
1

Spring 2024

Finding Similar Sets

http://www.csd.uoc.gr/~hy562

University of Crete

2

Spring 2024

A small workshop first

https://www.menti.com/altfoogpsu8z

3

Spring 2024

Motivation

 Many Web-mining problems can be expressed as finding “similar”

sets:

Pages with similar words, e.g., for classification by topic

Netflix users with similar tastes in movies for recommendation systems

Dual: movies with similar sets of fans

Images of related things

 The best techniques depend on whether you are looking for items

that are very similar or only somewhat similar

Special cases are easy, e.g., identical documents, or one document

contained character-by-character in another

General case, where many small pieces of one document appear out of

order in another, is very hard

4

Spring 2024

Finding Similar Documents
 Applications: Given a body of documents, find pairs of documents

with a lot of text in common, e.g.:

Mirror Web sites, or approximate mirrors

Application: Don’t want to show both in a search

Plagiarism, including large quotations

Similar news articles at many news sites

Application: Cluster articles by “same story”

 Simple IR approaches are not suited:

Document = set of words appearing in document

Document = set of “important” words

Why? we need to account for ordering of words!

5

Spring 2024

Main Issues

 What is the right representation of the document when we check for

similarity?

E.g., representing a document as a set of characters will not do (why?)

 When we have billions of documents, keeping the full text in memory

is not an option

We need to find a shorter representation

 How do we do pairwise comparisons of billions of documents?

If exact match was the issue it would be ok, can we replicate this idea?

6

Spring 2024

Three Essential Techniques for

Detecting Similar Documents

 Shingling: convert documents, emails, etc., to sets

 Min-hashing: convert large sets to short signatures, while preserving similarity

 Locality-sensitive hashing: focus on pairs of signatures likely to be similar

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

7

Spring 2024

Shignling

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

8

Spring 2024

Shingles

 A k-shingle (or k-gram) for a document is a sequence of k characters (or

words) that appears in the document

Represent a document by its set of k-shingles

 Example: doc=“abcab”.

Set of 2-shingles

 {ab, bc, ca}

Alternative:

Bag of 2-shingles = {ab, bc, ca, ab}

 Working Assumption: Documents that have lots of shingles in common have

similar text, even if the text appears in different order

What if two documents differ by a word?

Affects only k‐shingles within distance k from the word

What if we reorder paragraphs?

Affects only k-shingles that cross paragraph boundaries

9

Spring 2024

Shingle Size

 Is k=2 a good choice for a shingle size?

 Example:

doc1 = “abcab”. 2-shingles = {ab, bc, ca}

doc2 = “cabc”. 2-shingles = {ab, bc, ca}

 Careful decision: you must pick k to be

large enough, or most documents will have most shingles in common

not too large, or most documents will have no shingles in common

k = 5 is OK for short documents

k = 10 is better for long documents

10

Spring 2024

Basic Data Model: Sets

 Many similarity problems can be couched as finding subsets of

some universal set that have significant intersection

 Examples:

Documents represented by their sets of shingles

Similar customers or products

 Each document is a 0/1 vector in the space of k-shingles

Each unique shingle is a dimension

Vectors are very sparse

 Interpret set intersection as bitwise AND, and set union as bitwise OR

11

Spring 2024

Jaccard Similarity of Sets

 The Jaccard similarity of two sets is the size of their intersection

divided by the size of their union

Sim (C1, C2) = |C1C2|/|C1C2|

3 in intersection
8 in union

Jaccard similarity = 3/8

BA

12

Spring 2024

From Sets to Boolean Matrices

 Rows = elements (shingles) of the universal set

 Columns = sets (documents)

1 in row e and column S if and only if e is a

member of S

Column similarity is the Jaccard similarity of the

sets of their rows with 1

 Typical matrix is sparse

Sparse matrices are usually better represented by

the list of places where there is a non-zero value

But the Boolean matrix picture is conceptually

useful

13

Spring 2024

C1 C2
a 0 1

b 1 0

c 1 1 Sim (C1, C2) =

d 0 0

e 1 1

f 0 1

*

*

*

*

*

*

*

2/5 = 0.4

C1 = “bce”

C2 = “acef”

1
-s

h
in

g
le

s

Example: Jaccard Similarity of Columns

14

Spring 2024

Shingles: Compression Option

 How about space overhead?

