Spring 2024

1

Finding Similar Sets

http://www.csd.uoc.gr/~hy562 University of Crete

Spring 2024

A small workshop first

https://www.menti.com/altfoogpsu8z

Motivation

 Many Web-mining problems can be expressed as finding "similar" sets:

Pages with similar words, e.g., for classification by topic

- Netflix users with similar tastes in movies for recommendation systems
 - Dual: movies with similar sets of fans
- Images of related things
- The best techniques depend on whether you are looking for items that are very similar or only somewhat similar
 - Special cases are easy, e.g., identical documents, or one document contained character-by-character in another
 - General case, where many small pieces of one document appear out of order in another, is very hard

Finding Similar Documents

 Applications: Given a body of documents, find pairs of documents with a lot of text in common, e.g.:

Mirror Web sites, or approximate mirrors

- Application: Don't want to show both in a search
- Plagiarism, including large quotations
- Similar news articles at many news sites
 - Application: Cluster articles by "same story"

• Simple IR approaches are not suited:

- Document = set of words appearing in document
- Document = set of "important" words

Why? we need to account for ordering of words!

Main Issues

• What is the right representation of the document when we check for similarity?

E.g., representing a document as a set of characters will not do (why?)

- When we have billions of documents, keeping the full text in memory is not an option
 - We need to find a shorter representation

• How do we do pairwise comparisons of billions of documents?

If exact match was the issue it would be ok, can we replicate this idea?

Three Essential Techniques for Detecting Similar Documents

- Shingling: convert documents, emails, etc., to sets
- Min-hashing: convert large sets to short signatures, while preserving similarity
- Locality-sensitive hashing: focus on pairs of signatures likely to be similar

Shignling

The set of strings of length *k* that appear in the document

Signatures :

short integer vectors that represent the sets, and reflect their similarity

Candidate pairs :

those pairs of signatures that we need to test for similarity

 A k-shingle (or k-gram) for a document is a sequence of k characters (or words) that appears in the document

Represent a document by its set of k-shingles

- Example: doc="abcab".
 - Set of 2-shingles
 - {ab, bc, ca}

Alternative:

Bag of 2-shingles = {ab, bc, ca, ab}

 Working Assumption: Documents that have lots of shingles in common have similar text, even if the text appears in different order

- What if two documents differ by a word?
 - Affects only k-shingles within distance k from the word
- What if we reorder paragraphs?
 - Affects only k-shingles that cross paragraph boundaries

Shingle Size

• Is k=2 a good choice for a shingle size?

• Example:

- \$\doc1 = "abcab". 2-shingles = {ab, bc, ca}
- \$\doc2 = "cabc". 2-shingles = {ab, bc, ca}

Careful decision: you must pick k to be

- Iarge enough, or most documents will have most shingles in common
- not too large, or most documents will have no shingles in common
- k = 5 is OK for short documents
- k = 10 is better for long documents

Basic Data Model: Sets

 Many similarity problems can be couched as finding subsets of some universal set that have significant intersection

• Examples:

- Documents represented by their sets of shingles
- Similar customers or products

Each document is a 0/1 vector in the space of k-shingles
 Each unique shingle is a dimension
 Vectors are very sparse

Interpret set intersection as bitwise AND, and set union as bitwise OR

Jaccard Similarity of Sets

 The Jaccard similarity of two sets is the size of their intersection divided by the size of their union

•*Sim* (C_1 , C_2) = $|C_1 \cap C_2| / |C_1 \cup C_2|$

3 in intersection 8 in union

Jaccard similarity = 3/8

From Sets to Boolean Matrices

• Rows = elements (shingles) of the universal set

- Columns = sets (documents)
 - 1 in row e and column S if and only if e is a member of S
 - Column similarity is the Jaccard similarity of the sets of their rows with 1
- Typical matrix is sparse
 - Sparse matrices are usually better represented by the list of places where there is a non-zero value
 - But the Boolean matrix picture is conceptually useful

Documents

Example: Jaccard Similarity of Columns

C1 = "bce" C2 = "acef"

Sim $(C_1, C_2) = 2/5 = 0.4$

Shingles: Compression Option

• How about space overhead?

