
1

Spring 2024

Finding Similar Sets

http://www.csd.uoc.gr/~hy562

University of Crete

2

Spring 2024

A small workshop first

https://www.menti.com/altfoogpsu8z

3

Spring 2024

Motivation

 Many Web-mining problems can be expressed as finding “similar”

sets:

Pages with similar words, e.g., for classification by topic

Netflix users with similar tastes in movies for recommendation systems

Dual: movies with similar sets of fans

Images of related things

 The best techniques depend on whether you are looking for items

that are very similar or only somewhat similar

Special cases are easy, e.g., identical documents, or one document

contained character-by-character in another

General case, where many small pieces of one document appear out of

order in another, is very hard

4

Spring 2024

Finding Similar Documents
 Applications: Given a body of documents, find pairs of documents

with a lot of text in common, e.g.:

Mirror Web sites, or approximate mirrors

Application: Don’t want to show both in a search

Plagiarism, including large quotations

Similar news articles at many news sites

Application: Cluster articles by “same story”

 Simple IR approaches are not suited:

Document = set of words appearing in document

Document = set of “important” words

Why? we need to account for ordering of words!

5

Spring 2024

Main Issues

 What is the right representation of the document when we check for

similarity?

E.g., representing a document as a set of characters will not do (why?)

 When we have billions of documents, keeping the full text in memory

is not an option

We need to find a shorter representation

 How do we do pairwise comparisons of billions of documents?

If exact match was the issue it would be ok, can we replicate this idea?

6

Spring 2024

Three Essential Techniques for

Detecting Similar Documents

 Shingling: convert documents, emails, etc., to sets

 Min-hashing: convert large sets to short signatures, while preserving similarity

 Locality-sensitive hashing: focus on pairs of signatures likely to be similar

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

7

Spring 2024

Shignling

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

8

Spring 2024

Shingles

 A k-shingle (or k-gram) for a document is a sequence of k characters (or

words) that appears in the document

Represent a document by its set of k-shingles

 Example: doc=“abcab”.

Set of 2-shingles

 {ab, bc, ca}

Alternative:

Bag of 2-shingles = {ab, bc, ca, ab}

 Working Assumption: Documents that have lots of shingles in common have

similar text, even if the text appears in different order

What if two documents differ by a word?

Affects only k‐shingles within distance k from the word

What if we reorder paragraphs?

Affects only k-shingles that cross paragraph boundaries

9

Spring 2024

Shingle Size

 Is k=2 a good choice for a shingle size?

 Example:

doc1 = “abcab”. 2-shingles = {ab, bc, ca}

doc2 = “cabc”. 2-shingles = {ab, bc, ca}

 Careful decision: you must pick k to be

large enough, or most documents will have most shingles in common

not too large, or most documents will have no shingles in common

k = 5 is OK for short documents

k = 10 is better for long documents

10

Spring 2024

Basic Data Model: Sets

 Many similarity problems can be couched as finding subsets of

some universal set that have significant intersection

 Examples:

Documents represented by their sets of shingles

Similar customers or products

 Each document is a 0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse

 Interpret set intersection as bitwise AND, and set union as bitwise OR

11

Spring 2024

Jaccard Similarity of Sets

 The Jaccard similarity of two sets is the size of their intersection

divided by the size of their union

Sim (C1, C2) = |C1C2|/|C1C2|

3 in intersection
8 in union

Jaccard similarity = 3/8

BA

12

Spring 2024

From Sets to Boolean Matrices

 Rows = elements (shingles) of the universal set

 Columns = sets (documents)

1 in row e and column S if and only if e is a

member of S

Column similarity is the Jaccard similarity of the

sets of their rows with 1

 Typical matrix is sparse

Sparse matrices are usually better represented by

the list of places where there is a non-zero value

But the Boolean matrix picture is conceptually

useful

13

Spring 2024

C1 C2
a 0 1

b 1 0

c 1 1 Sim (C1, C2) =

d 0 0

e 1 1

f 0 1

*

*

*

*

*

*

*

2/5 = 0.4

C1 = “bce”

C2 = “acef”

1
-s

h
in

g
le

s

Example: Jaccard Similarity of Columns

14

Spring 2024

Shingles: Compression Option

 How about space overhead?

