
Fall 2024

1

Introduction to Scalable Data
Analytics using Apache Spark

http://www.csd.uoc.gr/~hy562
University of Crete, Fall 2024

Fall 2024

2

Outline
 Big Data Problems: Distributing Work, Failures, Slow Machines
 What is Apache Spark?
 Core things of Apache Spark

RDD
 Core Functionality of Apache Spark
 Simple tutorial

Fall 2024

3

Big Data Problems:
Distributing Work,

Failures, Slow Machines

Fall 2024

4

Hardware for Big Data

Bunch of Hard Drives …. and CPUs
 The Big Data Problem

Data growing faster than CPU speeds
Data growing faster than per-machine storage

 Can’t process or store all data on one machine

Fall 2024

5

Hardware for Big Data

 One big box ! (1990s solution)
All processors share memory

 Very expensive
Low volume
All “premium” HW

 Still not big enough!

Image: Wikimedia Commons / User:Tonusamuel

Fall 2024

6

Hardware for Big Data
 Consumer-grade hardware

Not "gold plated"

 Many desktop-like servers
Easy to add capacity
Cheaper per CPU/disk

 But, implies complexity in
software

Image: Steve Jurvetson/Flickr

Fall 2024

7

Problems with Cheap HW
 Failures, e.g. (Google numbers)

1-5% hard drives/year
0.2% DIMMs/year

 Network speeds vs. shared
memory
Much more latency
Network slower than storage

 Uneven performance
Google Datacenter

Fall 2024

8

The Opportunity
 Cluster computing is a game-changer!

 Provides access to low-cost computing and storage

 Costs decreasing every year

 The challenge is programming the resources

 What’s hard about Cluster computing?
How do we split work across machines?

Fall 2024

9

Count the Number of Occurrences
of each Word in a Document

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

I: 3
am: 3
Sam: 3
do: 1
you: 1
like: 1
…

Fall 2024

10

Centralized Approach:
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ }

Fall 2024

11

Centralized Approach:
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1, }

Fall 2024

12

Centralized Approach:
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1,
am: 1,

}

Fall 2024

13

Centralized Approach:
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1,
am: 1,
Sam: 1,

}

Fall 2024

14

Centralized Approach:
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 2,
am: 1,
Sam: 1,

}

Fall 2024

15

A Simple Parallel Approach

What’s the problem with this approach?

Fall 2024

16

What if the Document is Really Big?

Results have to fit on one machine !

Fall 2024

17

What if the Document is Really Big?

Can add aggregation layers but results must still fit on one
machine

Fall 2024

18

What if the Document is Really Big?

Use Divide and Conquer!!

Fall 2024

19

What if the Document is Really Big?

Google Map Reduce 2004
MAP REDUCE

Fall 2024

21

What About the Data? HDFS!
HDFS is a distributed file system designed to hold very
large amounts of data (terabytes or even petabytes), and
provide high-throughput access to this information

Files are stored in a redundant fashion across multiple
machines to ensure their durability to failure and high
availability to very parallel applications

HDFS is a block-structured file system:
individual files are broken into blocks of a fixed size (default

128MB)
These blocks are stored across a cluster of one or more

machines (DataNodes)
The NameNode stores all the metadata for the file system

Fall 2024

22

HDFS nodes

22

Fall 2024

27

How Do We Deal with Machine
Failures?

 Launch another task!

Fall 2024

28

How Do We Deal with Slow Tasks?

 Launch another task!

Fall 2024

29

MapReduce: Distributed Execution

Image: Wikimedia commons (RobH/Tbayer (WMF))

 Each stage passes through the hard drives

Fall 2024

30

Map Reduce: Iterative Jobs
 Iterative jobs involve a lot of disk I/O for each repetition

Disk I/O is very slow!

 MapReduce is great at one-pass computation, but inefficient for multi-pass
algorithms

Fall 2024

31

The Weakness of MapReduce

Stream Processing

 While MapReduce is simple, it can require asymptotically lots of
disk I/O for complex jobs, interactive queries and online processing

 Commonly spend 90% of time doing I/O!

Interactive Mining

Also, most ML algorithms are iterative!

Fall 2024

32

Tech Trend: Cost of Memory

 Lower cost means can put more memory in each server

http://www.jcmit.com/mem2014.htm

Fall 2024

33

Modern Hardware for Big Data

… and memory!