Each character can be represented as a byte

One k-shingle requires k bytes

To compare a pair of 9-shingles we need to compare 9 bytes
 To improve efficiency, we can compress long shingles:

 hash them to (say) 4 bytes, and
 represent a document by the set of hash values of its k-shingles
 (aaabbbccc) (abcabcabc) → h(aaabbbccc)h(abcabcabc)
 18 bytes

 Working Assumption: Two documents with shared hash values will almost always have shingles in common.

Outline: Finding Similar Columns

• Naïve approach:

- Compute signatures of documents = small summaries of columns
- **2** Examine pairs of signatures to find similar columns
 - Requirement: similarities of signatures and columns are related
- **3** Optional: check that columns with similar signatures are really similar

This scheme works but …

- What if the set of signatures (or k-shingles) is too large to fit in the memory?
- •Or the number of documents is too big?
- Idea: Hash a document (column) to a single (small-size) value and similar documents to the same value!
 - Warning: These methods can produce false negatives, and even false positives (if the above optional check is not made)

Signatures

• Key idea: "hash" $h(\cdot)$ each column C to a small signature, such that:

- h(C) is small enough that we can fit a signature in main memory for each column
- 2 Sim(C_1 , C_2) is approximated by the "similarity" of $h(C_1)$ and $h(C_2)$
- By hashing columns into buckets we expect that "most" pairs of near duplicate documents hash into the same bucket!
- Goal: Find a hash function $h(\cdot)$ such that:
 - If $sim(C_1, C_2)$ is high, then with high probability $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high probability $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function!
 - There is a suitable hashing technique for the Jaccard similarity:
 - It is called Min-Hashing!

Spring 2024

MinHashing

The set of strings of length *k* that appear in the document

Signatures :

short integer vectors that represent the sets, and reflect their similarity

Candidate pairs :

those pairs of signatures that we need to test for similarity

Minhashing

- History: invented by Andrei Broder in 1997 (AltaVista) to detect near duplicate web pages
- Imagine the rows of the Boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$:
 - •the index of the first (in the permuted order π) row in which column C has value 1:

 $h_{\pi}(C) = min_{\pi} \pi(C)$

Surprising Property

The probability (over all permutations of the rows) that h(C₁)=h(C₂) is the same as Sim(C₁, C₂):

• $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

 With multiple signatures (i.e, permutations or hash functions) we get a good approximation

- Use several independent hash functions to create a signature of a column
 - The similarity of signatures is the fraction of the hash functions in which they agree
 - Because of this MinHash property, the similarity of columns is the same as the expected similarity of their signatures

• Given columns C_1 and C_2 , rows may be classified as:

 $\begin{array}{cccc}
\underline{C_{1}} & \underline{C_{2}} \\
a & 1 & 1 \\
b & 1 & 0 \\
c & 0 & 1 \\
d & 0 & 0
\end{array}$

• Let A = # rows of type a, B = # rows of type b, C = # rows of type c

Why?

Look down the permuted columns C₁ and C₂ until we see a 1
If it's a type-a row, then h(C₁)=h(C₂)
If it's a type-b or type-c row, then h(C₁)≠h(C₂)
Then: Pr[h(C₁)=h(C₂)] = A /(A +B +C)
Note Sim(C₁,C₂) = A /(A +B +C)
Then: Pr[h(C₁)=h(C₂)] = Sim(C₁,C₂)

MinHashing – Example

MinHash – False Positive/Negative

• False positive?

 False positive can be easily dealt with by doing an additional layer of checking (treat minhash as a filtering mechanism)

• False negative?

 Requiring full match of signature is strict, some similar sets will be lost

• High error rate! Can we do better?

MinHash Signatures

Pick (say) 100 random permutations of the rows

• Think of Sig(C) as a column vector

•Let $Sig(C)[i] = min(\pi_i(C))$

according to the i th permutation, the number of the first row that has a 1 in column C

Note: The sketch (signature) of column C is small ~400 bytes!
 We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- An approximation to permuting rows: pick many hash functions h_i
 - Instead of a permutation, use a random hash function that maps row numbers to as many buckets as there are rows
 - Row hashing: ordering under h_i gives a random row permutation!