Each character can be represented as a byte

➢One k‐shingle requires k bytes

 To compare a pair of 9-shingles we need to compare 9 bytes

 To improve efficiency, we can compress long shingles:

hash them to (say) 4 bytes, and

represent a document by the set of hash values of its k-shingles

(aaabbbccc)(abcabcabc) → h(aaabbbccc)h(abcabcabc)

18 bytes → 8 bytes

 Working Assumption: Two documents with shared hash values

will almost always have shingles in common.

16

Spring 2024

Outline: Finding Similar Columns

 Naïve approach:

 Compute signatures of documents = small summaries of columns

 Examine pairs of signatures to find similar columns

• Requirement: similarities of signatures and columns are related

 Optional: check that columns with similar signatures are really similar

 This scheme works but …

What if the set of signatures (or k‐shingles) is too large to fit in the

memory?

Or the number of documents is too big?

 Idea: Hash a document (column) to a single (small-size) value and

similar documents to the same value!

Warning: These methods can produce false negatives, and even false

positives (if the above optional check is not made)

17

Spring 2024

Signatures

 Key idea: “hash” h(·) each column C to a small signature, such that:

 h(C) is small enough that we can fit a signature in main memory for

each column

 Sim(C1, C2) is approximated by the “similarity” of h(C1) and h(C2)

 By hashing columns into buckets we expect that “most” pairs of near

duplicate documents hash into the same bucket!

 Goal: Find a hash function h(·) such that:

If sim(C1,C2) is high, then with high probability h(C1) = h(C2)

If sim(C1,C2) is low, then with high probability h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function!

There is a suitable hashing technique for the Jaccard similarity:

It is called Min-Hashing!

18

Spring 2024

MinHashing

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

19

Spring 2024

Minhashing

 History: invented by Andrei Broder in 1997 (AltaVista) to detect near

duplicate web pages

 Imagine the rows of the Boolean matrix permuted under random

permutation π

 Define a “hash” function hπ(C):

the index of the first (in the permuted order π) row in which column C

has value 1:

hπ(C) = minπ π(C)

20

Spring 2024

MinHashing - Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Permutations

2nd element of the permutation is

the first to map to a 1 in col C1

h2(C3)=4 (permutation 2, column C3)

4th element of the permutation

is the first to map to a 1 in C3

C1 C2 C3 C4
h(C1) h(C2) h(C3) h(C4)

21

Spring 2024

Surprising Property

 The probability (over all permutations of the rows) that h(C1)=h(C2)
is the same as Sim(C1, C2):

Pr[hπ(C1) = hπ(C2)] = sim(C1,C2)

 With multiple signatures (i.e, permutations or hash functions) we get

a good approximation

 Use several independent hash functions to create a signature of a

column

The similarity of signatures is the fraction of the hash functions in which

they agree

Because of this MinHash property, the similarity of columns is the same

as the expected similarity of their signatures

23

Spring 2024

Why?

 Given columns C1 and C2, rows may be classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

 Let A = # rows of type a, B = # rows of type b, C = # rows of type c

 Look down the permuted columns C1 and C2 until we see a 1

If it’s a type-a row, then h(C1)=h(C2)

If it’s a type-b or type-c row, then h(C1)≠h(C2)

Then: Pr[h(C1)=h(C2)] = A /(A +B +C)

 Note Sim(C1,C2) = A /(A +B +C)

Then: Pr[h(C1)=h(C2)] = Sim(C1,C2)

24

Spring 2024

MinHashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

C1 C2 C3 C4

25

Spring 2024

MinHash – False Positive/Negative

 False positive?