Each character can be represented as a byte

➢One k‐shingle requires k bytes

 To compare a pair of 9-shingles we need to compare 9 bytes

 To improve efficiency, we can compress long shingles:

hash them to (say) 4 bytes, and

represent a document by the set of hash values of its k-shingles

(aaabbbccc)(abcabcabc) → h(aaabbbccc)h(abcabcabc)

18 bytes → 8 bytes

 Working Assumption: Two documents with shared hash values

will almost always have shingles in common.

16

Spring 2024

Outline: Finding Similar Columns

 Naïve approach:

 Compute signatures of documents = small summaries of columns

 Examine pairs of signatures to find similar columns

• Requirement: similarities of signatures and columns are related

 Optional: check that columns with similar signatures are really similar

 This scheme works but …

What if the set of signatures (or k‐shingles) is too large to fit in the

memory?

Or the number of documents is too big?

 Idea: Hash a document (column) to a single (small-size) value and

similar documents to the same value!

Warning: These methods can produce false negatives, and even false

positives (if the above optional check is not made)

17

Spring 2024

Signatures

 Key idea: “hash” h(·) each column C to a small signature, such that:

 h(C) is small enough that we can fit a signature in main memory for

each column

 Sim(C1, C2) is approximated by the “similarity” of h(C1) and h(C2)

 By hashing columns into buckets we expect that “most” pairs of near

duplicate documents hash into the same bucket!

 Goal: Find a hash function h(·) such that:

If sim(C1,C2) is high, then with high probability h(C1) = h(C2)

If sim(C1,C2) is low, then with high probability h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function!

There is a suitable hashing technique for the Jaccard similarity:

It is called Min-Hashing!

18

Spring 2024

MinHashing

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

19

Spring 2024

Minhashing

 History: invented by Andrei Broder in 1997 (AltaVista) to detect near

duplicate web pages

 Imagine the rows of the Boolean matrix permuted under random

permutation π

 Define a “hash” function hπ(C):

the index of the first (in the permuted order π) row in which column C

has value 1:

hπ(C) = minπ π(C)

20

Spring 2024

MinHashing - Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Permutations

2nd element of the permutation is

the first to map to a 1 in col C1

h2(C3)=4 (permutation 2, column C3)

4th element of the permutation

is the first to map to a 1 in C3

C1 C2 C3 C4
h(C1) h(C2) h(C3) h(C4)

21

Spring 2024

Surprising Property

 The probability (over all permutations of the rows) that h(C1)=h(C2)
is the same as Sim(C1, C2):

Pr[hπ(C1) = hπ(C2)] = sim(C1,C2)

 With multiple signatures (i.e, permutations or hash functions) we get

a good approximation

 Use several independent hash functions to create a signature of a

column

The similarity of signatures is the fraction of the hash functions in which

they agree

Because of this MinHash property, the similarity of columns is the same

as the expected similarity of their signatures

23

Spring 2024

Why?

 Given columns C1 and C2, rows may be classified as:

C1 C2

a 1 1

b 1 0

c 0 1

d 0 0

 Let A = # rows of type a, B = # rows of type b, C = # rows of type c

 Look down the permuted columns C1 and C2 until we see a 1

If it’s a type-a row, then h(C1)=h(C2)

If it’s a type-b or type-c row, then h(C1)≠h(C2)

Then: Pr[h(C1)=h(C2)] = A /(A +B +C)

 Note Sim(C1,C2) = A /(A +B +C)

Then: Pr[h(C1)=h(C2)] = Sim(C1,C2)

24

Spring 2024

MinHashing – Example

Input matrix

0101

0101

1010

1010

1010

1001

0101 3

4

7

6

1

2

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

2

6

7

3

1

2121

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

C1 C2 C3 C4

25

Spring 2024

MinHash – False Positive/Negative

 False positive?

