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world wide
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enabled 

devices sold 
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76 million smart 

meters in 2009…

 200M by 2014 

Peta-scale Data Analysis

4 billion views/day
YouTube is the 2nd most used 

search engine next to Google
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Big Data Analysis

 A lot of these datasets have some 

structure

Query logs

Point-of-sale records

User data (e.g., demographics)

…

 How do we perform data analysis at 

scale?

Relational databases and SQL

MapReduce (Hadoop)
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Relational Databases vs. MapReduce

 Relational databases:

Multi-purpose: analysis and transactions; batch and interactive

Data integrity via ACID transactions

Lots of tools in software ecosystem (for ingesting, reporting, etc.)

Supports SQL (and SQL integration, e.g., JDBC)

Automatic SQL query optimization

 MapReduce (Hadoop):

Designed for large clusters, fault tolerant

Data is accessed in “native format”

Supports many query languages

Programmers retain control over performance
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Parallel Relational Databases 

vs. MapReduce

 Parallel relational databases

Schema on “write”

Failures are relatively infrequent

“Possessive” of data

Mostly proprietary

 MapReduce

Schema on “read”

Failures are relatively common

In situ data processing

Open source 

Shared-nothing architecture for parallel processing

Hadoop v2.0 (YARN) architecture
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MapReduce vs Parallel DBMS

Parallel DBMS MapReduce

Schema Support ✓ Not out of the box

Indexing ✓ Not out of the box

Programming Model
Declarative

(SQL)

Imperative

(C/C++, Java, …)

Extensions through 

Pig and Hive

Optimizations 

(Compression, Query 

Optimization)

✓ Not out of the box

Flexibility Not out of the box ✓

Fault Tolerance
Coarse grained 

techniques
✓

[Pavlo et al., SIGMOD 2009, Stonebraker et al., CACM 2010, …]
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Database Workloads

 OLTP (online transaction processing)

Typical applications: e-commerce, banking, airline reservations

User facing: real-time, low latency, highly-concurrent

Tasks: relatively small set of “standard” transactional queries

Data access pattern: random reads, updates, writes (involving 

relatively small amounts of data)

 OLAP (online analytical processing)

Typical applications: business intelligence, data mining

Back-end processing: batch workloads, less concurrency

Tasks: complex analytical queries, often ad hoc

Data access pattern: table scans, large amounts of data involved per 

query
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One Database or Two?

 Downsides of co-existing OLTP 

and OLAP workloads

Poor memory management

Conflicting data access patterns

Variable latency

 Solution: separate databases

User-facing OLTP database for high-

volume transactions

Data warehouse for OLAP workloads

How do we connect the two?
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OLTP/OLAP Integration

 OLTP database for user-facing transactions

Retain records of all activity

Periodic ETL (e.g., nightly)

 Extract-Transform-Load (ETL)

Extract records from source

Transform: clean data, check integrity, aggregate, etc.

Load into OLAP database

 OLAP database for data warehousing

Business intelligence: reporting, ad hoc queries, data mining, etc.

Feedback to improve OLTP services

OLTP OLAP

ETL
(Extract, Transform, Load)
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OLTP/OLAP Architecture: Hadoop?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop here?

What about here?
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OLTP/OLAP/Hadoop Architecture

 Why does this make sense?

OLTP OLAP

ETL
(Extract, Transform, Load)

Hadoop
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ETL Bottleneck

 Reporting is often a nightly task:

ETL is often slow

processing 24 h of data may take longer than 24 h!

 Often, with noisy datasets, ETL is the analysis!

ETL necessarily involves brute-force data scans: L, then E and T? 

 Using Hadoop:

Most likely, you already have some data warehousing solution

Ingest is limited by speed of HDFS

Scales out with more nodes

Massively parallel and much cheaper than parallel databases

Ability to use any processing tool

ETL is a batch process anyway!
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MapReduce Algorithms 

for Processing Relational Data
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Working Scenario

 Two tables:

User demographics (gender, age, income, etc.)

User page visits (URL, time spent, etc.)

 Analyses we might want to perform:

Statistics on demographic characteristics

Statistics on page visits

Statistics on page visits by URL

Statistics on page visits by demographic characteristic

…
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Relational Algebra

www.mathcs.emory.edu/~cheung/Courses/377/Syllabus/4-RelAlg/intro.html
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Projection 
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Projection in MapReduce

 Easy!