Bunch of Hard Drives …. and CPUs

Fall 2024

34

Opportunity
 Keep more data in-memory

 Create new distributed execution engine:

 One of the most efficient programming frameworks offering
abstraction and parallelism for clusters

 It hides complexities of:
Fault Tolerance
Slow machines
Network Failures

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf

Fall 2024

35

Use Memory Instead of Disk

Fall 2024

36

In-Memory Data Sharing

 10-100x faster than network and disk!

Fall 2024

37

In-Memory Can Make a
Big Difference

 (2013) Two iterative Machine Learning algorithms:
K-means Clustering

Logistic Regression

Fall 2024

38

In-Memory Can Make a Big
Difference

 PageRank

Fall 2024

39

What is ?

RDDs
Transformations

Actions

Fall 2024

40

Recall What’s Hard with Big Data
 Complex combination of processing tasks, storage, systems and

modes
ETL, aggregation, streaming, machine learning

 Hard to get both productivity and performance!

Fall 2024

41

Spark’s Philosophy
 Unified Engine: Fewer Systems to Master

Express an entire pipeline in one API
Interoperate with existing libraries and storage

 Richer Programming Model: improves usability for complex analytics
 High-level APIs (RDDs, Data Frames, Data Pipelines)
 Scala/Java/Python/R
 Interactive shell (repl)
 2-10x less code (than MapReduce)

 Memory Management: improves efficiency for complex analytics
Avoid materializing data on HDFS after each iteration:

 ...up to 100x faster that Hadoop in memory
 ...or 10x faster on disk

 New fundamental data abstraction that is
… easy to extend with new operators
… allows for a more descriptive computing model

Fall 2024

42

A Brief History

2024

Spark
3.5.2

…

Fall 2024

44

Resilient Distributed Dataset
(RDDs)

 Immutable collection of objects spread across a cluster
(partitions)
Immutable once they are created

 Build through parallel transformations (map, filter)
Diverse set of operators that offers rich data processing functionality

 Automatically rebuilt on (partial) failure
They carry their lineage for fault tolerance

 Controllable persistence (e.g., cashing in RAM)

Fall 2024

45

RDD: Partitions

http://datalakes.com/rdds-simplified/

Fall 2024

46

RDD: Partitions
 RDDs are automatically distributed across the network by means of

partitions
A partition is a logical division of data
RDD data is just a collection of partitions
Spark automatically decides the number of partitions when creating an

RDD
All input, intermediate and output data will be presented as partitions

Partitions are basic units of parallelism
A task is launched per each partition

Fall 2024

47

Two Types of Operations on RDDs

 Operator cache persists distributed data in memory or disk

RDD

Transformation

Action

Transformations are lazy:
Framework keeps track of lineage

Actions trigger actual execution:
Transformations are executed when
an action runs

values

Fall 2024

48

RDD Cache - rdd.cache()
 If we need the results of an RDD

many times, it is best to cache it
RDD partitions are loaded into the

memory of the nodes that hold it
avoids re-computation of the entire

lineage
in case of node failure compute the

lineage again

http://datalakes.com/rdds-simplified/

Fall 2024

49

Example: Mining Console Logs
 Load error messages from a log into memory, then interactively

search for patterns

Result: full-text search of Wikipedia in < 5 sec
(vs 20 sec for on-disk data)
Result: scaled to 1 TB of data in 5-7 sec
(vs 170 sec for on-disk data)

Fall 2024

50

RDD operations - Transformations
 As in relational algebra, the application of a transformation to an

RDD yields a new RDD (immutability)
 Transformations are lazily evaluated which allow for

optimizations to take place before execution
The lineage keeps track of all transformations that have to be

applied when an action happens

http://datalakes.com/rdds-simplified/

Fall 2024

51

RDD Lineage (aka Logical Logging)
 RDDs track the transformations used to build them (their

lineage) to recompute lost data

M. Zaharia, et al, Resilient Distributed Datasets: A fault--‐tolerant
abstraction for in--‐memory cluster computing, NSDI 2012

Fall 2024

52

Useful Transformations on RDDs

Fall 2024

53

More Useful Transformations on
RDDs

Fall 2024

54

RDD Common Transformations:
Examples

Unary RDD Result

rdd.map(x => x * x) {1, 2, 3, 3} {1, 4, 9, 9}

rdd.flatMap(line =>

line.split(" "))