False positive can be easily dealt with by doing an additional layer

of checking (treat minhash as a filtering mechanism)

 False negative?

Requiring full match of signature is strict, some similar sets will be

lost

 High error rate! Can we do better?

26

Spring 2024

MinHash Signatures

Pick (say) 100 random permutations of the rows

Think of Sig(C) as a column vector

Let Sig(C)[i] = min(πi(C))

according to the i th permutation, the number of the first row that has a 1
in column C

 Note: The sketch (signature) of column C is small ~400 bytes!

We achieved our goal! We “compressed” long bit vectors into short

signatures

27

Spring 2024

Implementation Trick

 Permuting rows even once is prohibitive

 An approximation to permuting rows: pick many hash functions hi
Instead of a permutation, use a random hash function that maps

row numbers to as many buckets as there are rows

Row hashing: ordering under hi gives a random row

permutation!

 One-pass implementation

For each column C and each hash function hi, keep a “slot”

M(i,C) for the min-hash value

all slots initialized to infinity

Intent: M(i,C) will become the smallest value of hi(r) for

which column C has 1 in row r

i.e., hi(r) gives order of rows for i-th permutation

28

Spring 2024

Implementation

M(i,C) = ∞

for each row r

for each column C

if C has 1 in row r // Scan rows looking for 1s

for each hash function hi do

if hi(r) < M(i,C) then

M(i,C):= hi(r);

How to pick a random hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N where:

a,b … random integers

p … prime number (p > N)

29

Spring 2024

Example

Row C1 C2

 r1 1 0
 r2 0 1
 r3 1 1
 r4 1 0
 r5 0 1

h1 (x) = x mod 5
h2 (x) = 2x+1 mod 5

h1 (1) = 1 1 ∞
h2 (1) = 3 3 ∞

h1 (2) = 2 1 2
h2 (2) = 0 3 0

h1 (3) = 3 1 2
h2 (3) = 2 2 0

h1 (4) = 4 1 2
h2 (4) = 4 2 0

h1 (5) = 0 1 0
h2 (5) = 1 2 0

Sig1 Sig2

M(1,2)

Jaccard=1/5

M(2,2)

M(1,1)

M(2,1)

30

Spring 2024

So far …

 Represent a document as a set of hash values (of its k‐shingles)

 Transform set of k‐shingles to a set of minhash signatures

 Use Jaccard to compare two documents by comparing their

signatures

 Is this method (i.e., transforming sets to signature) necessarily

“better”?

31

Spring 2024

Locality-Sensitive Hashing

Docu-
ment

The set of
strings of
length k that
appear in the
document

Signatures :
short integer vectors
that represent the
sets, and reflect
their similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity

33

Spring 2024

Finding Similar Pairs

 While the signatures of all columns may fit in main memory,

comparing the signatures of all pairs of columns is quadratic in the

number of columns

 Naïve solution

For each document, compare with the other N‐1 documents

N‐1 comparisons for each document

Requires N*(N‐1)/2 comparisons

 Example:

107 documents implies ~ 1014 document-comparisons

At 1 μs/comparison 108 (~ 3 years!)

34

Spring 2024

Locality-Sensitive Hashing

 A function f(x,y) tells whether or not x and y is a candidate pair:

a pair of elements whose similarity must be evaluated

 With only one hash function on one entire column of signature, likely

to have many false negatives (i.e., missed similar pairs)

 Key idea: Apply the hash function on the columns of signature matrix M

multiple times, each on a partition of the column (i.e., for a few rows only)

Arrange that (only) similar columns are likely to hash (i.e., with high

probability) to the same bucket

Each pair of columns that hashes at least once into the same bucket is

a candidate pair

36

Spring 2024

Partition Into Bands

Matrix M

r rows
per band

b bands

 Divide matrix M into b bands of r rows

For each document, compute b

sets of r minhash values

Each set is a mini-signature

with r minhash functions

n = b*r hash functions

b mini-

signatures

37

Spring 2024

Partition into Bands

 For each band, hash its portion of

each column to a hash table with

k buckets
larger k => fewer collisions (false

positives)

