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Introduction to Scalable Data 
Analytics using Apache Spark

http://www.csd.uoc.gr/~hy562
University of Crete, Fall 2024
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Outline
 Big Data Problems: Distributing Work, Failures, Slow Machines
 What is Apache Spark?
 Core things of Apache Spark

RDD
 Core Functionality of Apache Spark
 Simple tutorial
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Big Data Problems: 
Distributing Work, 

Failures, Slow Machines
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Hardware for Big Data

Bunch of Hard Drives …. and CPUs
 The Big Data Problem

Data growing faster than CPU speeds
Data growing faster than per-machine storage

 Can’t process or store all data on one machine
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Hardware for Big Data

 One big box ! (1990s solution)
All processors share memory

 Very expensive
Low volume
All “premium” HW

 Still not big enough!

Image: Wikimedia Commons / User:Tonusamuel
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Hardware for Big Data
 Consumer-grade hardware

Not "gold plated"

 Many desktop-like servers
Easy to add capacity
Cheaper per CPU/disk

 But, implies complexity in 
software

Image: Steve Jurvetson/Flickr
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Problems with Cheap HW
 Failures, e.g. (Google numbers)

1-5% hard drives/year
0.2% DIMMs/year

 Network speeds vs. shared 
memory
Much more latency
Network slower than storage

 Uneven performance
Google Datacenter
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The Opportunity
 Cluster computing is a game-changer!

 Provides access to low-cost computing and storage

 Costs decreasing every year

 The challenge is programming the resources

 What’s hard about Cluster computing?
How do we split work across machines?
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Count the Number of Occurrences 
of each Word in a Document

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

I: 3
am: 3
Sam: 3
do: 1
you: 1
like: 1
…
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Centralized Approach: 
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ }
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Centralized Approach: 
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1, }
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Centralized Approach: 
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1, 
am: 1, 

}
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Centralized Approach: 
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 1, 
am: 1, 
Sam: 1, 

}
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Centralized Approach: 
Use a Hash Table

“I am Sam
I am Sam
Sam I am
Do you like
Green eggs and ham?”

{ I: 2, 
am: 1, 
Sam: 1, 

}
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A Simple Parallel Approach

What’s the problem with this approach?
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What if the Document is Really Big?

Results have to fit on one machine !
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What if the Document is Really Big?

Can add aggregation layers but results must still fit on one 
machine
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What if the Document is Really Big?

Use Divide and Conquer!!
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What if the Document is Really Big?

Google Map Reduce 2004
MAP REDUCE
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What About the Data? HDFS!
HDFS is a distributed file system designed to hold very 
large amounts of data (terabytes or even petabytes), and 
provide high-throughput access to this information

Files are stored in a redundant fashion across multiple 
machines to ensure their durability to failure and high 
availability to very parallel applications

HDFS is a block-structured file system: 
individual files are broken into blocks of a fixed size (default 

128MB)
These blocks are stored across a cluster of one or more 

machines (DataNodes)
The NameNode stores all the metadata for the file system
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HDFS nodes

22
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How Do We Deal with Machine 
Failures?

 Launch another task!
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How Do We Deal with Slow Tasks?

 Launch another task!
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MapReduce: Distributed Execution

Image: Wikimedia commons (RobH/Tbayer (WMF))

 Each stage passes through the hard drives
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Map Reduce: Iterative Jobs
 Iterative jobs involve a lot of disk I/O for each repetition

Disk I/O is very slow!

 MapReduce is great at one-pass computation, but inefficient for multi-pass 
algorithms
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The Weakness of MapReduce

Stream Processing

 While MapReduce is simple, it can require asymptotically lots of 
disk I/O for complex jobs, interactive queries and online processing

 Commonly spend 90% of time doing I/O!

Interactive Mining

Also, most ML algorithms are iterative!
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Tech Trend: Cost of Memory

 Lower cost means can put more memory in each server

http://www.jcmit.com/mem2014.htm
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Modern Hardware for Big Data

… and memory!

