
1

Spring 2024

Finding Similar Sets

http://www.csd.uoc.gr/~hy562

University of Crete



2

Spring 2024

A small workshop first

https://www.menti.com/altfoogpsu8z



3

Spring 2024

Motivation

 Many Web-mining problems can be expressed as finding “similar” 

sets:

Pages with similar words, e.g., for classification by topic

Netflix users with similar tastes in movies for recommendation systems

Dual: movies with similar sets of fans

Images of related things

 The best techniques depend on whether you are looking for items 

that are very similar or only somewhat similar

Special cases are easy, e.g., identical documents, or one document 

contained character-by-character in another

General case, where many small pieces of one document appear out of 

order in another, is very hard
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Finding Similar Documents
 Applications: Given a body of documents, find pairs of documents 

with a lot of text in common, e.g.:

Mirror Web sites, or approximate mirrors

Application: Don’t want to show both in a search

Plagiarism, including large quotations

Similar news articles at many news sites

Application: Cluster articles by “same story”

 Simple IR approaches are not suited:

Document = set of words appearing in document

Document = set of “important” words

Why? we need to account for ordering of words!
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Main Issues

 What is the right representation of the document when we check for 

similarity?

E.g., representing a document as a set of characters will not do (why?)

 When we have billions of documents, keeping the full text in memory 

is not an option

We need to find a shorter representation

 How do we do pairwise comparisons of billions of documents?

If exact match was the issue it would be ok, can we replicate this idea?



6

Spring 2024

Three Essential Techniques for 

Detecting Similar Documents

 Shingling: convert documents, emails, etc., to sets

 Min-hashing: convert large sets to short signatures, while preserving similarity

 Locality-sensitive hashing: focus on pairs of signatures likely to be similar

Docu-
ment

The set of 
strings of 
length k that 
appear in the 
document

Signatures :
short integer vectors 
that represent the 
sets, and reflect 
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity
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Shignling

Docu-
ment

The set of 
strings of 
length k that 
appear in the 
document

Signatures :
short integer vectors 
that represent the 
sets, and reflect 
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity
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Shingles

 A k-shingle (or k-gram) for a document is a sequence of k characters (or 

words) that appears in the document

Represent a document by its set of k-shingles

 Example: doc=“abcab”.  

Set of 2-shingles

 {ab, bc, ca}

Alternative: 

Bag of 2-shingles = {ab, bc, ca, ab}

 Working Assumption: Documents that have lots of shingles in common have 

similar text, even if the text appears in different order

What if two documents differ by a word?

Affects only k‐shingles within distance k from the word

What if we reorder paragraphs?

Affects only k-shingles that cross paragraph boundaries
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Shingle Size

 Is k=2 a good choice for a shingle size?

 Example: 

doc1 = “abcab”. 2-shingles = {ab, bc, ca}

doc2 = “cabc”.  2-shingles = {ab, bc, ca}

 Careful decision: you must pick k to be

large enough, or most documents will have most shingles in common

not too large, or most documents will have no shingles in common

k = 5 is OK for short documents 

k = 10 is better for long documents
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Basic Data Model: Sets

 Many similarity problems can be couched as finding subsets of 

some universal set that have significant intersection

 Examples:

Documents represented by their sets of shingles 

Similar customers or products

 Each document is a 0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse

 Interpret set intersection as bitwise AND, and set union as bitwise OR
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Jaccard Similarity of Sets

 The Jaccard similarity of two sets is the size of their intersection 

divided by the size of their union

Sim (C1, C2) = |C1C2|/|C1C2|

3 in intersection
8 in union

Jaccard similarity = 3/8

BA
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From Sets to Boolean Matrices

 Rows = elements (shingles) of the universal set

 Columns = sets (documents)

1 in row e and column S if and only if e is a 

member of S

Column similarity is the Jaccard similarity of the 

sets of their rows with 1

 Typical matrix is sparse 

Sparse matrices are usually better represented by 

the list of places where there is a non-zero value

But the Boolean matrix picture is conceptually 

useful
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C1 C2
a 0 1

b 1 0

c 1 1 Sim (C1, C2) =

d 0 0

e 1 1

f 0 1

*

*

*

*

*

*

*

2/5 = 0.4

C1 = “bce”

C2 = “acef”

1
-s

h
in

g
le

s

Example: Jaccard Similarity of Columns
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Shingles: Compression Option

 How about space overhead?