One-pass implementation

- For each column C and each hash function h_i, keep a "slot"
 M(i,C) for the min-hash value
 - all slots initialized to infinity
- Intent: M(i,C) will become the smallest value of h_i(r) for which column C has 1 in row r
 - •i.e., h_i(r) gives order of rows for i-th permutation

Implementation

$$\begin{split} \mathsf{M}(\mathsf{i},\mathsf{C}) &= & & \\ \mathbf{for} \text{ each row } r \\ \mathbf{for} \text{ each column } \mathcal{C} \\ \mathbf{if} \ \mathcal{C} \text{ has 1 in row } r \ // \text{ Scan rows looking for 1s} \\ \mathbf{for} \text{ each hash function } h_i \ \mathbf{do} \\ \mathbf{if} \ h_i(r) &< M(i,\mathcal{C}) \ \mathbf{then} \\ M(i,\mathcal{C}) &:= h_i(r); \end{split}$$

How to pick a random hash function h(x)? Universal hashing:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$$
 where:
a, b ... random integers
p ... prime number (p > N)

Example

 $h_1(x) = x \mod 5$ $h_2(x) = 2x+1 \mod 5$

	Sig1	Sig	2
$h_1(1) = 1$ $h_2(1) = 3$ $h_1(2) = 2$	1 3 M(2 1	,1) [∞]	M(1,2) M(2,2)
$h_1(2) = 2$ $h_2(2) = 0$	3	0	
$h_1(3) = 3$	1	2	
$h_2(3) = 2$	2	0	
$h_1(4) = 4$	1	2	
$h_2(4) = 4$	2	0	
$h_1(5) = 0$	1	0	
$h_2(5) = 1$	2	0	

Represent a document as a set of hash values (of its k-shingles)

Transform set of k-shingles to a set of minhash signatures

Use Jaccard to compare two documents by comparing their signatures

Is this method (i.e., transforming sets to signature) necessarily "better"?

Spring 2024

Locality-Sensitive Hashing

The set of strings of length *k* that appear in the document

Signatures :

short integer vectors that represent the sets, and reflect their similarity

Candidate pairs :

those pairs
 of signatures
 that we need
 to test for
 similarity

Finding Similar Pairs

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns
- Naïve solution
 - ◆ For each document, compare with the other N-1 documents
 - N-1 comparisons for each document
 - Requires N*(N-1)/2 comparisons

• Example:

- ◆10⁷ documents implies ~ 10¹⁴ document-comparisons
- At 1 µs/comparison 10⁸ (~ 3 years!)

Locality-Sensitive Hashing

- A function f(x,y) tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- With only one hash function on one entire column of signature, likely to have many false negatives (i.e., missed similar pairs)
- Key idea: Apply the hash function on the columns of signature matrix M multiple times, each on a partition of the column (i.e., for a few rows only)
 - Arrange that (only) similar columns are likely to hash (i.e., with high probability) to the same bucket
 - Each pair of columns that hashes at least once into the same bucket is a candidate pair

Partition Into Bands

Matrix M

Partition into Bands

- For each band, hash its portion of each column to a hash table with
 - k buckets
 - larger k => fewer collisions (false positives)
- Candidate column pairs are those that hash to the same bucket for at least one band
- Tune b and r to catch most similar pairs, but few non-similar pairs
 - Intuitively:
 - larger b for lower sim thresholds
 - smaller b for larger sim thresholds

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are *identical* in a particular band
 - Hereafter, we assume that "same bucket" means "identical in that band"
 - Assumption needed only to simplify analysis, not for correctness of algorithm
- Finding all pairs within a bucket becomes computationally cheaper!
 - Declare all pairs within a bucket to be "matching" (faster but noisy)
 OR
 - Perform pair-wise comparisons for those documents that fall into the same bucket (slower but more accurate)
 - Much smaller than pair-wise over all documents

Example: Effect of Bands

- Suppose 10⁵ columns of M (100k docs)
- Signatures of 100 integers (total rows in M)
- If each integer requires 4 bytes, we only need 10^{2*}4*10⁵ = 40MB of memory!
- Goal: Find pairs of documents that are at least s = 0.8 similar
- 5*10⁹ pairs to compare... this can take a while
- Choose 20 bands of 5 integers/band...

Analysis of the Banding Technique

- Find pairs with similarity at least s = 0.8. Set b=20, r=5
- Assume: $sim(C_1, C_2) = 0.8$
 - •Since sim(C_1 , C_2) \geq s, we want C_1 , C_2 to be a candidate pair
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are *not* identical in any of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1 in 3000 similar documents are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

Analysis of the Banding Technique

• Find pairs with similarity at least s = 0.8. Set b=20, r=5 • Assume: sim(C₁,C₂) = 0.3

Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
 - Probability C_1 , C_2 identical in at least 1 of 20 bands: $1-(1-0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

Probability of sharing a bucket

• How to get a step-function?