{"hello

world", "hi"}

{"hello”,

world", "hi"}

rdd.filter(x => x != 1) {1, 2, 3, 3} {2, 3, 3}

rdd.distinct () {1, 2, 3, 3} {1, 2, 3}

Binary RDD1 RDD2 Result

rdd.union(other) {1, 2, 3} {3,4,5} {1,2,3,3,4,5}

rdd.intersection(other) {1, 2, 3} {3,4,5} {3}

rdd.subtract(other) {1, 2, 3} {3,4,5} {1, 2}

rdd.cartesian(other) {1, 2, 3} {3,4,5} {(1,3),(1,4), … (3,5)}

Fall 2024

55

Useful Transformations on RDDs

RDD[T]

RDD[U]

filter
f: (T) ⇒
Boolean

map
f: (T) ⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U,

combOp: (U, U) ⇒ U

RDD[(K, U)]
RDD[(K, V)]

RDD[(K, V)]

sort

RDD[(K, V)]

RDD[(K, (V, W))]

RDD[(K, W)]

join

RDD[(K, V)]

RDD[(K, (Iterable[V], Iterable[W]))]

cogroup

RDD[(K, W)]

And more!

Fall 2024

56

RDD operations - Actions
 Apply transformation chains on RDDs, eventually performing

some additional operations (e.g. counting)
i.e. trigger job execution

 Used to materialize computation results

 Some actions only store data from the RDD upon which the
action is applied and convey it to the driver

Fall 2024

57

RDD Actions

Fall 2024

58

RDD Actions: Examples

RDD Result

rdd.collect() {1,2,3} {1,2,3}

rdd.first() {1,2,3,4} 1

rdd.count() {1,2,3,3} 4

rdd.max() {1,2,3,3} 3

rdd.top(2) {1,2,3,3} {3,3}

RDD Result

rdd.reduce((x, y) => x + y) {1,2,3} 6

rdd.foreach(x=>println(x)) {1,2,3} prints “1 2 3”

RDD Result

rdd.countByKey() {(a,x),(a,y),(b,x)} {(a,2),(b,1)}

Fall 2024

59

Spark Word Count

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(args.output())

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

?
?

Fall 2024

60

Spark Word Count

val textFile = sc.textFile(args.input())

val a = textFile.flatMap(line => line.split(" "))
val b = a.map(word => (word, 1))
val c = b.reduceByKey((x, y) => x + y)

c.saveAsTextFile(args.output())

RDDs

TransformationsAction

Fall 2024

61

RDDs and Lineage

textFile:
RDD[String]

On HDFS

a: RDD[String]

.flatMap(line => line.split(“ "))

Action!

b: RDD[(String,
Int)]

.map(word => (word, 1))

c: RDD[(String,
Int)]

.reduceByKey((x, y) => x + y)

Fall 2024

62

RDDs and Optimizations

textFile:
RDD[String]

a: RDD[String]

b: RDD[(String,
Int)]

c: RDD[(String,
Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Action!

RDDs don’t need
to be materialized!

Lazy evaluation creates optimization opportunities

Fall 2024

63

RDDs and Caching
RDDs can be materialized in memory (and on disk)!

textFile:
RDD[String]

a: RDD[String]

b: RDD[(String,
Int)]

c: RDD[(String,
Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Action!

✗

Spark works even if the RDDs are partially cached!

Fall 2024

64

Spark Architecture

Fall 2024

65

Scheduling Process

Fall 2024

66

Scheduling Problems

 Supports general task graphs
 Pipelines functions where is possible
 Cache-aware data reuse and locality
 Partitioning-aware to avoid shuffles

Fall 2024

67

Narrow vs Wide Dependencies

https://trongkhoanguyen.com/spark/understand-rdd-operations-
transformations-and-actions/

Fall 2024

69

DataFrames & DataSets

 In 2015 Spark added DataFrames and Datasets as structured data APIs
 DataFrames are collections of rows with a fixed schema (table-like)
 Datasets add static types, e.g. Dataset[Person]

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-
apis-rdds-dataframes-and-datasets.html

Fall 2024

70

Static-Typing and Runtime Type-
safety in Spark

 Analysis errors reported before a distributed job starts

Fall 2024

71

DataFrames: Example

Fall 2024

72

Where “Database Thinking”
Can Get In The Way

Fall 2024

73

Traditional Database Thinking
Pros
 Declarative Queries and Data Independence

Rich Query Operators, Plans and Optimization
Separation of Physical and Logical Layers

 Data existing independently of applications
Not as natural to most people as you’d think

 Importance of managing the storage hierarchy
Cons
 Monolithic Systems and Control
 Schema First & High Friction
 The DB Lament: “We’ve seen it all before”