Each character can be represented as a byte

➢One k‐shingle requires k bytes

 To compare a pair of 9-shingles we need to compare 9 bytes

 To improve efficiency, we can compress long shingles: 

hash them to (say) 4 bytes, and

represent a document by the set of hash values of its k-shingles

(aaabbbccc)(abcabcabc) → h(aaabbbccc)h(abcabcabc)

18 bytes → 8 bytes

 Working Assumption: Two documents with shared hash values 

will almost always have shingles in common. 
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Outline: Finding Similar Columns

 Naïve approach:

 Compute signatures of documents = small summaries of columns

 Examine pairs of signatures to find similar columns

• Requirement: similarities of signatures and columns are related

 Optional: check that columns with similar signatures are really similar

 This scheme works but …

What if the set of signatures (or k‐shingles) is too large to fit in the 

memory?

Or the number of documents is too big?

 Idea: Hash a document (column) to a single (small-size) value and 

similar documents to the same value!

Warning: These methods can produce false negatives, and even false 

positives (if the above optional check is not made)
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Signatures

 Key idea: “hash” h(·) each column C to a small signature, such that:

 h(C) is small enough that we can fit a signature in main memory for 

each column

 Sim(C1, C2) is approximated by the “similarity” of h(C1) and h(C2)

 By hashing columns into buckets we expect that “most” pairs of near 

duplicate documents hash into the same bucket!

 Goal: Find a hash function h(·) such that:

If sim(C1,C2) is high, then with high probability h(C1) = h(C2)

If sim(C1,C2) is low, then with high probability h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function!

There is a suitable hashing technique for the Jaccard similarity: 

It is called Min-Hashing!
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MinHashing

Docu-
ment

The set of 
strings of 
length k that 
appear in the 
document

Signatures :
short integer vectors 
that represent the 
sets, and reflect 
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity



19

Spring 2024

Minhashing

 History: invented by Andrei Broder in 1997 (AltaVista) to detect near 

duplicate web pages

 Imagine the rows of the Boolean matrix permuted under random 

permutation π

 Define a “hash” function hπ(C):

the index of the first (in the permuted order π) row in which column C

has value 1: 

hπ(C) = minπ π(C) 
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MinHashing - Example

Input matrix 

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Permutations

2nd element of the permutation is 

the first to map to a 1 in col C1

h2(C3)=4 (permutation 2, column C3) 

4th element of the permutation 

is the first to map to a 1 in C3

C1      C2     C3      C4 
h(C1) h(C2)  h(C3) h(C4) 
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Surprising Property

 The probability (over all permutations of the rows) that h(C1)=h(C2)
is the same as Sim(C1, C2): 

Pr[hπ(C1) = hπ(C2)] = sim(C1,C2)

 With multiple signatures (i.e, permutations or hash functions) we get 

a good approximation

 Use several independent hash functions to create a signature of a 

column 

The similarity of signatures is the fraction of the hash functions in which 

they agree

Because of this MinHash property, the similarity of columns is the same 

as the expected similarity of their signatures
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Why?

 Given columns C1 and C2, rows may be classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

 Let A = # rows of type a, B = # rows of type b, C = # rows of type c

 Look down the permuted columns C1 and C2 until we see a 1

If it’s a type-a row, then h(C1)=h(C2)

If it’s a type-b or type-c row, then h(C1)≠h(C2)

Then: Pr[h(C1)=h(C2)] = A /(A +B +C)

 Note Sim(C1,C2) = A /(A +B +C)

Then: Pr[h(C1)=h(C2)] = Sim(C1,C2) 
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MinHashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
              1-3      2-4    1-2   3-4
Col/Col   0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

C1      C2     C3      C4 
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MinHash – False Positive/Negative

 False positive?