 Candidate column pairs are those

that hash to the same bucket for

at least one band

 Tune b and r to catch most

similar pairs, but few non-similar

pairs
Intuitively:

 larger b for lower sim thresholds

smaller b for larger sim thresholds Matrix M

r rows

b bands

Columns 2 and 6
are probably
identical

Columns 6 and 7
are surely different

1 2 3 4 5 6 7

Buckets

38

Spring 2024

Simplifying Assumption

 There are enough buckets that columns are unlikely to hash to the

same bucket unless they are identical in a particular band

Hereafter, we assume that “same bucket” means “identical in that band”

Assumption needed only to simplify analysis, not for correctness of

algorithm

 Finding all pairs within a bucket becomes computationally cheaper!

Declare all pairs within a bucket to be “matching” (faster but noisy)

OR

Perform pair‐wise comparisons for those documents

that fall into the same bucket (slower but more accurate)

Much smaller than pair‐wise over all documents

39

Spring 2024

Example: Effect of Bands

 Suppose 105 columns of M (100k docs)

 Signatures of 100 integers (total rows in M)

 If each integer requires 4 bytes, we only need 102*4*105 = 40MB of

memory!

Goal: Find pairs of documents that are at least s = 0.8 similar

 5*109 pairs to compare… this can take a while

 Choose 20 bands of 5 integers/band…

40

Spring 2024

Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1, C2) = 0.8

Since sim(C1, C2) ≥ s, we want C1, C2 to be a candidate pair

We want them to hash to at least 1 common bucket (at least one band

is identical)

 Probability C1, C2 identical in one particular band: (0.8)5 = 0.328

 Probability C1, C2 are not identical in any of the 20 bands:

(1-0.328)20 = 0.00035

i.e., about 1 in 3000 similar documents are false negatives (we miss

them)

 We would find 99.965% pairs of truly similar documents

41

Spring 2024

Analysis of the Banding Technique

 Find pairs with similarity at least s = 0.8. Set b=20, r=5

 Assume: sim(C1,C2) = 0.3

Since sim(C1, C2) < s we want C1, C2 to hash to NO common

buckets (all bands should be different)

 Probability C1, C2 identical in one particular band: (0.3)5 =
0.00243

Probability C1, C2 identical in at least 1 of 20 bands: 1-(1-0.00243)20

= 0.0474

In other words, approximately 4.74% pairs of docs with similarity 0.3 end

up becoming candidate pairs

They are false positives since we will have to examine them (they are

candidate pairs) but then it will turn out their similarity is below threshold s

42

Spring 2024

LSH Involves a Tradeoff

 How to get a step-function?

 Pick:

The number of Min-Hashes

(rows of M)

The number of bands b, and

The number of rows r per band

to balance false positives/negatives

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Probability = 0
if t <s

Probability = 1
if t >s

Analysis of LSH – What We Want

S
im

il
a

ri
ty

 t
h

re
s
h

o
ld

 s

43

Spring 2024

False

Positives

One Band of One Row

 Remember:

Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

Probability
of sharing
a bucket

Similarity t=sim(C1, C2) of two sets

Single hash

signature

s

False Ne-

gatives

44

Spring 2024

b Bands of r Rows

 The S-curve is where the “magic” happens

Probability
of sharing
a bucket

t r

All rows r
of a band
are equal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

Similarity t=sim(C1, C2) of two sets

1 -

Some row
of a band
unequals

45

Spring 2024

Picking r and b: The S-Curve

 Picking r and b to get the best S-curve

Blue area: False Negative rate

These are pairs with sim > s but

the X fraction won’t share a band

and they will never become

candidates. This means we will

never consider these pairs for

(slow/exact) similarity calculation!

Green area: False Positive rate

These are pairs with sim < s but

we will consider them as candidates.

This is not too bad, we will consider

them for (slow/exact) similarity

computation and discard them.