Bunch of Hard Drives …. and CPUs
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Opportunity
 Keep more data in-memory

 Create new distributed execution engine:

 One of the most efficient programming frameworks offering 
abstraction and parallelism for clusters

 It hides complexities of:
Fault Tolerance
Slow machines
Network Failures 

http://people.csail.mit.edu/matei/papers/2010/hotcloud_spark.pdf
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Use Memory Instead of Disk
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In-Memory Data Sharing

 10-100x faster than network and disk!
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In-Memory Can Make a 
Big Difference

 (2013) Two iterative Machine Learning algorithms:
K-means Clustering

Logistic Regression
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In-Memory Can Make a Big 
Difference

 PageRank 
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What is          ?

RDDs
Transformations

Actions
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Recall What’s Hard with Big Data
 Complex combination of processing tasks, storage, systems and 

modes
ETL, aggregation, streaming, machine learning

 Hard to get both productivity and performance!
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Spark’s Philosophy
 Unified Engine: Fewer Systems to Master

Express an entire pipeline in one API
Interoperate with existing libraries and storage

 Richer Programming Model: improves usability for complex analytics
 High-level APIs (RDDs, Data Frames, Data Pipelines)
 Scala/Java/Python/R
 Interactive shell (repl)
 2-10x less code (than MapReduce)

 Memory Management: improves efficiency for complex analytics
Avoid materializing data on HDFS after each iteration:

 ...up to 100x faster that Hadoop in memory
 ...or 10x faster on disk

 New fundamental data abstraction that is
… easy to extend with new operators
… allows for a more descriptive computing model
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A Brief History

2024

Spark 
3.5.2

…
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Resilient Distributed Dataset 
(RDDs)

 Immutable collection of objects spread across a cluster 
(partitions)
Immutable once they are created

 Build through parallel transformations (map, filter)
Diverse set of operators that offers rich data processing functionality

 Automatically rebuilt on (partial) failure
They carry their lineage for fault tolerance

 Controllable persistence (e.g., cashing in RAM)
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RDD: Partitions

http://datalakes.com/rdds-simplified/
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RDD: Partitions
 RDDs are automatically distributed across the network by means of 

partitions
A partition is a logical division of data
RDD data is just a collection of partitions
Spark automatically decides the number of partitions when creating an 

RDD
All input, intermediate and output data will be presented as partitions

Partitions are basic units of parallelism
A task is launched per each partition
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Two Types of Operations on RDDs

 Operator cache persists distributed data in memory or disk

RDD

Transformation

Action

Transformations are lazy:
Framework keeps track of lineage

Actions trigger actual execution:
Transformations are executed when 
an action runs

values
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RDD Cache - rdd.cache()
 If we need the results of an RDD 

many times, it is best to cache it
RDD partitions are loaded into the 

memory of the nodes that hold it
avoids re-computation of the entire 

lineage
in case of node failure compute the 

lineage again

http://datalakes.com/rdds-simplified/
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Example: Mining Console Logs
 Load error messages from a log into memory, then interactively 

search for  patterns

Result: full-text search of Wikipedia in < 5 sec
(vs 20 sec for on-disk data)
Result: scaled to 1 TB of data in 5-7 sec
(vs 170 sec for on-disk data)
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RDD operations - Transformations
 As in relational algebra, the application of a transformation to an 

RDD yields a new RDD (immutability)
 Transformations are lazily evaluated which allow for 

optimizations to take place before execution
The lineage keeps track of all transformations that have to be 

applied when an action happens

http://datalakes.com/rdds-simplified/
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RDD Lineage (aka Logical Logging)
 RDDs track the transformations used to build them (their 

lineage) to recompute lost data

M. Zaharia, et al, Resilient Distributed Datasets: A fault--‐tolerant 
abstraction for in--‐memory cluster computing, NSDI 2012
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Useful Transformations on RDDs
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More Useful Transformations on 
RDDs
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RDD Common Transformations: 
Examples

Unary RDD Result

rdd.map(x => x * x) {1, 2, 3, 3} {1, 4, 9, 9}

rdd.flatMap(line => 

line.split(" "))

{"hello 

world", "hi"}

{"hello”, 

world", "hi"}

rdd.filter(x => x != 1) {1, 2, 3, 3} {2, 3, 3}

rdd.distinct () {1, 2, 3, 3} {1, 2, 3}

Binary RDD1 RDD2 Result

rdd.union(other) {1, 2, 3} {3,4,5} {1,2,3,3,4,5}

rdd.intersection(other) {1, 2, 3} {3,4,5} {3}

rdd.subtract(other) {1, 2, 3} {3,4,5} {1, 2}

rdd.cartesian(other) {1, 2, 3} {3,4,5} {(1,3),(1,4), … (3,5)}
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Useful Transformations on RDDs

