
Michalis Giannoulis

Lab 3: Introduction to Spark Streaming

Outline

● Big Stream Analysis

● Streaming & Real Time Processing

● Streaming Systems

● λ vs k

● What is Spark Streaming

● Core Functionality

● Core Functionality Example

● Performance of Spark Streaming

● Real World Application Example (Twitter)

Big Stream Analysis

Big Fast Data

● Data is growing and can be evaluated

○ Tweets, social networks (statuses,

check-ins, shared content), blogs,

click streams, various logs, …

○ Facebook: > 845M active users, > 8B

messages/day

○ Twitter: > 140M active users, > 340M

tweets/day

● Everyone is interested!

Image: Michael Carey

But there is so much more…

● Autonomous Driving

○ Requires rich navigation info

○ Rich data sensor readings

○ 1GB data per minute per car (all sensors)

● Traffic Monitoring

○ High event rates: millions events / sec

○ High query rates: thousands queries / sec

○ Queries: filtering, notifications, analytical

● Pre-processing of sensor data

○ CERN experiments generate ~1PB of measurements per second

○ Unfeasible to store or process directly, fast preprocessing is a must

Interactive vs Streaming Analytics

● https://www.slideshare.net/arunkejariwal/velocity-2015final

Requirements for Stream Data Processing Systems

● Automatic partitioning and distributed processing

○ Scales to large clusters (hundreds of nodes)

● Instantaneous processing and response

○ Achieves second-scale latency

● Handle data imperfections

○ Late, missing, unordered items

● Predictable outcomes (consistency, event time)

● Data safety and availability

○ Efficient fault tolerance in stateful computations

● Hybrid stream and batch (or interactive) processing

Why is this hard?

● Tension between performance and algorithmic expressiveness

Image: Peter Pietzuch

@Big Data Stream Processing Tilmann Rabl Berlin Big Data Center

Streaming and Real Time Processing

Streaming and Real Time Processing

● Online Processing: a method that continuously process data

as they flow through the system

○ no compulsory time limitations

● Real time Processing: a method that process real-time data

under tight deadlines in terms of time

○ Capturing events within 1 ms, is called real-time data of true

streaming

11

(Near) Real-time Data Pipelines

12

▪ Lambda architecture: have 3 layers (Batch, Speed, Serving) to

provide real-time streaming and compensate any data error occurs

▪ Kappa architecture: handle both real-time and continuous data

processing using a stream processing engine

– avoids maintaining two separate code bases for the batch and

speed layers

Lambda Architecture

13

▪ The batch layer has two major tasks: (a) managing historical data;

(b) re-computing results such as ML models

▪ The speed layer provides results in a low-latency, near real time

fashion

Kappa Architecture

14

▪ The key idea is to handle both real time processing and continuous

data reprocessing using a single stream processing engine

Why MR is not a Solution for Fast Big Data

Images: Tyler Akidau

▪ Great for large amounts of static data

– Data is not moving!

▪ For streams: only for large windows

▪ High latency, low efficiency

How to keep data moving?

Discretized Stream Processing

17

▪ Run a streaming computation as a series of

very small deterministic batch jobs

– Chop the live stream into batches of X

seconds

– Batch sizes as low as ½ second,

latency of about 1 second

Discussion of Mini-Batch

▪ Easy to implement

▪ Easy consistency and fault-tolerance

▪ Potential for combining stream with batch processing in the same

system

▪ Hard to do event time and sessions

Images: Tyler Akidau

Fully Fledged Streaming Architecture

▪ Program = DAG* of operators and intermediate streams

▪ Operator = computation + state

▪ Intermediate streams = logical stream of records

Streaming Systems

Data Stream Processing Systems Overview

@Big Data Stream Processing Tilmann Rabl Berlin Big Data Center

Closed Source/Commercial Systems

Open Source Systems by Apache (1/2)

Open Source Systems by Apache (2/2)

Cloud-Based Streaming Systems (example)

λ vs κ-Rapid growth of social

media applications

-Cloud based systems

-Internet of things

-Unending spree of

innovations

Take well calculated

decisions while

launching, upgrading

or troubleshooting an

enterprise application

Data Analyst

λ vs k

λ vs k

Dealing with huge amount of data in an efficient manner

Increased throughput, reduced latency and negligible errors

Data processing deals with the event streams

Introducing three distinct layers.

Batch Layer, Speed Layer (also known as Stream layer) and Serving Layer

λ vs k

Query = λ (Complete data) = λ (live streaming data) * λ (Stored data)

λ vs k

Pros and Cons of Lambda Architecture

Pros

● Batch layer of Lambda architecture manages historical data with the fault tolerant distributed storage

which ensures low possibility of errors even if the system crashes.

● It is a good balance of speed and reliability.

● Fault tolerant and scalable architecture for data processing.

Cons

● It can result in coding overhead due to involvement of comprehensive processing.

● Re-processes every batch cycle which is not beneficial in certain scenarios.

● A data modeled with Lambda architecture is difficult to migrate or reorganize.

λ vs k
Query = K (New Data) = K (Live streaming data)

λ vs k

Pros and Cons of Kappa architecture

Pros

● Kappa architecture can be used to develop data systems that are online learners and therefore don’t

need the batch layer.

● Re-processing is required only when the code changes.

● It can be deployed with fixed memory.

● It can be used for horizontally scalable systems.

● Fewer resources are required as the machine learning is being done on the real time basis.

Cons

Absence of batch layer might result in errors during data processing or while updating the database that

requires having an exception manager to reprocess the data or reconciliation.

What is Spark Streaming

Spark Streaming

● Key abstraction: discretized streams

○ micro-batch = series of RDDs

○ stream computation = series of deterministic batch computation at a given time

interval

○ processed results are pushed out in micro-batches

● API very similar to Spark core (Java, Scala, Python)

○ (stateless) transformations on DStreams: map, filter, reduce, repartition, cogrop…

○ Stateful operators: time-based window operations, incremental aggregation, time-

skewed joins

○ Also DataFrame/SQL and Mlib operations

● Exactly-once semantics using checkpoints (asyn. replication of state RDDs)

● No event time windows

Core Functionality

Core Functionality Example

Performance of Spark Streaming

Storm vs Spark

Real World Application Example (Twitter)

Hall of Fame

Spark Streaming Tathagata Das (TD)

https://stanford.edu/~rezab/sparkclass/slides/td_streaming.pdf

Big Data Stream Processing - Berlin Big Data Center Tilmann Rabl

www.bbdc.berlin/fileadmin/news/photos/BD.../StreamProcessing-TilmannRabl.pdf

Spark Streaming: Large-scale near-real-time stream processing Tathagata Das (TD)

http://ampcamp.berkeley.edu/wp-content/uploads/2013/07/Spark-Streaming-AMPCamp-3.pptx

Spark Streaming Programming Guide

http://spark.apache.org/docs/latest/streaming-programming-guide.html