Map over tuples, emit new tuples with the projected attributes

For each tuple t in R, construct a tuple t’ by eliminating those 

components whose attributes are not in S, emit a key/value pair (t’, t’)

No reducers (reducers are the identity function), unless for regrouping or 

resorting tuples

the Reduce operation performs duplicate elimination

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!
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Selection

R1

R2

R3
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σ C (R)
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Selection in MapReduce

 Easy!

Map over tuples, emit only tuples that meet selection criteria

For each tuple t in R, check if t satisfies C and if so, emit a key/value 

pair (t, t)

• equivalent in Spark: filter()

No reducers (reducers are the identity function), unless for regrouping or 

resorting tuples

Alternatively: perform in reducer, after some other processing

 Basically limited by HDFS streaming speeds: 

Speed of encoding/decoding tuples becomes important

Relational databases take advantage of compression

Semi-structured data? No problem!
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Set Operations in Map Reduce

 R(X,Y) ⋃ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t]) 

Always emit (t,t) 

We perform duplicate elimination

 R(X,Y) ⋂ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t,t)

Reduce: either receive (t,[t,t]) or (t,[t]) 

Emit (t,t) in the former case and nothing (t, NULL) in the latter

 R(X,Y) \ S(Y,Z)

Map: for each tuple t either in R or in S, emit (t, R or S)

Reduce: receive  (t,[R]) or (t,[S]) or (t,[R,S]) 

Emit (t,t) only when received (t,[R]) otherwise nothing (t, NULL)
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Group by… Aggregation

 Example: What is the average time spent per URL?

 In SQL:

SELECT url, AVG(time) FROM visits GROUP BY url

 In MapReduce: Let R(A, B, C) be a relation to which we apply γA,θ(B)(R)

The map operation prepares the grouping e.g., emit (url, time) pairs

The grouping is done by the framework

The reducer computes the aggregation (e.g. average)

Eventually, optimize with combiners

Simplifying assumptions: one grouping attribute and one aggregation 

function
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Relational Joins

R1

R2

R3

R4

S1

S2
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Types of Relationships

One-to-OneOne-to-ManyMany-to-Many
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Join Algorithms in MapReduce

 “Join” usually just means equi-join, but we also want to support other join 

predicates

 Hadoop has some built-in join support, but our goal is to understand 

important algorithm design principles

 Algorithms

Reduce-side join

Map-side join

In-memory join

Striped variant

Memcached variant
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Reduce-side Join

29

Relation S Relation R Different join keys

HDFS stores data blocks 

(Replicas are not shown)

MapperMMapper2Mapper 1 Mapper3

- Each mapper processes 

one block (split)

- Each mapper produces 

the join key and the 

record pairs

Reducer 1 Reducer 2 Reducer N
Reducers perform 

the actual join

Shuffling and Sorting Phase
Shuffling and sorting 

over the network



Spring 2024

31

Reduce-side Join: 1-to-1

Note: no guarantee if R is going to come first or S!
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Reduce-side Join: 1-to-Many

 What’s the problem?

R is the one side, S is the many

R1

S2

S3

R1

S2

S3

S9

keys values
Map

R1 S2

keys values

Reduce

S9

S3 …
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Map-side (in-memory) Join

Relation S Relation R Different join keys

39

Distribute the smaller 

relation to all nodes

Mapper NMapper 1 Mapper 2

Load one dataset into 

memory, stream over 

other datasetMapper 3
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Map-side (in-memory) Join

 MapReduce implementation

Distribute R to all nodes

Map over S, each mapper loads R in memory, hashed by join key

For every tuple in S, look up join key in R

No reducers, unless for regrouping or resorting tuples

 Downside: need to copy R to all mappers

Not so bad, since R is small
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Reducer-Centric Cost Model

 Difference between join implementations starts with Map output
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Join Implementations on MapReduce

Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. 2014. Distributed 
data management using MapReduce. ACM Comput. Surv. 46, 3, January 2014
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Processing Relational Data: Summary

 MapReduce algorithms for processing relational data:

Group by, sorting, partitioning are handled automatically by shuffle/sort 

in MapReduce

Selection, projection, and other computations (e.g., aggregation), are 

performed either in mapper or reducer

 Complex operations require multiple MapReduce jobs

Example: top ten URLs in terms of average time spent

Opportunities for automatic optimization

 Multiple strategies for relational joins
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Evolving Roles for Relational 

Database and MapReduce
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Need for High-Level Languages

 Hadoop is great for large-data processing!