False positive can be easily dealt with by doing an additional layer

of checking (treat minhash as a filtering mechanism)

 False negative?

Requiring full match of signature is strict, some similar sets will be

lost

 High error rate! Can we do better?

26

Spring 2024

MinHash Signatures

Pick (say) 100 random permutations of the rows

Think of Sig(C) as a column vector

Let Sig(C)[i] = min(πi(C))

according to the i th permutation, the number of the first row that has a 1
in column C

 Note: The sketch (signature) of column C is small ~400 bytes!

We achieved our goal! We “compressed” long bit vectors into short

signatures

27

Spring 2024

Implementation Trick

 Permuting rows even once is prohibitive

 An approximation to permuting rows: pick many hash functions hi
Instead of a permutation, use a random hash function that maps

row numbers to as many buckets as there are rows

Row hashing: ordering under hi gives a random row

permutation!

 One-pass implementation

For each column C and each hash function hi, keep a “slot”

M(i,C) for the min-hash value

all slots initialized to infinity

Intent: M(i,C) will become the smallest value of hi(r) for

which column C has 1 in row r

i.e., hi(r) gives order of rows for i-th permutation

28

Spring 2024

Implementation

M(i,C) = ∞

for each row r

for each column C

if C has 1 in row r // Scan rows looking for 1s

for each hash function hi do

if hi(r) < M(i,C) then

M(i,C):= hi(r);

How to pick a random hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N where:

a,b … random integers

p … prime number (p > N)

29

Spring 2024

Example

Row C1 C2

 r1 1 0
 r2 0 1
 r3 1 1
 r4 1 0
 r5 0 1

h1 (x) = x mod 5
h2 (x) = 2x+1 mod 5

h1 (1) = 1 1 ∞
h2 (1) = 3 3 ∞

h1 (2) = 2 1 2
h2 (2) = 0 3 0

h1 (3) = 3 1 2
h2 (3) = 2 2 0

h1 (4) = 4 1 2
h2 (4) = 4 2 0

h1 (5) = 0 1 0
h2 (5) = 1 2 0

Sig1 Sig2

M(1,2)

Jaccard=1/5

M(2,2)

M(1,1)

M(2,1)

30

Spring 2024

So far …

 Represent a document as a set of hash values (of its k‐shingles)

 Transform set of k‐shingles to a set of minhash signatures

 Use Jaccard to compare two documents by comparing their

signatures

 Is this method (i.e., transforming sets to signature) necessarily

“better”?

31

Spring 2024

Locality-Sensitive Hashing

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

33

Spring 2024

Finding Similar Pairs

 While the signatures of all columns may fit in main memory,

comparing the signatures of all pairs of columns is quadratic in the

number of columns

 Naïve solution

For each document, compare with the other N‐1 documents

N‐1 comparisons for each document

Requires N*(N‐1)/2 comparisons

 Example:

107 documents implies ~ 1014 document-comparisons

At 1 μs/comparison 108 (~ 3 years!)

34

Spring 2024

Locality-Sensitive Hashing

 A function f(x,y) tells whether or not x and y is a candidate pair:

a pair of elements whose similarity must be evaluated

 With only one hash function on one entire column of signature, likely

to have many false negatives (i.e., missed similar pairs)

 Key idea: Apply the hash function on the columns of signature matrix M

multiple times, each on a partition of the column (i.e., for a few rows only)

Arrange that (only) similar columns are likely to hash (i.e., with high

probability) to the same bucket

Each pair of columns that hashes at least once into the same bucket is

a candidate pair

36

Spring 2024

Partition Into Bands

Matrix M

r rows
per band

b bands

 Divide matrix M into b bands of r rows

For each document, compute b

sets of r minhash values

Each set is a mini-signature

with r minhash functions

n = b*r hash functions

b mini-

signatures

37

Spring 2024

Partition into Bands

 For each band, hash its portion of

each column to a hash table with

k buckets
larger k => fewer collisions (false

positives)