False positive can be easily dealt with by doing an additional layer 

of checking (treat minhash as a filtering mechanism)

 False negative?

Requiring full match of signature is strict, some similar sets will be 

lost

 High error rate! Can we do better?
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MinHash Signatures

Pick (say) 100 random permutations of the rows

Think of Sig(C) as a column vector

Let Sig(C)[i] = min(πi(C))

according to the i th permutation, the number of the first row that has a 1
in column C

 Note: The sketch (signature) of column C is small ~400 bytes!

We achieved our goal! We “compressed” long bit vectors into short 

signatures
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Implementation Trick

 Permuting rows even once is prohibitive

 An approximation to permuting rows: pick many hash functions hi
Instead of a permutation, use a random hash function that maps 

row numbers to as many buckets as there are rows

Row hashing: ordering under hi gives a random row 

permutation!

 One-pass implementation

For each column C and each hash function hi, keep a “slot” 

M(i,C) for the min-hash value 

all slots initialized to infinity

Intent: M(i,C) will become the smallest value of hi(r) for 

which column C has 1 in row r

i.e., hi(r) gives order of rows for i-th permutation
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Implementation

M(i,C) = ∞

for each row r

for each column C 

if C has 1 in row r // Scan rows looking for 1s

for each hash function hi do

if hi(r) < M(i,C) then

M(i,C):= hi(r);

How to pick a random hash function h(x)? 

Universal hashing: 

ha,b(x)=((a·x+b) mod p) mod N where: 

a,b … random integers 

p … prime number (p > N)
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Example

Row C1 C2

  r1  1  0
  r2  0  1
  r3  1  1
  r4  1  0
  r5  0  1

h1 (x) = x mod 5
h2 (x) = 2x+1 mod 5

h1 (1) = 1 1 ∞
h2 (1) = 3 3 ∞

h1 (2) = 2 1 2
h2 (2) = 0 3 0

h1 (3) = 3 1 2
h2 (3) = 2 2 0

h1 (4) = 4 1 2
h2 (4) = 4 2 0

h1 (5) = 0 1 0
h2 (5) = 1 2 0

Sig1 Sig2

M(1,2)

Jaccard=1/5

M(2,2)

M(1,1)

M(2,1)
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So far …

 Represent a document as a set of hash values (of its k‐shingles)

 Transform set of k‐shingles to a set of minhash signatures

 Use Jaccard to compare two documents by comparing their 

signatures

 Is this method (i.e., transforming sets to signature) necessarily 

“better”?
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Locality-Sensitive Hashing

Docu-
ment

The set of 
strings of 
length k that 
appear in the 
document

Signatures :
short integer vectors 
that represent the 
sets, and reflect 
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity
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Finding Similar Pairs

 While the signatures of all columns may fit in main memory, 

comparing the signatures of all pairs of columns is quadratic in the 

number of columns

 Naïve solution

For each document, compare with the other N‐1 documents

N‐1 comparisons for each document

Requires N*(N‐1)/2 comparisons

 Example: 

107 documents implies ~ 1014 document-comparisons

At 1 μs/comparison 108 (~ 3 years!)
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Locality-Sensitive Hashing

 A function f(x,y) tells whether or not x and y is a candidate pair: 

a pair of elements whose similarity must be evaluated

 With only one hash function on one entire column of signature, likely 

to have many false negatives (i.e., missed similar pairs)

 Key idea: Apply the hash function on the columns of signature matrix M 

multiple times, each on a partition of the column (i.e., for a few rows only)

Arrange that (only) similar columns are likely to hash (i.e., with high 

probability) to the same bucket

Each pair of columns that hashes at least once into the same bucket is 

a candidate pair
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Partition Into Bands