46

Spring 2024

S-curves as a Function of b and r

 Given a fixed threshold

s

 We want choose r and

b such that the

Pr(Candidate
pair) has a “step”

right around s

47

Spring 2024

Example: b = 20; r = 5

t 1-(1-tr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

s = 0.5 (~1/20)1/5

if we had only 20 bands of 5 rows, the number of false negatives

would go down, but the number of false positives would go up

48

Spring 2024

Picking r, b to Get Desired Performance
 50 hash-functions (r * b = 50)

50

Spring 2024

Limitations of Minhash

 Minhash is great for near‐duplicate detection

Set high threshold for Jaccard similarity

 Limitations:

Jaccard similarity only

Set‐based representation, no way to assign weights to features

 Random projections:

Works with arbitrary vectors using cosine similarity

Same basic idea, but details differ

Slower but more accurate: no free lunch!

51

Spring 2024

LSH Generalizations

52

Spring 2024

Multiple Hash Functions

 For Min-Hashing signatures, we got a Min-Hash function for each

permutation of rows

 So far, we have assumed only one hash function (even applied

multiple times)

Shorthand: h(x)=h(y) implies “h says x and y are equal”

 We could have used a family of hash functions

A (large) set of related hash functions generated by some mechanism

We should be able to efficiently pick a hash function at random from

such a family

53

Spring 2024

Locality‐Sensitive (LS) Families

 Consider a space S of points with a distance measure d

 A family H of hash functions is said to be

(d1, d2, p1, p2)‐ sensitive if for any x and y in S:

If d(x,y) ≤ d1, then prob over all h in H that h(x)=h(y) is at least p1
If d(x,y) ≥ d2, then prob over all h in H that h(x)=h(y) is at most p2

Small distance,

high probability

of hashing to

the same value Large distance,

low probability

of hashing to

the same value

54

Spring 2024

Example of LS Family: MinHash

 Let

S = space of all sets,

d = Jaccard distance,

H is family of Min-Hash functions for all permutations of rows

 Minhashing gives a (d1, d2, p1, p2)‐sensitive family for any d1 < d2
E.g., H is a (1/3, 2/3, 2/3, 1/3)‐sensitive family for S and d

If distance ≤ 1/3 (i.e., similarity ≥ 2/3), then probability that minhash values agree

is ≥ 2/3

This is because for any hash function h ∈ H Pr(h(x)=h(y))=1‐d(x,y)

 Simply restates theorem about Min-Hashing in terms of distances rather than

similarities!

55

Spring 2024

Example of LS Family: MinHash

 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-sensitive family for S and d

 For Jaccard similarity, Min-Hashing gives a (d1,d2,(1-d1),(1-d2))-sensitive family

for any d1<d2

 Theory leaves unknown what happens to pairs that are at distance between d1

and d2

Consequence: No guarantees about fraction of false positives in that range

If distance < 1/3

(so similarity ≥ 2/3)
Then probability that Min-

Hash values agree ≥ 2/3

56

Spring 2024

Amplifying an LS‐family

 Can we reproduce the “S-curve” effect we saw before for any LS

family?

 The “banding” technique we learned for signature matrices carries

over to this more general setting

So we can do LSH with any (d1, d2, p1, p2)-sensitive family

 Two constructions:

AND construction like “rows in a band”

OR construction like “many bands”

57

Spring 2024

AND Construction of Hash Functions

 Given family H, construct family H’ consisting of r functions from H

 For h=[h1,…,hr] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for all i: 1≤i≤r

 Note this has the same effect as “r signatures”

x and y are considered a candidate pair if every one of the r rows say that x
and y are equal