 Candidate column pairs are those

that hash to the same bucket for

at least one band

 Tune b and r to catch most

similar pairs, but few non-similar

pairs
Intuitively:

 larger b for lower sim thresholds

smaller b for larger sim thresholds Matrix M

r rows

b bands

Columns 2 and 6
are probably
identical

Columns 6 and 7
are surely different

1 2 3 4 5 6 7

Buckets

38

Spring 2024

Simplifying Assumption

 There are enough buckets that columns are unlikely to hash to the

same bucket unless they are identical in a particular band

Hereafter, we assume that “same bucket” means “identical in that band”

Assumption needed only to simplify analysis, not for correctness of

algorithm

 Finding all pairs within a bucket becomes computationally cheaper!

Declare all pairs within a bucket to be “matching” (faster but noisy)

OR

Perform pair‐wise comparisons for those documents

that fall into the same bucket (slower but more accurate)

Much smaller than pair‐wise over all documents

39

Spring 2024

Example: Effect of Bands

 Suppose 105 columns of M (100k docs)

 Signatures of 100 integers (total rows in M)

 If each integer requires 4 bytes, we only need 102*4*105 = 40MB of

memory!

Goal: Find pairs of documents that are at least s = 0.8 similar

 5*109 pairs to compare… this can take a while

 Choose 20 bands of 5 integers/band…

40

Spring 2024

Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1, C2) = 0.8

Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate pair

We want them to hash to at least 1 common bucket (at least one band

is identical)

 Probability C1, C2 identical in one particular band: (0.8)5 = 0.328

 Probability C1, C2 are not identical in any of the 20 bands:

(1-0.328)20 = 0.00035

i.e., about 1 in 3000 similar documents are false negatives (we miss

them)

 We would find 99.965% pairs of truly similar documents

41

Spring 2024

Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1,C2) = 0.3

Since sim(C1, C2) < s we want C1, C2 to hash to NO common

buckets (all bands should be different)

 Probability C1, C2 identical in one particular band: (0.3)5 =
0.00243

Probability C1, C2 identical in at least 1 of 20 bands: 1-(1-0.00243)20

= 0.0474

In other words, approximately 4.74% pairs of docs with similarity 0.3 end

up becoming candidate pairs

They are false positives since we will have to examine them (they are

candidate pairs) but then it will turn out their similarity is below threshold s

42

Spring 2024

LSH Involves a Tradeoff

 How to get a step-function?

 Pick:

The number of Min-Hashes

(rows of M)

The number of bands b, and

The number of rows r per band

to balance false positives/negatives

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Probability = 0
if t <s

Probability = 1
if t >s

Analysis of LSH – What We Want

S
im

il
a

ri
ty

 t
h

re
s
h

o
ld

 s

43

Spring 2024

False

Positives

One Band of One Row

 Remember:

Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

Probability
of sharing
a bucket

Similarity t=sim(C1, C2) of two sets

Single hash

signature

s

False Ne-

gatives

44

Spring 2024

b Bands of r Rows

 The S-curve is where the “magic” happens

Probability
of sharing
a bucket

t r

All rows r
of a band
are equal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

Similarity t=sim(C1, C2) of two sets

1 -

Some row
of a band
unequals

45

Spring 2024

Picking r and b: The S-Curve

 Picking r and b to get the best S-curve

Blue area: False Negative rate

These are pairs with sim > s but

the X fraction won’t share a band

and they will never become

candidates. This means we will

never consider these pairs for

(slow/exact) similarity calculation!

Green area: False Positive rate

These are pairs with sim < s but

we will consider them as candidates.

This is not too bad, we will consider

them for (slow/exact) similarity

computation and discard them.