But writing Java programs for everything is verbose and slow

Analysts don’t want to (or can’t) write Java

 Solution: develop higher-level data processing languages

Hive: HQL is like SQL

Pig: Pig Latin is a bit like Perl
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Hive and Pig

 Hive: data warehousing application in Hadoop

Query language is HQL, variant of SQL

Tables stored on HDFS as flat files

Developed by Facebook, now open source

 Pig: large-scale data processing system

Scripts are written in Pig Latin, a dataflow language

Developed by Yahoo!, now open source

Roughly 1/3 of all Yahoo! internal jobs

 Common idea:

Provide higher-level language to facilitate large-data processing

Higher-level language “compiles down” to Hadoop jobs
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Hive: Example

 Hive looks similar to an SQL database

 Relational join on two tables:

Table of word counts from Shakespeare collection

Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s 
  JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 
  ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

Source: Material drawn from Cloudera training VM
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Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s 
  JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1 
  ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. 
(TOK_TABLE_OR_COL s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT 
(TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. 
(TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR 
(. (TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) 
(>= (. (TOK_TABLE_OR_COL k) freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. 
(TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)

(Abstract Syntax Tree)
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Hive: Behind the Scenes

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-2 depends on stages: Stage-1

  Stage-0 is a root stage

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Alias -> Map Operator Tree:

        s 

          TableScan

            alias: s

            Filter Operator

              predicate:

                  expr: (freq >= 1)

                  type: boolean

              Reduce Output Operator

                key expressions:

                      expr: word

                      type: string

                sort order: +

                Map-reduce partition columns:

                      expr: word

                      type: string

                tag: 0

                value expressions:

                      expr: freq

                      type: int

                      expr: word

                      type: string

        k 

          TableScan

            alias: k

            Filter Operator

              predicate:

                  expr: (freq >= 1)

                  type: boolean

              Reduce Output Operator

                key expressions:

                      expr: word

                      type: string

                sort order: +

                Map-reduce partition columns:

                      expr: word

                      type: string

                tag: 1

                value expressions:

                      expr: freq

                      type: int

Reduce Operator Tree:

        Join Operator

          condition map:

               Inner Join 0 to 1

          condition expressions:

            0 {VALUE._col0} {VALUE._col1}

            1 {VALUE._col0}

          outputColumnNames: _col0, _col1, _col2

          Filter Operator

            predicate:

                expr: ((_col0 >= 1) and (_col2 >= 1))

                type: boolean

            Select Operator

              expressions:

                    expr: _col1

                    type: string

                    expr: _col0

                    type: int

                    expr: _col2

                    type: int

              outputColumnNames: _col0, _col1, _col2

              File Output Operator

                compressed: false

                GlobalTableId: 0

                table:

                    input format: org.apache.hadoop.mapred.SequenceFileInputFormat

                    output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

Stage: Stage-2

    Map Reduce

      Alias -> Map Operator Tree:

        hdfs://localhost:8022/tmp/hive-training/364214370/10002 

            Reduce Output Operator

              key expressions:

                    expr: _col1

                    type: int

              sort order: -

              tag: -1

              value expressions:

                    expr: _col0

                    type: string

                    expr: _col1

                    type: int

                    expr: _col2

                    type: int

      Reduce Operator Tree:

        Extract

          Limit

            File Output Operator

              compressed: false

              GlobalTableId: 0

              table:

                  input format: org.apache.hadoop.mapred.TextInputFormat

                  output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

 Stage: Stage-0

    Fetch Operator

      limit: 10
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Pig: Example

 Task: Find the top 10 most visited pages in each category
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Pig Query Plan
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Pig Script

visits = load ‘/data/visits’  as (user,  url,  time);  

gVisits =  group visits  by url;  

visitCounts =  foreach gVisits generate url,  count(visits);  

urlInfo =  load ‘/data/urlInfo’  as (url,  category,  pRank);  

visitCounts =  join visitCounts by url,  urlInfo by url;  

gCategories =  group visitCounts by category;  

topUrls =  foreach gCategories generate top(visitCounts,10);  

store  topUrls into  ‘/data/topUrls’; 
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Pig Query Plan
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