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What we will be discussing...

● Apache Spark SQL

● DataFrame

● Catalyst Optimizer

● Examples in DSL and SQL

● Example of adding a new rule on Catalyst Optimizer



Nowadays Challenges and Solutions

Challenges Solutions

Perform ETL to and from various 

(semi or unstructured) data sources

A DataFrame API that can perform 
relational operations on both 

external data sources and Spark’s 
built-in RDDs

Perform advanced analytics (e.g. 
machine learning, graph processing) 
that are hard to express in relational 

systems

A highly extensible optimizer, 

Catalyst, that uses features of Scala 

to add composable rule, control code 

gen., and define extensions.



Why Apache Spark ?

Fast and general cluster computing system, interoperable with Hadoop

Improves efficiency through:

● In-memory computing primitives

● General computation graphs

Improves usability through:

● Rich APIs in Scala, Java, Python

● Interactive shell

Note: More about Hadoop versus Spark here.

Up to 100× faster

(2-10× on disk)

2-5× less code

https://www.edureka.co/blog/apache-spark-vs-hadoop-mapreduce


Apache Spark Software Stack

Now!



Spark SQL

Is a Spark module which Integrates relational processing with Spark’s functional 

programming API

Module Characteristics:

● Supports querying data either via SQL or via Hive Query Language

● Extends the traditional relational data processing

Part of the core distribution since Spark 1.0 (April 2014):



Spark SQL Architecture



How to use Spark SQL ?

You issue SQL queries through a SQLContext or HiveContext, using the sql() method.

● The sql() method returns a DataFrame

● You can mix DataFrame methods and SQL queries in the same code

To use SQL you must either:

● Query a persisted Hive table

● Make a table alias for a DataFrame, using the registerTempTable() method

Note: a complete guide how to use, can be find here

https://www.edureka.co/blog/spark-sql-tutorial/


DataFrame API
Provides a higher level abstraction (built on RDD API), allowing us to use a query 

language to manipulate data

Formal Definition:

● A DataFrame (DF) is a size-mutable, potentially heterogeneous tabular data 

structure with labeled axes (i.e., rows and columns)

Characteristics: 

● Supports all the RDD operations → but may return back an RDD not a DF

● Ability to scale from kB of data in a single laptop to petabytes on a large cluster

● Support for a wide array of data formats and storage systems

● State-of-the-art optimization and code generation through the Spark SQL Catalyst 

optimizer

● ...



Spark SQL Interfaces Interaction with SPARK

● Seamless integration with all big data tooling and infrastructure via Spark.

● APIs for Python, Java and R

Here I am!



Why DataFrame ?

What are the advantages over Resilient Distributed Datasets ?

1. Compact binary representation

○ Columnar, compressed cache; rows for processing

2. Optimization across operations (join, reordering, predicate pushdown, etc)

3. Runtime code generation

What are the advantages over Relational Query Languages ?

● Holistic optimization across functions composed in different languages

● Control structures (e..g if, for)

● Logical plan analyzed eagerly → identify code errors associated with data schema 

issues on the fly



Why DataFrame ?
A DF can be significantly faster than RDDs and they perform the same regardless the 
language:

But, we have lost type safety → Array[org.apache.spark.sql.Row], because Row extends 
serializable. Mapping it back to something useful e.g. row(0).asInstanceOf[String], its 
ugly and error-prone.



Querying Native Datasets

Infer column names and types directly from data objects:

● Native objects accessed in-place to avoid expensive data format transformation

Benefits:

● Run relational operations on existing Spark Programs

● Combine RDDs with external structured data

RDD[String] → (User Defined Function) → RDD[User] → (toDF method) → DataFrame



User-Defined Functions (UDFs)

Easy extension of limited operations supported

Allows inline registration of UDFs

● Compare with Pig, which requires the UDF to be written in java package that’s 

loaded into the Pig script

Can be defined on simple data types or entire tables

UDFs available to other interfaces after registration



DataFrame API: Transformations, Actions, Laziness

● Transformations contribute to the query plan, but they don't execute anything.

Actions cause the execution of the query

DataFrames are lazy!

What exactly does “execution of the query” means?

● Spark initiates a distributed read of the data source

● The data flows through the transformations (the RDDs resulting from the catalyst 

query plan)

● The result of the action is pulled back into the driver JVM



DataFrame API: Actions



DataFrame API: Basic Functions



DataFrame API: Basic Functions



DataFrame API: Language Integrated Queries

Note: More details about these functions here.

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrame


DataFrame API: Relational Operations
Relational operations, select, where, join, groupBy via a domain-specific language:

● Operators take expression objects

● Operators build up an Abstract Syntax Tree (AST), which is then optimized by 

Catalyst

Alternatively, register as temp SQL table and perform traditional SQL query strings:

SOS



DataFrame API: Output Operations



DataFrame API: RDD Operations



Data Sources
Uniform way to access structured data:

● Apps can migrate across Hive, Cassandra, JSON, Parquet, etc..

● Rich semantics allows query pushdown into data sources



Apache Spark Catalyst Internals

More info about this article here.