Fall 2024

74

Database Systems: One Way In/Out

Adapted from Mike Carey, UCI

Fall 2024

75

Database Systems: One Way In/Out

Adapted from Mike Carey, UCI

Fall 2024

76

Mix and Match Data Access

Adapted from Mike Carey, UCI

Fall 2024

77

From: Spark User Survey 2016, 1615 respondents from 900 organizations

http://go.databricks.com/2016-‐spark-‐survey

Fall 2024

78

From: Spark User Survey 2016, 1615 respondents from 900 organizations

http://go.databricks.com/2016-‐spark-‐survey

Fall 2024

79

Fall 2024

80

Spark Ecosystem Features
 Spark focus was initially on

Performance + Scalability with Fault Tolerance
 Rapid evolution of functionality kept it growing especially across

multiple modalities:
DB,
Graph,
Stream,
ML,
etc.

 Database thinking is moving Spark and much of the Hadoop
ecosystem up the disruptive technology value curve

Fall 2024

82

Spark and Map Reduce Differences
Apache Hadoop
MapReduce

Apache Spark

Storage Disk only In-memory or on disk

Operations Map and Reduce Many transformation
and actions, including
Map and Reduce

Execution
model

Batch Batch, interactive,
streaming

Languages Java Scala, Java, R, and
Python

Fall 2024

83

Other Spark and Map Reduce
Differences

 Generalized patterns for computation
provide unified engine for many use cases
require 2-5x less code

 Lazy evaluation of the lineage graph
can optimize, reduce wait states, pipeline better

 Lower overhead for starting jobs

 Less expensive shuffles

Fall 2024

84

Spark: Fault Tolerance
 Hadoop: Once computed, don’t lose it
 Spark: Remember how to re-compute

Fall 2024

85

Spark: Fault Tolerance
 Hadoop: Once computed, don’t lose it
 Spark: Remember how to re-compute

Fall 2024

86

Apache Spark Software Stack:
Unified Vision

 Spark Unified pipeline can run today’s most advanced
algorithms

Fall 2024

87

vs Apache Hadoop

 Sparse Modules
 Diversity of APIs
 Higher Operational Costs

Fall 2024

88

Conclusions
 The Database field is seeing tremendous change from above

and below
 Big Data software is a classic Disruptive Technology
 Database Thinking is key to moving up the value chain
 But we’ll also have to shed some of our traditional inclinations in

order to make progress

Fall 2024

89

Problems Suited for
Map-Reduce

Fall 2024

90

Example: Host size
 Suppose we have a large web corpus
 Look at the metadata file

Lines of the form: (URL, size, date, …)
 For each host, find the total number of bytes

That is, the sum of the page sizes for all URLs from that particular
host

 Other examples:
Link analysis and graph processing
Machine Learning algorithms

Fall 2024

91

Example: Language Model
 Statistical machine translation:

Need to count number of times every 5-word sequence occurs in a
large corpus of documents

 Very easy with MapReduce:
Map:

Extract (5-word sequence, count) from document
Reduce:

Combine the counts

Fall 2024

92

Example: Join By Map-Reduce
 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S

Fall 2024

93

Map-Reduce Join
 Use a hash function h from B-values to 1...k
 A Map process turns:

Each input tuple R(a,b) into key-value pair (b,(a,R))
Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with key b to
Reduce process h(b)
Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs (b,(a,R)) with
all (b,(c,S)) and outputs (a,b,c).

Fall 2024

94

Cost Measures for Algorithms
 In MapReduce we quantify the cost of an

algorithm using
1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along

any path
3. (Elapsed) computation cost analogous, but count

only running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

Fall 2024

95

Example: Cost Measures
For a map-reduce algorithm:

Communication cost = input file size + 2 × (sum of
the sizes of all files passed from Map processes to
Reduce processes) + the sum of the output sizes of
the Reduce processes.

Elapsed communication cost is the sum of the
largest input + output for any map process, plus the
same for any reduce process

Fall 2024

96

What Cost Measures Mean
Either the I/O (communication) or processing

(computation) cost dominates
Ignore one or the other

Total cost tells what you pay in rent from
your friendly neighborhood cloud

Elapsed cost is wall-clock time using parallelism

Fall 2024

97

Cost of Map-Reduce Join
 Total communication cost

= O(|R|+|S|+|R ⋈ S|)
 Elapsed communication cost = O(s)

We’re going to pick k and the number of Map processes so
that the I/O limit s is respected

We put a limit s on the amount of input or output that any
one process can have. s could be:
What fits in main memory
What fits on local disk

 With proper indexes, computation cost is linear in the
input + output size
So computation cost is like comm. cost