Matrix M

r rows
per band

b  bands

 Divide matrix M into b bands of r rows

For each document, compute b            

sets of r minhash values

Each set is a mini-signature              

with r minhash functions

n = b*r hash functions

b  mini-

signatures
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Partition into Bands

 For each band, hash its portion of 

each column to a hash table with 

k buckets
larger k => fewer collisions (false 

positives)

 Candidate column pairs are those 

that hash to the same bucket for 

at least one band

 Tune b and r to catch most 

similar pairs, but few non-similar 

pairs
Intuitively: 

 larger b for lower sim thresholds

smaller b for larger sim thresholds Matrix M

r rows

b bands

Columns 2 and 6
are probably 
identical

Columns 6 and 7  
are surely different

1 2 3 4 5 6 7

Buckets
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Simplifying Assumption

 There are enough buckets that columns are unlikely to hash to the 

same bucket unless they are identical in a particular band

Hereafter, we assume that “same bucket” means “identical in that band”

Assumption needed only to simplify analysis, not for correctness of 

algorithm

 Finding all pairs within a bucket becomes computationally cheaper!

Declare all pairs within a bucket to be “matching” (faster but noisy)

OR

Perform pair‐wise comparisons for those documents 

that fall into the same bucket (slower but more accurate)

Much smaller than pair‐wise over all documents



39

Spring 2024

Example: Effect of Bands

 Suppose 105 columns of M (100k docs)

 Signatures of 100 integers (total rows in M)

 If each integer requires 4 bytes, we only need 102*4*105 = 40MB of 

memory!

Goal: Find pairs of documents that are at least s = 0.8 similar 

 5*109 pairs to compare… this can take a while

 Choose 20 bands of 5 integers/band…
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Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1, C2) = 0.8 

Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate pair

We want them to hash to at least 1 common bucket (at least one band 

is identical) 

 Probability C1, C2 identical in one particular band: (0.8)5 = 0.328 

 Probability C1, C2 are not identical in any of the 20 bands: 

(1-0.328)20 = 0.00035

i.e., about 1 in 3000 similar documents are false negatives (we miss 

them) 

 We would find 99.965% pairs of truly similar documents 
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Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1,C2) = 0.3 

Since sim(C1, C2) < s we want C1, C2 to hash to NO common 

buckets (all bands should be different) 

 Probability C1, C2 identical in one particular band: (0.3)5 = 
0.00243 

Probability C1, C2 identical in at least 1 of 20 bands: 1-(1-0.00243)20

= 0.0474 

In other words, approximately 4.74% pairs of docs with similarity 0.3 end 

up becoming candidate pairs 

They are false positives since we will have to examine them (they are 

candidate pairs) but then it will turn out their similarity is below threshold s
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LSH Involves a Tradeoff

 How to get a step-function?

 Pick: 

The number of Min-Hashes    

(rows of M) 

The number of bands b, and 

The number of rows r per band 

to balance false positives/negatives

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Probability = 0
if t <s

Probability = 1 
if t >s 

Analysis of LSH – What We Want

S
im

il
a

ri
ty

 t
h

re
s
h

o
ld

 s
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False 

Positives

One Band of One Row

 Remember:

Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

Probability
of sharing
a bucket

Similarity t=sim(C1, C2) of two sets

Single hash 

signature

s

False Ne-

gatives
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b Bands of r Rows

 The S-curve is where the “magic” happens

Probability
of sharing
a bucket

t r 

All rows r
of a band
are equal

( )b 

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r 

Similarity t=sim(C1, C2) of two sets

1 -

Some row
of a band
unequals
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Picking r and b: The S-Curve

 Picking r and b to get the best S-curve

Blue area: False Negative rate 

These are pairs with sim > s but 

the X fraction won’t share a band 

and they will never become 

candidates. This means we will 

never consider these pairs for 

(slow/exact) similarity calculation!

Green area: False Positive rate 

These are pairs with sim < s but 

we will consider them as candidates. 