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is (d1,d2,p1
r,p2

r)‐ sensitive

That is, for any p, if p is the probability that a member of H will declare (x,y)
to be a candidate pair, then the probability that a member of H′ will so declare

is pr

Proof: Use the fact that hi ’s are independent

58

Spring 2024

OR Construction of Hash Functions

 Given family H, construct family H’ consisting of b functions from H

 For h=[h1,…,hb] in H’, h(x)=h(y) if and only if hi(x)=hi(y) for at least one i,

1 ≤ i ≤ b

 Mirrors the effect of combining “b bands”:

x and y become a candidate pair if any set makes them a candidate pair

 Theorem: If H is (d1,d2,p1,p2)‐sensitive, then H’ is

(d1,d2,1‐(1‐p1)
b, 1‐(1‐p2)

b)‐sensitive

That is, for any p, if p is the probability that a member of H will declare (x,y) to

be a candidate pair, then (1‐p) is the probability that it will not declare so

(1‐p)b is the probability that none of the family h1, hb will declare (x,y) a

candidate pair

1−(1−p)b is the probability that at least one hi will declare (x,y) a candidate

pair, and therefore that H’ will declare (x,y) to be a candidate pair

59

Spring 2024

Effect of AND & OR Constructions

 AND makes all probabilities shrink, but by choosing r correctly, we can make the

lower probability approach 0 while the higher does not

 OR makes all probabilities grow, but by choosing b correctly, we can make the

upper probability approach 1 while the lower does not

60

Spring 2024

Composing Constructions:

AND‐OR Composition

 r‐way AND construction followed by b‐way OR construction

Exactly what we did with minhashing

If b bands match in all r values hash to same bucket

Columns that are hashed into ≥ 1 common bucket -> candidate

 Take points x and y s.t. Pr[h(x)=h(y)] = p

H will make (x,y) a candidate pair with probability p

 Construction makes (x,y) a candidate pair with probability

1‐(1‐pr)b

The S‐Curve!

61

Spring 2024

Example

 Example: Take H and construct H’

by the AND construction with r = 4.

Then, from H’, construct H’’ by the

OR construction with b = 4

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8,

0.8785, 0.0064)‐sensitive family

62

Spring 2024

Composing Constructions:

OR‐AND Composition

 b‐way OR construction followed by r‐way AND construction

 Transforms probability p into (1‐(1‐p)b)r

The same S-curve, mirrored horizontally and vertically

63

Spring 2024

Example

 Example: Take H and construct H’ by the

OR construction with b = 4. Then, from

H’, construct H’’ by the AND construction

with r = 4

 E.g., transform a (0.2, 0.8, 0.8, 0.2)‐
sensitive family into a (0.2, 0.8, 0.9936,

0.1215)‐sensitive family

64

Spring 2024

Cascading Constructions

 Example: Apply the (4,4) OR‐AND construction followed by the (4,4)

AND‐OR construction

 Transforms a (.2,.8,.8,.2)‐sensitive family into a

(.2,.8,.9999996,.0008715)‐ sensitive family

Note this family uses 256 (= 4*4*4*4) of the original hash functions

65

Spring 2024

Applications of LSH

66

Spring 2024

An LHS Family for Fingerprint Matching

 Fingerprint can be uniquely defined by its minutiae

 By overlaying a grid on the fingerprint image, we can extract the grid squares

where the minutiae are located

 Two fingerprints are similar if the set of grid squares significantly overlap

Jaccard distance and minhash can be used, but …

 Let F be a family of functions

f F is defined by, say 3, grid squares such that f returns the same bucket

whenever the fingerprint has minutiae in all three grid squares

f sends all fingerprints that have minutiae in all three of f’s grid points to the

same bucket

Two fingerprints match if they are in the same bucket

67

Spring 2024

LSH for Fingerprint Matching

 Suppose probability of finding a minutiae in a random grid square of a random

finger is 0.2

 And probability of finding one in the same grid square of the same finger (different

fingerprint) is 0.8

 Prob two fingerprints from different fingers match=(0.2)3x (0.2)3= 0.000064

 Prob two fingerprints from the same finger match=(0.2)3x (0.8)3= 0.004096

 Use more functions from F!