46

Spring 2024

S-curves as a Function of b and r

 Given a fixed threshold

s

 We want choose r and

b such that the

Pr(Candidate
pair) has a “step”

right around s

47

Spring 2024

Example: b = 20; r = 5

t 1-(1-tr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

s = 0.5 (~1/20)1/5

if we had only 20 bands of 5 rows, the number of false negatives

would go down, but the number of false positives would go up

48

Spring 2024

Picking r, b to Get Desired Performance
 50 hash-functions (r * b = 50)

50

Spring 2024

Limitations of Minhash

 Minhash is great for near‐duplicate detection

Set high threshold for Jaccard similarity

 Limitations:

Jaccard similarity only

Set‐based representation, no way to assign weights to features

 Random projections:

Works with arbitrary vectors using cosine similarity

Same basic idea, but details differ

Slower but more accurate: no free lunch!

51

Spring 2024

LSH Generalizations

52

Spring 2024

Multiple Hash Functions

 For Min-Hashing signatures, we got a Min-Hash function for each

permutation of rows

 So far, we have assumed only one hash function (even applied

multiple times)

Shorthand: h(x)=h(y) implies “h says x and y are equal”

 We could have used a family of hash functions

A (large) set of related hash functions generated by some mechanism

We should be able to efficiently pick a hash function at random from

such a family

53

Spring 2024

Locality‐Sensitive (LS) Families

 Consider a space S of points with a distance measure d

 A family H of hash functions is said to be

(d1, d2, p1, p2)‐ sensitive if for any x and y in S:

If d(x,y) ≤ d1, then prob over all h in H that h(x)=h(y) is at least p1
If d(x,y) ≥ d2, then prob over all h in H that h(x)=h(y) is at most p2

Small distance,

high probability

of hashing to

the same value Large distance,

low probability

of hashing to

the same value

54

Spring 2024

Example of LS Family: MinHash

 Let

S = space of all sets,

d = Jaccard distance,

H is family of Min-Hash functions for all permutations of rows

 Minhashing gives a (d1, d2, p1, p2)‐sensitive family for any d1 < d2
E.g., H is a (1/3, 2/3, 2/3, 1/3)‐sensitive family for S and d

If distance ≤ 1/3 (i.e., similarity ≥ 2/3), then probability that minhash values agree

is ≥ 2/3

This is because for any hash function h ∈ H Pr(h(x)=h(y))=1‐d(x,y)

 Simply restates theorem about Min-Hashing in terms of distances rather than

similarities!

55

Spring 2024

Example of LS Family: MinHash

 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d

 For Jaccard similarity, Min-Hashing gives a (d1,d2,(1-d1),(1-d2))-sensitive family

for any d1<d2

 Theory leaves unknown what happens to pairs that are at distance between d1

and d2

Consequence: No guarantees about fraction of false positives in that range

If distance < 1/3

(so similarity ≥ 2/3)
Then probability that Min-

Hash values agree ≥ 2/3

56

Spring 2024

Amplifying an LS‐family

 Can we reproduce the “S-curve” effect we saw before for any LS

family?

 The “banding” technique we learned for signature matrices carries

over to this more general setting

So we can do LSH with any (d1, d2, p1, p2)-sensitive family

 Two constructions:

AND construction like “rows in a band”

OR construction like “many bands”

57

Spring 2024

AND Construction of Hash Functions

 Given family H, construct family H’ consisting of r functions from H

 For h=[h1,…,hr] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for all i: 1≤i≤r

 Note this has the same effect as “r signatures”

x and y are considered a candidate pair if every one of the r rows say that x
and y are equal

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is (d1,d2,p1
r,p2

r)‐ sensitive

That is, for any p, if p is the probability that a member of H will declare (x,y)
to be a candidate pair, then the probability that a member of H′ will so declare

is pr

Proof: Use the fact that hi ’s are independent

58

Spring 2024

OR Construction of Hash Functions

 Given family H, construct family H’ consisting of b functions from H

 For h=[h1,…,hb] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for at least one i,