• Pick:

- The number of Min-Hashes (rows of *M*)
- The number of bands b, and
- The number of rows r per band

to balance false positives/negatives

Similarity *t***=sim(C₁, C₂)** of two sets

One Band of One Row

Similarity *t***=sim(C₁, C₂)** of two sets

• Remember: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

b Bands of r Rows

• The S-curve is where the "magic" happens

Picking r and b: The S-Curve

• Picking r and b to get the best S-curve

Blue area: False Negative rate These are pairs with sim > s but the X fraction won't share a band and they will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation! Green area: False Positive rate These are pairs with sim < s but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.

S-curves as a Function of b and r

Example: b = 20; r = 5

if we had only 20 bands of 5 rows, the number of false negatives would go down, but the number of false positives would go up

Picking r, b to Get Desired Performance 50 hash-functions (r * b = 50)

Limitations of Minhash

Minhash is great for near-duplicate detection

Set high threshold for Jaccard similarity

Limitations:

Jaccard similarity only

Set-based representation, no way to assign weights to features

Random projections:

- Works with arbitrary vectors using cosine similarity
- Same basic idea, but details differ
- Slower but more accurate: no free lunch!

Spring 2024

LSH Generalizations

Multiple Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- So far, we have assumed only one hash function (even applied multiple times)
 - Shorthand: h(x)=h(y) implies "h says x and y are equal"
- We could have used a family of hash functions
 - A (large) set of related hash functions generated by some mechanism
 We should be able to efficiently pick a hash function at random from
 - such a family

Locality-Sensitive (LS) Families

• Consider a space S of points with a distance measure d

• A family **H** of hash functions is said to be

 (d_1, d_2, p_1, p_2) - sensitive if for any x and y in S:

- If $d(x,y) \leq d_1$, then prob over all h in H that h(x)=h(y) is at least p_1
- If $d(x,y) \ge d_2$, then prob over all h in H that h(x)=h(y) is at most p_2

Example of LS Family: MinHash

Let

- S = space of all sets,
- d = Jaccard distance,
- H is family of Min-Hash functions for all permutations of rows
- Minhashing gives a (d_1, d_2, p_1, p_2) -sensitive family for any $d_1 < d_2$
 - ◆ E.g., H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d
 - If distance ≤ 1/3 (i.e., similarity ≥ 2/3), then probability that minhash values agree is ≥ 2/3
 - This is because for any hash function $h \in H \operatorname{Pr}(h(x)=h(y))=1-d(x,y)$
- Simply restates theorem about Min-Hashing in terms of distances rather than similarities!

Example of LS Family: MinHash

- For Jaccard similarity, Min-Hashing gives a (d₁,d₂,(1-d₁),(1-d₂))-sensitive family for any d₁<d₂
- Theory leaves unknown what happens to pairs that are at distance between d₁ and d₂

Consequence: No guarantees about fraction of false positives in that range

Amplifying an LS-family

- Can we reproduce the "S-curve" effect we saw before for any LS family?
- The "banding" technique we learned for signature matrices carries over to this more general setting
 - •So we can do LSH with any (d1, d2, p1, p2)-sensitive family
- Two constructions:
 - AND construction like "rows in a band"
 - OR construction like "many bands"

AND Construction of Hash Functions

- Given family **H**, construct family **H**' consisting of *r* functions from **H**
- For $h=[h_1, ..., h_r]$ in **H**', h(x)=h(y) if and only if $h_i(x)=h_i(y)$ for all i: $1 \le i \le r$
- Note this has the same effect as "r signatures"
 - x and y are considered a candidate pair if every one of the r rows say that x and y are equal
- Theorem: If **H** is (d_1, d_2, p_1, p_2) -sensitive, then **H**' is (d_1, d_2, p_1^r, p_2^r) sensitive
 - That is, for any p, if p is the probability that a member of H will declare (x,y) to be a candidate pair, then the probability that a member of H' will so declare is p^r
 - Proof: Use the fact that h_i 's are independent