 Take 1024 functions and do a OR construction

Prob putting the fingerprints from the same finger in at least one bucket is 1 –

(1‐0.004096)1024 = 0.985

Prob two fingerprints from different fingers falling into the same bucket is 1 –

(1‐0.000064)1024 = 0.063

We have 1.5% false negatives and 6.3% false positives

 Using AND construction will

Greatly reduce the prob of a false positive

Small increase in false‐negative rate

68

Spring 2024

References

 CS9223 – Massive Data Analysis J. Freire & J. Simeon New York

University Course 2013

 CS246: Mining Massive Datasets Jure Leskovec, Stanford

University, 2014

 CS5344: Big Data Analytics Technology, TAN Kian‐Lee, National

University of Singapore 2014

	Διαφάνεια 1: Finding Similar Sets
	Διαφάνεια 2: A small workshop first
	Διαφάνεια 3: Motivation
	Διαφάνεια 4: Finding Similar Documents
	Διαφάνεια 5: Main Issues
	Διαφάνεια 6: Three Essential Techniques for Detecting Similar Documents
	Διαφάνεια 7: Shignling
	Διαφάνεια 8: Shingles
	Διαφάνεια 9: Shingle Size
	Διαφάνεια 10: Basic Data Model: Sets
	Διαφάνεια 11: Jaccard Similarity of Sets
	Διαφάνεια 12: From Sets to Boolean Matrices
	Διαφάνεια 13: Example: Jaccard Similarity of Columns
	Διαφάνεια 14: Shingles: Compression Option
	Διαφάνεια 16: Outline: Finding Similar Columns
	Διαφάνεια 17: Signatures
	Διαφάνεια 18: MinHashing
	Διαφάνεια 19: Minhashing
	Διαφάνεια 20: MinHashing - Example
	Διαφάνεια 21: Surprising Property
	Διαφάνεια 23: Why?
	Διαφάνεια 24: MinHashing – Example
	Διαφάνεια 25: MinHash – False Positive/Negative
	Διαφάνεια 26: MinHash Signatures
	Διαφάνεια 27: Implementation Trick
	Διαφάνεια 28: Implementation
	Διαφάνεια 29: Example
	Διαφάνεια 30: So far …
	Διαφάνεια 31: Locality-Sensitive Hashing
	Διαφάνεια 33: Finding Similar Pairs
	Διαφάνεια 34: Locality-Sensitive Hashing
	Διαφάνεια 36: Partition Into Bands
	Διαφάνεια 37: Partition into Bands
	Διαφάνεια 38: Simplifying Assumption
	Διαφάνεια 39: Example: Effect of Bands
	Διαφάνεια 40: Analysis of the Banding Technique
	Διαφάνεια 41: Analysis of the Banding Technique
	Διαφάνεια 42: LSH Involves a Tradeoff
	Διαφάνεια 43: One Band of One Row
	Διαφάνεια 44: b Bands of r Rows
	Διαφάνεια 45: Picking r and b: The S-Curve
	Διαφάνεια 46: S-curves as a Function of b and r
	Διαφάνεια 47: Example: b = 20; r = 5
	Διαφάνεια 48: Picking r, b to Get Desired Performance
	Διαφάνεια 50: Limitations of Minhash
	Διαφάνεια 51: LSH Generalizations
	Διαφάνεια 52: Multiple Hash Functions
	Διαφάνεια 53: Locality‐Sensitive (LS) Families
	Διαφάνεια 54: Example of LS Family: MinHash
	Διαφάνεια 55: Example of LS Family: MinHash
	Διαφάνεια 56: Amplifying an LS‐family
	Διαφάνεια 57: AND Construction of Hash Functions
	Διαφάνεια 58: OR Construction of Hash Functions
	Διαφάνεια 59: Effect of AND & OR Constructions
	Διαφάνεια 60: Composing Constructions: AND‐OR Composition
	Διαφάνεια 61: Example
	Διαφάνεια 62: Composing Constructions: OR‐AND Composition
	Διαφάνεια 63: Example
	Διαφάνεια 64: Cascading Constructions
	Διαφάνεια 65: Applications of LSH
	Διαφάνεια 66: An LHS Family for Fingerprint Matching
	Διαφάνεια 67: LSH for Fingerprint Matching
	Διαφάνεια 68: References