This is not too bad, we will consider 

them for (slow/exact) similarity 

computation and discard them.
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S-curves as a Function of b and r

 Given a fixed threshold 

s

 We want choose r and 

b such that the 

Pr(Candidate 
pair) has a “step” 

right around s
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Example: b = 20; r = 5

t 1-(1-tr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

s = 0.5 (~1/20)1/5 

if we had only 20 bands of 5 rows, the number of false negatives 

would go down, but the number of false positives would go up
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Picking r, b to Get Desired Performance
 50 hash-functions (r * b = 50)
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Limitations of Minhash

 Minhash is great for near‐duplicate detection

Set high threshold for Jaccard similarity

 Limitations:

Jaccard similarity only

Set‐based representation, no way to assign weights to features

 Random projections:

Works with arbitrary vectors using cosine similarity

Same basic idea, but details differ

Slower but more accurate: no free lunch!
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LSH Generalizations
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Multiple Hash Functions

 For Min-Hashing signatures, we got a Min-Hash function for each 

permutation of rows

 So far, we have assumed only one hash function (even applied 

multiple times)

Shorthand: h(x)=h(y) implies “h says x and y are equal”

 We could have used a family of hash functions 

A (large) set of related hash functions generated by some mechanism 

We should be able to efficiently pick a hash function at random from 

such a family



53

Spring 2024

Locality‐Sensitive (LS) Families

 Consider a space S of points with a distance measure d

 A family H of hash functions is said to be 

(d1, d2, p1, p2)‐ sensitive if for any x and y in S:

If d(x,y) ≤ d1, then prob over all h in H that h(x)=h(y) is at least p1
If d(x,y) ≥ d2, then prob over all h in H that h(x)=h(y) is at most p2

Small distance, 

high probability

of hashing to 

the same value Large distance, 

low probability 

of hashing to 

the same value
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Example of LS Family: MinHash

 Let 

S = space of all sets, 

d = Jaccard distance, 

H is family of Min-Hash functions for all permutations of rows

 Minhashing gives a (d1, d2, p1, p2)‐sensitive family for any d1 < d2
E.g., H is a (1/3, 2/3, 2/3, 1/3)‐sensitive family for S and d

If distance ≤ 1/3 (i.e., similarity ≥ 2/3), then probability that minhash values agree 

is ≥ 2/3

This is because for any hash function h ∈ H Pr(h(x)=h(y))=1‐d(x,y)

 Simply restates theorem about Min-Hashing in terms of distances rather than 

similarities! 
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Example of LS Family: MinHash

 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d

 For Jaccard similarity, Min-Hashing gives a (d1,d2,(1-d1),(1-d2))-sensitive family 

for any d1<d2

 Theory leaves unknown what happens to pairs that are at distance between d1

and d2

Consequence: No guarantees about fraction of false positives in that range 

If distance < 1/3 

(so similarity ≥ 2/3) 
Then probability that Min-

Hash values agree ≥ 2/3



56

Spring 2024

Amplifying an LS‐family

 Can we reproduce the “S-curve” effect we saw before for any LS 

family?

 The “banding” technique we learned for signature matrices carries 

over to this more general setting

So we can do LSH with any (d1, d2, p1, p2)-sensitive family

 Two constructions:

AND construction like “rows in a band”

OR construction like “many bands”
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AND Construction of Hash Functions

 Given family H, construct family H’ consisting of r functions from H

 For h=[h1,…,hr] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for all i: 1≤i≤r

 Note this has the same effect as “r signatures”

x and y are considered a candidate pair if every one of the r rows say that x
and y are equal

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is (d1,d2,p1
r,p2

r)‐ sensitive

That is, for any p, if p is the probability that a member of H will declare  (x,y)
to be a candidate pair, then the probability that a member of H′ will so declare 

is pr

Proof: Use the fact that hi ’s are independent 
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OR Construction of Hash Functions

