

 Solution: develop higher-level data processing languages

Hive: HQL is like SQL

Pig: Pig Latin is a bit like Perl

Spring 2024

54

Hive and Pig

 Hive: data warehousing application in Hadoop

Query language is HQL, variant of SQL

Tables stored on HDFS as flat files

Developed by Facebook, now open source

 Pig: large-scale data processing system

Scripts are written in Pig Latin, a dataflow language

Developed by Yahoo!, now open source

Roughly 1/3 of all Yahoo! internal jobs

 Common idea:

Provide higher-level language to facilitate large-data processing

Higher-level language “compiles down” to Hadoop jobs

Spring 2024

55

Hive: Example

 Hive looks similar to an SQL database

 Relational join on two tables:

Table of word counts from Shakespeare collection

Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

Source: Material drawn from Cloudera training VM

Spring 2024

56

Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (.
(TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT
(TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (.
(TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR
(. (TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1)
(>= (. (TOK_TABLE_OR_COL k) freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (.
(TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)

Spring 2024

57

Hive: Behind the Scenes

STAGE DEPENDENCIES:

 Stage-1 is a root stage

 Stage-2 depends on stages: Stage-1

 Stage-0 is a root stage

STAGE PLANS:

 Stage: Stage-1

 Map Reduce

 Alias -> Map Operator Tree:

 s

 TableScan

 alias: s

 Filter Operator

 predicate:

 expr: (freq >= 1)

 type: boolean

 Reduce Output Operator

 key expressions:

 expr: word

 type: string

 sort order: +

 Map-reduce partition columns:

 expr: word

 type: string

 tag: 0

 value expressions:

 expr: freq

 type: int

 expr: word

 type: string

 k

 TableScan

 alias: k

 Filter Operator

 predicate:

 expr: (freq >= 1)

 type: boolean

 Reduce Output Operator

 key expressions:

 expr: word

 type: string

 sort order: +

 Map-reduce partition columns:

 expr: word

 type: string

 tag: 1

 value expressions:

 expr: freq

 type: int

Reduce Operator Tree:

 Join Operator

 condition map:

 Inner Join 0 to 1

 condition expressions:

 0 {VALUE._col0} {VALUE._col1}

 1 {VALUE._col0}

 outputColumnNames: _col0, _col1, _col2

 Filter Operator

 predicate:

 expr: ((_col0 >= 1) and (_col2 >= 1))

 type: boolean

 Select Operator

 expressions:

 expr: _col1

 type: string

 expr: _col0

 type: int

 expr: _col2

 type: int

 outputColumnNames: _col0, _col1, _col2

 File Output Operator

 compressed: false

 GlobalTableId: 0

 table:

 input format: org.apache.hadoop.mapred.SequenceFileInputFormat

 output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2

 Map Reduce

 Alias -> Map Operator Tree:

 hdfs://localhost:8022/tmp/hive-training/364214370/10002

 Reduce Output Operator

 key expressions:

 expr: _col1

 type: int

 sort order: -

 tag: -1

 value expressions:

 expr: _col0

 type: string

 expr: _col1

 type: int

 expr: _col2

 type: int

 Reduce Operator Tree:

 Extract

 Limit

 File Output Operator

 compressed: false

 GlobalTableId: 0

 table:

 input format: org.apache.hadoop.mapred.TextInputFormat

 output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

 Stage: Stage-0

 Fetch Operator

 limit: 10

Spring 2024

58

Pig: Example

 Task: Find the top 10 most visited pages in each category

Spring 2024

59

Pig Query Plan

Spring 2024

60

Pig Script

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Spring 2024

61

Pig Query Plan

Spring 2024

62

References

 CS9223 – Massive Data Analysis J. Freire & J. Simeon New York University

Course 2013

 INFM 718G / CMSC 828G Data-Intensive Computing with MapReduce J.

Lin University of Maryland 2013

 CS 6240: Parallel Data Processing in MapReduce Mirek Riedewald

Northeastern University 2014

 Extreme Computing Stratis D. Viglas University of Edinburg 2014

 MapReduce Algorithms for Big Data Analysis Kyuseok Shim VLDB 2012

TUTORIAL

	Διαφάνεια 1: Relational Data Processing on MapReduce
	Διαφάνεια 2: Peta-scale Data Analysis
	Διαφάνεια 3: Big Data Analysis
	Διαφάνεια 4: Relational Databases vs. MapReduce
	Διαφάνεια 6: Parallel Relational Databases vs. MapReduce
	Διαφάνεια 8: MapReduce vs Parallel DBMS
	Διαφάνεια 9: Database Workloads
	Διαφάνεια 10: One Database or Two?
	Διαφάνεια 11: OLTP/OLAP Integration
	Διαφάνεια 12: OLTP/OLAP Architecture: Hadoop?
	Διαφάνεια 13: OLTP/OLAP/Hadoop Architecture
	Διαφάνεια 14: ETL Bottleneck
	Διαφάνεια 15
	Διαφάνεια 18: Working Scenario
	Διαφάνεια 19: Relational Algebra
	Διαφάνεια 20: Projection
	Διαφάνεια 21: Projection in MapReduce
	Διαφάνεια 22: Selection
	Διαφάνεια 23: Selection in MapReduce
	Διαφάνεια 24: Set Operations in Map Reduce
	Διαφάνεια 25: Group by… Aggregation
	Διαφάνεια 26: Relational Joins
	Διαφάνεια 27: Types of Relationships
	Διαφάνεια 28: Join Algorithms in MapReduce
	Διαφάνεια 29: Reduce-side Join
	Διαφάνεια 31: Reduce-side Join: 1-to-1
	Διαφάνεια 32: Reduce-side Join: 1-to-Many
	Διαφάνεια 39: Map-side (in-memory) Join
	Διαφάνεια 40: Map-side (in-memory) Join
	Διαφάνεια 44: Reducer-Centric Cost Model
	Διαφάνεια 50: Join Implementations on MapReduce
	Διαφάνεια 51: Processing Relational Data: Summary
	Διαφάνεια 52
	Διαφάνεια 53: Need for High-Level Languages
	Διαφάνεια 54: Hive and Pig
	Διαφάνεια 55: Hive: Example
	Διαφάνεια 56: Hive: Behind the Scenes
	Διαφάνεια 57: Hive: Behind the Scenes
	Διαφάνεια 58: Pig: Example
	Διαφάνεια 59: Pig Query Plan
	Διαφάνεια 60: Pig Script
	Διαφάνεια 61: Pig Query Plan
	Διαφάνεια 62: References