1 ≤ i ≤ b

 Mirrors the effect of combining “b bands”:

x and y become a candidate pair if any set makes them a candidate pair

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is

(d1,d2,1‐(1‐p1)
b, 1‐(1‐p2)

b)‐sensitive

That is, for any p, if p is the probability that a member of H will declare (x,y) to

be a candidate pair, then (1‐p) is the probability that it will not declare so

(1‐p)b is the probability that none of the family h1, hb will declare (x,y) a

candidate pair

1−(1−p)b is the probability that at least one hi will declare (x,y) a candidate

pair, and therefore that H’ will declare (x,y) to be a candidate pair

59

Spring 2024

Effect of AND & OR Constructions

 AND makes all probabilities shrink, but by choosing r correctly, we can make the

lower probability approach 0 while the higher does not

 OR makes all probabilities grow, but by choosing b correctly, we can make the

upper probability approach 1 while the lower does not

60

Spring 2024

Composing Constructions:

AND‐OR Composition

 r‐way AND construction followed by b‐way OR construction

Exactly what we did with minhashing

If b bands match in all r values hash to same bucket

Columns that are hashed into ≥ 1 common bucket -> candidate

 Take points x and y s.t. Pr[h(x)=h(y)] = p

H will make (x,y) a candidate pair with probability p

 Construction makes (x,y) a candidate pair with probability

1‐(1‐pr)b

The S‐Curve!

61

Spring 2024

Example

 Example: Take H and construct H’

by the AND construction with r = 4.

Then, from H’, construct H’’ by the

OR construction with b = 4

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8,

0.8785, 0.0064)‐sensitive family

62

Spring 2024

Composing Constructions:

OR‐AND Composition

 b‐way OR construction followed by r‐way AND construction

 Transforms probability p into (1‐(1‐p)b)r

The same S-curve, mirrored horizontally and vertically

63

Spring 2024

Example

 Example: Take H and construct H’ by the

OR construction with b = 4. Then, from

H’, construct H’’ by the AND construction

with r = 4

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8, 0.9936,

0.1215)‐sensitive family

64

Spring 2024

Cascading Constructions

 Example: Apply the (4,4) OR‐AND construction followed by the (4,4)

AND‐OR construction

 Transforms a (.2,.8,.8,.2)‐sensitive family into a

(.2,.8,.9999996,.0008715)‐ sensitive family

Note this family uses 256 (= 4*4*4*4) of the original hash functions

65

Spring 2024

Applications of LSH

66

Spring 2024

An LHS Family for Fingerprint Matching

 Fingerprint can be uniquely defined by its minutiae

 By overlaying a grid on the fingerprint image, we can extract the grid squares

where the minutiae are located

 Two fingerprints are similar if the set of grid squares significantly overlap

Jaccard distance and minhash can be used, but …

 Let F be a family of functions

f  F is defined by, say 3, grid squares such that f returns the same bucket

whenever the fingerprint has minutiae in all three grid squares

f sends all fingerprints that have minutiae in all three of f’s grid points to the

same bucket

Two fingerprints match if they are in the same bucket

67

Spring 2024

LSH for Fingerprint Matching

 Suppose probability of finding a minutiae in a random grid square of a random

finger is 0.2

 And probability of finding one in the same grid square of the same finger (different

fingerprint) is 0.8

 Prob two fingerprints from different fingers match=(0.2)3x (0.2)3= 0.000064

 Prob two fingerprints from the same finger match=(0.2)3x (0.8)3= 0.004096

 Use more functions from F!