Fall 2024

98

References
 John Canny Distributed Analytics CS194-16 Introduction to Data Science UC

Berkeley
 Michael Franklin Big Data Software: What’s Next? (and what do we have to say

about it?), 43rd VLDB Conference Munich August 2017
 Intro to Apache Spark http://cdn.liber118.com/workshop/itas_workshop.pdf
 Databricks – Advanced Spark
 Pietro Michiardi - Apache Spark Internals
 Madhukara Phatak. Anatomy of RDD
 Aaron Davidson. Building a unified data pipeline in Apache Spark
 MapR. Using Apache Spark DataFrames for Processing of Tabular Data
 Jules Damji. A Tale of Three Apache Spark APIs: RDDs vs DataFrames and

Dataset
 Anton Kirillov. Apache Spark in depth: Core concepts, architecture&internals
 Patrick Wendell. Tuning and Debugging in Apache Spark

Fall 2024

99

Related Papers
 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Originally OSDI 2004. CACM Volume 51 Issue 1, January 2008.
http://dl.acm.org/citation.cfm?id=1327492

 HaLoop: Efficient Iterative Data Processing on Large Clusters by Yingyi Bu et al. In
VLDB'10: The 36th International Conference on Very Large Data Bases, Singapore,
24-30 September, 2010.

 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. Matei Zaharia et al. NSDI (2012)
usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

 MLbase: A Distributed Machine-learning System. Tim Kraska et al. CIDR 2013.
http://www.cs.ucla.edu/~ameet/mlbase.pdf

 Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making sense of performance in data analytics frameworks. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI'15). USENIX Association, Berkeley, CA, USA, 293-307.

 Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley,Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, Matei
Zaharia Spark SQL: Relational Data Processing in Spark

	Introduction to Scalable Data Analytics using Apache Spark
	Outline
	Big Data Problems: �Distributing Work, �Failures, Slow Machines
	Hardware for Big Data
	Hardware for Big Data
	Hardware for Big Data
	Problems with Cheap HW
	The Opportunity
	Count the Number of Occurrences �of each Word in a Document
	Centralized Approach: �Use a Hash Table
	Centralized Approach: �Use a Hash Table
	Centralized Approach: �Use a Hash Table
	Centralized Approach: �Use a Hash Table
	Centralized Approach: �Use a Hash Table
	A Simple Parallel Approach
	What if the Document is Really Big?
	What if the Document is Really Big?
	What if the Document is Really Big?
	What if the Document is Really Big?
	What About the Data? HDFS!
	HDFS nodes
	How Do We Deal with Machine Failures?
	How Do We Deal with Slow Tasks?
	MapReduce: Distributed Execution
	Map Reduce: Iterative Jobs
	The Weakness of MapReduce
	Tech Trend: Cost of Memory
	Modern Hardware for Big Data
	Opportunity
	Use Memory Instead of Disk
	In-Memory Data Sharing
	In-Memory Can Make a �Big Difference
	In-Memory Can Make a Big Difference
	What is ?
	Recall What’s Hard with Big Data
	Spark’s Philosophy
	A Brief History
	Resilient Distributed Dataset �(RDDs)
	RDD: Partitions
	RDD: Partitions
	Two Types of Operations on RDDs
	RDD Cache - rdd.cache()
	Example: Mining Console Logs
	RDD operations - Transformations
	RDD Lineage (aka Logical Logging)
	Useful Transformations on RDDs
	More Useful Transformations on RDDs
	RDD Common Transformations: Examples
	Useful Transformations on RDDs
	RDD operations - Actions
	RDD Actions
	RDD Actions: Examples
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Scheduling Process
	Scheduling Problems
	Narrow vs Wide Dependencies
	DataFrames & DataSets
	Static-Typing and Runtime Type-safety in Spark
	DataFrames: Example
	Where “Database Thinking” �Can Get In The Way
	Traditional Database Thinking
	Database Systems: One Way In/Out
	Database Systems: One Way In/Out
	Mix and Match Data Access
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Spark Ecosystem Features
	Spark and Map Reduce Differences
	Other Spark and Map Reduce Differences
	Spark: Fault Tolerance
	Spark: Fault Tolerance
	Apache Spark Software Stack: Unified Vision
	vs Apache Hadoop
	Conclusions
	Problems Suited for �Map-Reduce
	Example: Host size
	Example: Language Model
	Example: Join By Map-Reduce
	Map-Reduce Join
	Cost Measures for Algorithms
	Example: Cost Measures
	What Cost Measures Mean
	Cost of Map-Reduce Join
	References
	Related Papers