RDD[T]

RDD[U]

filter
f: (T) ⇒
Boolean

map
f: (T) ⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T]) 
⇒ Iterator[U]

RDD[T]

RDD[U]

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey

reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U, 

combOp: (U, U) ⇒ U

RDD[(K, U)]
RDD[(K, V)]

RDD[(K, V)]

sort

RDD[(K, V)]

RDD[(K, (V, W))]

RDD[(K, W)]

join

RDD[(K, V)]

RDD[(K, (Iterable[V], Iterable[W]))]

cogroup

RDD[(K, W)]

And more!
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RDD operations - Actions
 Apply transformation chains on RDDs, eventually performing 

some additional operations (e.g. counting)
i.e. trigger job execution

 Used to materialize computation results

 Some actions only store data from the RDD upon which the 
action is applied and convey it to the driver
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RDD Actions
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RDD Actions: Examples

RDD Result

rdd.collect() {1,2,3} {1,2,3}

rdd.first() {1,2,3,4} 1

rdd.count() {1,2,3,3} 4

rdd.max() {1,2,3,3} 3

rdd.top(2) {1,2,3,3} {3,3}

RDD Result

rdd.reduce((x, y) => x + y) {1,2,3} 6

rdd.foreach(x=>println(x)) {1,2,3} prints “1 2 3”

RDD Result

rdd.countByKey() {(a,x),(a,y),(b,x)} {(a,2),(b,1)}
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Spark Word Count

val textFile = sc.textFile(args.input())

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(args.output())

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

?
?
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Spark Word Count

val textFile = sc.textFile(args.input())

val a = textFile.flatMap(line => line.split(" "))
val b = a.map(word => (word, 1))
val c = b.reduceByKey((x, y) => x + y)

c.saveAsTextFile(args.output())

RDDs

TransformationsAction
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RDDs and Lineage

textFile: 
RDD[String]

On HDFS

a: RDD[String]

.flatMap(line => line.split(“ "))

Action!

b: RDD[(String, 
Int)]

.map(word => (word, 1))

c: RDD[(String, 
Int)]

.reduceByKey((x, y) => x + y)



Fall 2024

62

RDDs and Optimizations

textFile: 
RDD[String]

a: RDD[String]

b: RDD[(String, 
Int)]

c: RDD[(String, 
Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Action!

RDDs don’t need 
to be materialized!

Lazy evaluation creates optimization opportunities
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RDDs and Caching
RDDs can be materialized in memory (and on disk)!

textFile: 
RDD[String]

a: RDD[String]

b: RDD[(String, 
Int)]

c: RDD[(String, 
Int)]

On HDFS

.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey((x, y) => x + y)

Action!

✗

Spark works even if the RDDs are partially cached!
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Spark Architecture
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Scheduling Process
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Scheduling Problems

 Supports general task graphs
 Pipelines functions where is possible
 Cache-aware data reuse and locality
 Partitioning-aware to avoid shuffles 
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Narrow vs Wide Dependencies

https://trongkhoanguyen.com/spark/understand-rdd-operations-
transformations-and-actions/
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DataFrames & DataSets

 In 2015 Spark added DataFrames and Datasets as structured data APIs 
 DataFrames are collections of rows with a fixed schema (table-like)
 Datasets add static types, e.g. Dataset[Person]

https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-
apis-rdds-dataframes-and-datasets.html
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Static-Typing and Runtime Type-
safety in Spark

 Analysis errors reported before a distributed job starts
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DataFrames: Example
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Where “Database Thinking” 
Can Get In The Way
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Traditional Database Thinking
Pros
 Declarative Queries and Data Independence

Rich Query Operators, Plans and Optimization
Separation of Physical and Logical Layers

 Data existing independently of applications 
Not as natural to most people as you’d think

 Importance of managing the storage hierarchy
Cons
 Monolithic Systems and Control
 Schema First & High Friction
 The DB Lament: “We’ve seen it all before”
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Database Systems: One Way In/Out

Adapted from Mike Carey, UCI
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Database Systems: One Way In/Out

Adapted from Mike Carey, UCI
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Mix and Match Data Access

Adapted from Mike Carey, UCI
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From: Spark User Survey 2016, 1615 respondents from 900 organizations

http://go.databricks.com/2016-‐spark-‐survey
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From: Spark User Survey 2016, 1615 respondents from 900 organizations

http://go.databricks.com/2016-‐spark-‐survey
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Spark Ecosystem Features
 Spark focus was initially on

Performance + Scalability with Fault Tolerance
 Rapid evolution of functionality kept it growing especially across 

multiple modalities:
DB,
Graph,
Stream,
ML,
etc.