 Given family H, construct family H’ consisting of b functions from H

 For h=[h1,…,hb] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for at least one i,

1 ≤ i ≤ b

 Mirrors the effect of combining “b bands”: 

x and y become a candidate pair if any set makes them a candidate pair

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is 

(d1,d2,1‐(1‐p1)
b, 1‐(1‐p2)

b)‐sensitive

That is, for any p, if p is the probability that a member of H will declare  (x,y) to 

be a candidate pair, then (1‐p) is the probability that it will not declare so

(1‐p)b is the probability that none of the family h1, hb will declare (x,y) a 

candidate pair

1−(1−p)b is the probability that at least one hi will declare (x,y) a candidate

pair, and therefore that H’ will declare (x,y) to be a candidate pair
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Effect of AND & OR Constructions

 AND makes all probabilities shrink, but by choosing r correctly, we can make the 

lower probability approach 0 while the higher does not

 OR makes all probabilities grow, but by choosing b correctly, we can make the 

upper probability approach 1 while the lower does not
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Composing Constructions: 

AND‐OR Composition

 r‐way AND construction followed by b‐way OR construction

Exactly what we did with minhashing

If b bands match in all r values hash to same bucket

Columns that are hashed into ≥ 1 common bucket -> candidate

 Take points x and y s.t. Pr[h(x)=h(y)] = p

H will make (x,y) a candidate pair with probability p

 Construction makes (x,y) a candidate pair with probability 

1‐(1‐pr)b

The S‐Curve!
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Example

 Example: Take H and construct H’ 

by the AND construction with r = 4. 

Then, from H’, construct H’’ by the 

OR construction with b = 4 

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8, 

0.8785, 0.0064)‐sensitive family
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Composing Constructions: 

OR‐AND Composition

 b‐way OR construction followed by r‐way AND construction

 Transforms probability p into (1‐(1‐p)b)r

The same S-curve, mirrored horizontally and vertically
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Example

 Example: Take H and construct H’ by the 

OR construction with b = 4. Then, from 

H’, construct H’’ by the AND construction 

with r = 4

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8, 0.9936, 

0.1215)‐sensitive family



64

Spring 2024

Cascading Constructions

 Example: Apply the (4,4) OR‐AND construction followed by the (4,4) 

AND‐OR construction

 Transforms a (.2,.8,.8,.2)‐sensitive family into a 

(.2,.8,.9999996,.0008715)‐ sensitive family

Note this family uses 256 (= 4*4*4*4) of the original hash functions
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Applications of LSH
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An LHS Family for Fingerprint Matching

 Fingerprint can be uniquely defined by its minutiae

 By overlaying a grid on the fingerprint image, we can extract the grid squares 

where the minutiae are located

 Two fingerprints are similar if the set of grid squares significantly overlap

Jaccard distance and minhash can be used, but …

 Let F be a family of functions

f  F is defined by, say 3, grid squares such that f returns the same bucket 

whenever the fingerprint has minutiae in all three grid squares

f sends all fingerprints that have minutiae in all three of f’s grid points to the 

same bucket

Two fingerprints match if they are in the same bucket
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LSH for Fingerprint Matching

 Suppose probability of finding a minutiae in a random grid square of a random 

finger is 0.2

 And probability of finding one in the same grid square of the same finger (different 

fingerprint) is 0.8

 Prob two fingerprints from different fingers match=(0.2)3x (0.2)3= 0.000064

 Prob two fingerprints from the same finger match=(0.2)3x (0.8)3= 0.004096

 Use more functions from F!

 Take 1024 functions and do a OR construction

Prob putting the fingerprints from the same finger in at least one bucket is 1 –

(1‐0.004096)1024 = 0.985

Prob two fingerprints from different fingers falling into the same bucket is 1 –

(1‐0.000064)1024 = 0.063

We have 1.5% false negatives and 6.3% false positives

 Using AND construction will

Greatly reduce the prob of a false positive

Small increase in false‐negative rate
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