
CS-562 2024
1st Assignment

Exercise 0: Setting up the environment
-Nothing to submit here-

a) Spark can be installed quite simply on your PC following the next steps:

1. Download the latest pre-built version from here:

http://spark.apache.org/downloads.html

2. Unzip and move Spark to directory:

cd ~/Downloads/

tar xzvf spark-2.2.0-bin-hadoop2.7.tgz mv spark-2.2.0-bin-hadoop2.7/ spark

sudo mv spark/ /usr/lib/

3. Make sure Java is installed. If not install Java.

sudo apt-add-repository ppa:webupd8team/java

sudo apt-get update

sudo apt-get install oracle-java8-installer

4. Install SBT

echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/sbt.list

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

2EE0EA64E40A89B84B2DF73499E82A75642AC823

sudo apt-get update

sudo apt-get install sbt

5. Configure Spark.

cd /usr/lib/spark/conf/

cp spark-env.sh.template spark-env.sh

→ Open spark-env.sh and add the following lines :

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

JAVA_HOME=/usr/lib/jvm/java-8-oracle

SPARK_WORKER_MEMORY=4g

6. Configure .bashrc

export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export SBT_HOME=/usr/share/sbt-launcher-packaging/bin/sbt-launch.jar

export SPARK_HOME=/usr/lib/spark

export PATH=$PATH:$JAVA_HOME/bin

export PATH=$PATH:$SBT_HOME/bin:$SPARK_HOME/bin:$SPARK_HOME/sbin

7. Now you are ready to interact with Spark:

type /usr/lib/spark-shell and start spark-shell

Get acquainted with Spark and run some simple tasks. Visit Spark’s documentation
(http://spark.apache.org/documentation.html) and watch Screencasts 3 & 4 of the Screencast
Tutorial Videos under the Videos section.

b) In this section we are going to write simple Scala functions to get used to the language.
In all the next exercises you must use only Scala to answer the questions.

1. Write a function that returns the second to last element of a list of integers.
e.g. list=(1,2,3,4,5,6) → returns : 5

2. Sum the values of a list of integers
3. Compute the max, min & average of a list of integers
4. Eliminate consecutive duplicates of a list elements. If a list contains repeated

elements they should be replaced with a single copy of the element. The element
order should not be changed.
e.g. list=(1,2,3,3,5,5,8,10) → returns : (1,2,3,5,8,10)

Download the following six works by Shakespeare from Project Gutenberg (total 22 MB):

● pg100.txt http://www.gutenberg.org/cache/epub/100/pg100.txt
● pg31100.txt http://www.gutenberg.org/cache/epub/31100/pg31100.txt
● pg3200.txt http://www.gutenberg.org/cache/epub/3200/pg3200.txt
● pg2253.txt http://www.gutenberg.org/cache/epub/2253/pg2253.txt

http://spark.apache.org/documentation.html
http://www.gutenberg.org/cache/epub/100/pg100.txt
http://www.gutenberg.org/cache/epub/31100/pg31100.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt
http://www.gutenberg.org/cache/epub/2253/pg2253.txt

● pg1513.txt http://www.gutenberg.org/cache/epub/1513/pg1513.txt
● pg1120 .txt http://www.gutenberg.org/cache/epub/1120/pg1120.txt

Exercise 1 (5%) Word Count

The documents of the previous exercise form your document corpus for this assignment.
The first exercise is a simple Word Count. What you have to is load the files into your Spark
Instance and try to count the occurances of each unique word.

The output should be something like this:

Exercise 2 (20%) Frequent Terms and Stop Words
The documents of the previous exercise form the your document corpus for this assignment.
The second task is almost as easy as the word count.
For the given set of documents as a collection of words, you are asked to collect all the stop
words (https://en.wikipedia.org/wiki/Stop_words). Implement the needed Scala program to

http://www.gutenberg.org/cache/epub/1513/pg1513.txt
http://www.gutenberg.org/cache/epub/1120/pg1120.txt
https://en.wikipedia.org/wiki/Stop_words

identify the stop words (words with frequency > 4000 that are valid english words -remove
non-alphanumeric terms-). For the given document corpus:

1. Print the k most frequent words among with their frequency (assume k=10 & 50).
2. Store all the stopwords in a single csv file using Scala code.
3. Find the average frequency of stopwords in each document.

Hints:

● Use as base the word count (Exercise 1)
● Ignore letter casing
● You can validate your StopWords list by comparing it with : http://bit.ly/2hw8xx1
● Use map() & reduceByKey() functions
● Use take() and sortBy()

Exercise 3 (30%)
A variation of an inverted index.

You are asked to implement an inverted index(http://bit.ly/2wWhkKM) for the document
corpus described above. An inverted index provides for each distinct word in a document
corpus, the filenames that contain this word, along with some other information (e.g.,
count/position within each document). For example, assume you are given the following
corpus, consisting of doc1.txt, doc2.txt and doc3.txt:

doc1.txt: “This is a very useful program. It is also quite easy.”
doc2.txt: “This is my first MapReduce program.”
doc3.txt: “Its result is an inverted index.”

An inverted index would contain the following data (in random order):

ID Term Document

1 this doc1.txt, doc2.txt

2 is doc1.txt,doc2.txt,doc3.txt

3 a doc1.txt

4 program doc1.txt,doc2.txt

x

1. Implement a simple inverted index for the given document corpus, as shown in the
previous Table, skipping the words of stopwords.csv.

http://bit.ly/2hw8xx1
http://bit.ly/2wWhkKM

2. How many unique words exist in the document corpus (excluding stop words)? Which
counter(s) reveal(s) this information? Define your own counter for the number of words
appearing in a single document only. What is the value of this counter?

Hints:

● First you have to identify the unique terms and their documents, and then you merge
the results.

● Experiment on different cases and select the most efficient.
● Use filter()

Exercise 4 (30%) An extension of an inverted index.

Extend the inverted index of Exercise 3, in order to keep the frequency of each word for each
document. The new output should be of the form:

ID Term Document #Frequency

1 this doc1.txt #1 , doc2.txt #1

2 is doc1.txt #2, doc2.txt #2,
doc3.txt #1

3 a doc1.txt #1

4 program doc1.txt #1 ,doc2.txt #1

x

which means that the word frequency should follow a single ‘#’ character, which should follow
the filename, for each file that contains this word. Also, sort the document list based on the
Frequency.

Exercise 5 (15%) Relative Frequencies.
Compute the relative frequencies of each word that occurs in the six documents in the
previous corpus and output the top 100 word pairs sorted by decreasing order of relative
frequency.

The relative frequency (RF) of word B given word A is defined as follows:

where count(A,B) is the number of times A and B co-occur in a line and count(A) the number
of times A occurs with anything else. Intuitively, given a document corpus, the relative

frequency captures the proportion of times the word B appears in the same line as A.

Submission (deadline: 18/10/2024):

Create a folder including all the .scala files you used and a PDF report for the answers.
Send an email to hy562@csd.uoc.gr (not the mailing list!) with subject :
Assign1__StudentIDnumber.