OR Construction of Hash Functions

- Given family H, construct family H' consisting of b functions from H
- For $h = [h_1, ..., h_b]$ in **H'**, h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for at least one i, $1 \le i \le b$
- Mirrors the effect of combining "b bands":

A and y become a candidate pair if any set makes them a candidate pair

- Theorem: If H is (d_1, d_2, p_1, p_2) -sensitive, then H' is $(d_1, d_2, 1-(1-p_1)^b, 1-(1-p_2)^b)$ -sensitive
 - That is, for any p, if p is the probability that a member of H will declare (x,y) to be a candidate pair, then (1-p) is the probability that it will not declare so
 - (1-p)^b is the probability that none of the family h₁, h_b will declare (x,y) a candidate pair
 - $1-(1-p)^{b}$ is the probability that at least one h_{i} will declare (x, y) a candidate pair, and therefore that H' will declare (x, y) to be a candidate pair

Effect of AND & OR Constructions

- AND makes all probabilities shrink, but by choosing r correctly, we can make the lower probability approach 0 while the higher does not
- OR makes all probabilities grow, but by choosing b correctly, we can make the upper probability approach 1 while the lower does not

y=1-(1-x^r)^b

Composing Constructions: AND-OR Composition

- r-way AND construction followed by b-way OR construction
 - Exactly what we did with minhashing
 - If b bands match in all r values hash to same bucket
 - Columns that are hashed into \geq 1 common bucket -> candidate
- Take points x and y s.t. Pr[h(x)=h(y)] = p
 H will make (x,y) a candidate pair with probability p
- Construction makes (x,y) a candidate pair with probability 1-(1-p^r)^b
 - The S-Curve!

Example

- Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H'' by the OR construction with b = 4
- E.g., transform a (0.2, 0.8, 0.8, 0.2)sensitive family into a (0.2, 0.8, 0.8785, 0.0064)-sensitive family

р	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

Composing Constructions: OR-AND Composition

- b-way OR construction followed by r-way AND construction
- Transforms probability p into (1-(1-p)^b)^r

The same S-curve, mirrored horizontally and vertically

- Example: Take H and construct H' by the ¹
 OR construction with b = 4. Then, from ^{0.9}
 H', construct H'' by the AND construction ^{0.8}
 with r = 4
- E.g., transform a (0.2, 0.8, 0.8, 0.2)sensitive family into a (0.2, 0.8, 0.9936, 0.1215)-sensitive family

р	(1-(1-p) ⁴) ⁴
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9999996,.0008715)- sensitive family

•Note this family uses $256 (= 4^{4} 4^{4} 4^{4})$ of the original hash functions

Spring 2024

Applications of LSH

An LHS Family for Fingerprint Matching

Fingerprint can be uniquely defined by its minutiae

- By overlaying a grid on the fingerprint image, we can extract the grid squares where the minutiae are located
- Two fingerprints are similar if the set of grid squares significantly overlap
 - Jaccard distance and minhash can be used, but ...
- Let F be a family of functions
 - ◆ $f \in F$ is defined by, say 3, grid squares such that f returns the same bucket whenever the fingerprint has minutiae in all three grid squares
 - f sends all fingerprints that have minutiae in all three of f's grid points to the same bucket
 - Two fingerprints match if they are in the same bucket

LSH for Fingerprint Matching

- Suppose probability of finding a minutiae in a random grid square of a random finger is 0.2
- And probability of finding one in the same grid square of the same finger (different fingerprint) is 0.8
- Prob two fingerprints from different fingers match=(0.2)³x (0.2)³= 0.000064
- Prob two fingerprints from the same finger match= $(0.2)^3 \times (0.8)^3 = 0.004096$
- Use more functions from F!
- Take 1024 functions and do a OR construction
 - Prob putting the fingerprints from the same finger in at least one bucket is 1 (1-0.004096)¹⁰²⁴ = 0.985
 - Prob two fingerprints from different fingers falling into the same bucket is 1 (1-0.000064)¹⁰²⁴ = 0.063
 - We have 1.5% false negatives and 6.3% false positives
- Using AND construction will
 - Greatly reduce the prob of a false positive
 - Small increase in false-negative rate

References

- CS9223 Massive Data Analysis J. Freire & J. Simeon New York University Course 2013
- CS246: Mining Massive Datasets Jure Leskovec, Stanford University, 2014
- CS5344: Big Data Analytics Technology, TAN Kian-Lee, National University of Singapore 2014