 Database thinking is moving Spark and much of the Hadoop 
ecosystem up the disruptive technology value curve
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Spark and Map Reduce Differences
Apache Hadoop
MapReduce

Apache Spark

Storage Disk only In-memory or on disk

Operations Map and Reduce Many transformation 
and actions, including 
Map and Reduce

Execution
model

Batch Batch, interactive,
streaming

Languages Java Scala, Java, R, and 
Python
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Other Spark and Map Reduce 
Differences

 Generalized patterns for computation
provide unified engine for many use cases
require 2-5x less code

 Lazy evaluation of the lineage graph
can optimize, reduce wait states, pipeline better

 Lower overhead for starting jobs

 Less expensive shuffles



Fall 2024

84

Spark: Fault Tolerance
 Hadoop: Once computed, don’t lose it
 Spark: Remember how to re-compute



Fall 2024

85

Spark: Fault Tolerance
 Hadoop: Once computed, don’t lose it
 Spark: Remember how to re-compute
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Apache Spark Software Stack: 
Unified Vision 

 Spark Unified pipeline can run today’s most advanced 
algorithms
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vs Apache Hadoop

 Sparse Modules
 Diversity of APIs
 Higher Operational Costs
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Conclusions
 The Database field is seeing tremendous change from above 

and below
 Big Data software is a classic Disruptive Technology
 Database Thinking is key to moving up the value chain
 But we’ll also have to shed some of our traditional inclinations in 

order to make progress



Fall 2024

89

Problems Suited for 
Map-Reduce
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Example: Host size
 Suppose we have a large web corpus
 Look at the metadata file

Lines of the form: (URL, size, date, …)
 For each host, find the total number of bytes

That is, the sum of the page sizes for all URLs from that particular 
host

 Other examples: 
Link analysis and graph processing
Machine Learning algorithms
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Example: Language Model
 Statistical machine translation:

Need to count number of times every 5-word sequence occurs in a 
large corpus of documents

 Very easy with MapReduce:
Map:

Extract (5-word sequence, count) from document
Reduce: 

Combine the counts
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Example: Join By Map-Reduce
 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S
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Map-Reduce Join
 Use a hash function h from B-values to 1...k
 A Map process turns:

Each input tuple R(a,b) into key-value pair (b,(a,R))
Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with key b to 
Reduce process h(b)
Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs (b,(a,R)) with 
all (b,(c,S)) and outputs (a,b,c).
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Cost Measures for Algorithms
 In MapReduce we quantify the cost of an 

algorithm using 
1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along 

any path
3. (Elapsed) computation cost analogous, but count 

only running time of processes

Note that here the big-O notation is not the most useful 
(adding more machines is always an option)
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Example: Cost Measures
For a map-reduce algorithm:

Communication cost = input file size + 2 × (sum of 
the sizes of all files passed from Map processes to 
Reduce processes) + the sum of the output sizes of 
the Reduce processes.

Elapsed communication cost is the sum of the 
largest input + output for any map process, plus the 
same for any reduce process
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What Cost Measures Mean
Either the I/O (communication) or processing 

(computation) cost dominates
Ignore one or the other

Total cost tells what you pay in rent from 
your friendly neighborhood cloud

Elapsed cost is wall-clock time using parallelism
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Cost of Map-Reduce Join
 Total communication cost

= O(|R|+|S|+|R ⋈ S|)
 Elapsed communication cost = O(s)

We’re going to pick k and the number of Map processes so 
that the I/O limit s is respected

We put a limit s on the amount of input or output that any 
one process can have. s could be:
What fits in main memory
What fits on local disk

 With proper indexes, computation cost is linear in the 
input + output size
So computation cost is like comm. cost
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