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html


Apache Spark Execution Plan

● From the above diagram, you can already predict the amount of work that is being 

done by Spark Catalyst to execute your Spark SQL queries 😳

● The SQL queries of Spark application will be converted to Dataframe APIs

● Logical Plan is converted to an Optimized Logic plan and then to one or more

Physical Plans

Note: Find more about what happening under the hood of Spark SQL here and here.

https://medium.com/@kashifmin/spark-sql-whats-happening-under-the-hood-c703d7f5acf5
https://data-flair.training/blogs/apache-spark-rdd-vs-dataframe-vs-dataset/


The Analyzer
Spark Catalyst’s analyzer is responsible for resolving types and names of attributes in 

SQL queries

● The analyzer looks at the table statistics to know the types of the referred column 

For example:

SELECT (col1 + 1) FROM mytable;

● Now, Spark needs to know:

1. If col1 is actually a valid column in mytable

2. If the type of the referred column needs to be known so that (col1 + 1) can 

be validated and necessary type casts cam e added



How analyzer resolve attributes ?
To resolve attributes:

● Look up relations by name from the catalog

● Map named attributes to the input provided given operator’s children

● UID for references to the same value

● Propagate the coerce types through expressions (e.g. 1 + col1)



The Optimizer
Spark Catalyst’s optimizer is responsible for generating an optimized logical plan from 

the analyzed logical plan

● Optimization is done by applying rules in batches. Each operation is represented as 

a TreeNode in Spark SQL

● When an analyzed plan goes through the optimizer, the tree is transformed to a new 

tree repeatedly by applying a set of optimization rules

For instance, a simple Rule:

Replace the addition of Literal values with new Literal

Then, expressions of the form (1+5) will be replaced by 6. Spark will be repeatedly apply 

such rules to the expression tree until the tree becomes constant



What are the Optimization Rules ?
The optimizer applies standard rule-based optimization rules:

● Constant folding

● Predicate-pushdown

● Projection

● Null propagation

● Boolean expression simplification

● …

Note: Find more optimization rules here

https://github.com/apache/spark/blob/v2.3.2/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/Optimizer.scala


Optimizer: Example
● An inefficient query where filter is used before join operation → Costly shuffle 

operation (Find more about this example here)

The join is 
inefficient

The filter is 
pushed 
down

http://bigdatatn.blogspot.com/2017/06/apache-spark-rdd-vs-dataframe-vs-dataset.html


Physical Planner

Physical plans are the ones that can actually be executed on a cluster. They actually 

translate optimized logical plans into RDD operations to be executed on the data source

● A generated Optimized Logical Plan is passed through a series of Spark 

strategies that produce one or more Physical plans (More about these 

strategies here)

● Spark uses cost based optimization (CBO) to select the best physical plan

based on the data source (i.e. table sizes)

https://github.com/apache/spark/blob/v2.3.2/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala


Physical Planner: Example



A comparison of the performance evaluating the expression “x + x + x”, where x is an 

integer, 1 billion times:

● Catalyst transforms a SQL tree into an abstract syntax tree (AST) for scala code 

to evaluate expressions and generate code

Code Generation

This phase involves generating java bytecode  to run on each machine



Apache Spark SQL Example

Save it as spark_sql_example.scala (Find the source code here)

https://gist.github.com/kashifmin/fb424ee9b2a820e4520772b0b4f111fd#file-spark_sql_example-scala


How to run Apache Spark correctly ?

Run your first .scala script, in three simple steps:

1. Open a command line → win + R and type CMD

2. Run the spark shell using user-defined memory → spark-shell --driver-

memory 5g

3. Load the script → :load <path to>\spark_sql_example.scala



Schema Inference Example
Suppose you have a text file that looks 

like this:

The file has no schema, but looks like:

● First name: string 

● Last name: string 

● Gender: string 

● Age: integer



How to see the Content of a 
DataFrame?
You can have Spark tell you what it thinks the data schema is, by calling the 

printSchema() method  (This is mostly useful in the shell)

You can look at the first n elements in a DataFrame 

with the show() method

If not specified, n defaults to 20



How to Persist a DataFrame in Memory ?

Spark can cache a DataFrame, using an in-memory columnar format, by calling:

scala> df.cache()

Which just calls df.persist(MEMORY_ONLY)

● Spark will scan only those columns used by the DataFrame and will automatically 

tune compression to minimize memory usage and GC pressure.

You can remove the cached data from memory, by calling:

scala> df.unpersist()



How to Select Cols from a DataFrame ?
The select() is like a SQL SELECT, allowing you to limit the results to specific columns

● The DSL also allows you create on-the-fly derived columns

● The SQL version is also available



How to Filter the Rows of a DataFrame?
The filter() method allows you to filter rows out of your results

● The DSL as well as SQL version are available



How to Sort the Rows of a DataFrame ?
The orderBy() method allows you to sort the results

● The DSL as well as SQL version are available

● It’s easy to reverse the sort order



Change the Col Name of a Table in DF?

The as() or alias() allows you to rename a column. It’s especially useful with generated 

columns

● The DSL as well as SQL version are available



Add a New Optimization Rule to Spark Catalyst

Note: Find more information of this example here

The Optimized logical Plan 
without our new Rule

The Optimized logical Plan 
with our new Rule

Implement the Collapse sorts optimizer rule

Query:
● val data = Seq((‘a’, 1), (‘b’,2), (‘c’, 3)).toDF(‘a’, ‘b’)
● val query = data.select(a, b).orderBy(b.asc).filter(‘b ==2’).orderBy(a.asc)

https://developer.ibm.com/code/2017/11/30/learn-extension-points-apache-spark-extend-spark-catalyst-optimizer/#comments


Which Spark Components do People Use?

(Survey 2015)



Which Languages are Used ?



Special Thanks!

Intro to DataFrames and Spark SQL 2015 Databricks

RDDs, DataFrames and Datasets in Apache Spark 2016 Akmal B. Chaudhri

Spark SQL: Relational Data Processing in Spark 2015 Databricks, MIT and 
Amplab