 Take 1024 functions and do a OR construction

Prob putting the fingerprints from the same finger in at least one bucket is 1 –

(1‐0.004096)1024 = 0.985

Prob two fingerprints from different fingers falling into the same bucket is 1 –

(1‐0.000064)1024 = 0.063

We have 1.5% false negatives and 6.3% false positives

 Using AND construction will

Greatly reduce the prob of a false positive

Small increase in false‐negative rate

68

Spring 2024

References

 CS9223 – Massive Data Analysis J. Freire & J. Simeon New York

University Course 2013

 CS246: Mining Massive Datasets Jure Leskovec, Stanford

University, 2014

 CS5344: Big Data Analytics Technology, TAN Kian‐Lee, National

University of Singapore 2014

	Διαφάνεια 1: Finding Similar Sets
	Διαφάνεια 2: A small workshop first
	Διαφάνεια 3: Motivation
	Διαφάνεια 4: Finding Similar Documents
	Διαφάνεια 5: Main Issues
	Διαφάνεια 6: Three Essential Techniques for Detecting Similar Documents
	Διαφάνεια 7: Shignling
	Διαφάνεια 8: Shingles
	Διαφάνεια 9: Shingle Size
	Διαφάνεια 10: Basic Data Model: Sets
	Διαφάνεια 11: Jaccard Similarity of Sets
	Διαφάνεια 12: From Sets to Boolean Matrices
	Διαφάνεια 13: Example: Jaccard Similarity of Columns
	Διαφάνεια 14: Shingles: Compression Option
	Διαφάνεια 16: Outline: Finding Similar Columns
	Διαφάνεια 17: Signatures
	Διαφάνεια 18: MinHashing
	Διαφάνεια 19: Minhashing
	Διαφάνεια 20: MinHashing - Example
	Διαφάνεια 21: Surprising Property
	Διαφάνεια 23: Why?
	Διαφάνεια 24: MinHashing – Example
	Διαφάνεια 25: MinHash – False Positive/Negative
	Διαφάνεια 26: MinHash Signatures
	Διαφάνεια 27: Implementation Trick
	Διαφάνεια 28: Implementation
	Διαφάνεια 29: Example
	Διαφάνεια 30: So far …
	Διαφάνεια 31: Locality-Sensitive Hashing
	Διαφάνεια 33: Finding Similar Pairs
	Διαφάνεια 34: Locality-Sensitive Hashing
	Διαφάνεια 36: Partition Into Bands
	Διαφάνεια 37: Partition into Bands
	Διαφάνεια 38: Simplifying Assumption
	Διαφάνεια 39: Example: Effect of Bands
	Διαφάνεια 40: Analysis of the Banding Technique
	Διαφάνεια 41: Analysis of the Banding Technique
	Διαφάνεια 42: LSH Involves a Tradeoff
	Διαφάνεια 43: One Band of One Row
	Διαφάνεια 44: b Bands of r Rows
	Διαφάνεια 45: Picking r and b: The S-Curve
	Διαφάνεια 46: S-curves as a Function of b and r
	Διαφάνεια 47: Example: b = 20; r = 5
	Διαφάνεια 48: Picking r, b to Get Desired Performance
	Διαφάνεια 50: Limitations of Minhash
	Διαφάνεια 51: LSH Generalizations
	Διαφάνεια 52: Multiple Hash Functions
	Διαφάνεια 53: Locality‐Sensitive (LS) Families
	Διαφάνεια 54: Example of LS Family: MinHash
	Διαφάνεια 55: Example of LS Family: MinHash
	Διαφάνεια 56: Amplifying an LS‐family
	Διαφάνεια 57: AND Construction of Hash Functions
	Διαφάνεια 58: OR Construction of Hash Functions
	Διαφάνεια 59: Effect of AND & OR Constructions
	Διαφάνεια 60: Composing Constructions: AND‐OR Composition
	Διαφάνεια 61: Example
	Διαφάνεια 62: Composing Constructions: OR‐AND Composition
	Διαφάνεια 63: Example
	Διαφάνεια 64: Cascading Constructions
	Διαφάνεια 65: Applications of LSH
	Διαφάνεια 66: An LHS Family for Fingerprint Matching
	Διαφάνεια 67: LSH for Fingerprint Matching
	Διαφάνεια 68: References

