Spar‘ll(\Z

Streaming

Lab 3: Introduction to Spark Streaming

Michalis Giannoulis

Outline

Big Stream Analysis

Streaming & Real Time Processing
Streaming Systems

A vs k

What is Spark Streaming

Core Functionality

Core Functionality Example
Performance of Spark Streaming

Real World Application Example (Twitter)

Big Stream Analysis

Big Fast Data

e Data is growing and can be evaluated
o Tweets, social networks (statuses,
check-ins, shared content), blogs,

click streams, various logs, ... ///////// \A\\‘\\\\\\

o Facebook: > 845M active users, > 8B

shike +1 » W .l{j b

messages/day y
o Twitter: > 140M active users, > 340M t t k t ? ? ﬁ I‘, ?1

tweets/da
y Image: Michael Carey

e Everyone is interested!

But there is so much more...

e Autonomous Driving

o Requires rich navigation info

o Rich data sensor readings

o 1GB data per minute per car (all sensors)
e Traffic Monitoring

o High event rates: millions events / sec

o High query rates: thousands queries / sec

o Queries: filtering, notifications, analytical
e Pre-processing of sensor data

o CERN experiments generate ~1PB of measurements per second

o Unfeasible to store or process directly, fast preprocessing is a must

Interactive vs Streaming Analytics

STREAMING ANALYTICS
INTERACTIVE ANALYTICS

Real time alerts, Real time analytics
Static Batch

Continuous visibility

Results |

Data Stream

Results/Reports

Queries l |
Bulkload . 0 Data
Data Storage

e https://www.slideshare.net/arunkejariwal/velocity-2015final

Data

Proc essing

Storage

Queries

Big Streaming Data Processing

Fraud detection in bank transactions

N0 D O O O OO i s i o g)) T A] T A o i

Cat videos in tweets

vy yilry

= DATABRICKS

Requirements for Stream Data Processing Systems

Distributed

Processing System ~ef St

vV v R
Raw Data Streams E‘E.’DDE“E;E‘E") . | Dat

e Automatic partitioning and distributed processing
o Scales to large clusters (hundreds of nodes)
e Instantaneous processing and response
o Achieves second-scale latency
e Handle data imperfections
o Late, missing, unordered items
e Predictable outcomes (consistency, event time)
e Data safety and availability
o Efficient fault tolerance in stateful computations
Hybrid stream and batch (or interactive) processing

Why is this hard?

TBs ..

Hard for
all algo-
rithms

Data amount

GBs .
Hard for
machine
learning
MBS o algorithms
Easy
10s 1s 100ms 10ms 1ms

Image: Peter Pietzuch

e Tension between performance and algorithmic expressiveness

@Big Data Stream Processing Tilmann Rabl Berlin Big Data Center

Streaming and Real Time Processing

Streaming and Real Time Processing

Online Processing: a method that continuously process data
as they flow through the system
o Nno compulsory time limitations

Real time Processing: a method that process real-time data
under tight deadlines in terms of time
o Capturing events within 1 ms, is called real-time data of true
streaming

11

(Near) Real-time Data Pipelines

- Lambda architecture: have 3 layers (Batch, Speed, Serving) to
provide real-time streaming and compensate any data error occurs

- Kappa architecture: handle both real-time and continuous data
processing using a stream processing engine
— avoids maintaining two separate code bases for the batch and

speed layers

12

Lambda Architecture

Batch Layer

Real-Time Layer

- The batch layer has two major tasks: (a) managing historical data;
(b) re-computing results such as ML models

- The speed layer provides results in a low-latency, near real time
fashion

13

Kappa Architecture

4)

®
h‘

Queries

Batch Layer

Real-Time Layer

- The key idea is to handle both real time processing and continuous
data reprocessing using a single stream processing engine

14

Why MR is not a Solution for Fast Big Data

Images: Tyler Akidau

- Great for large amounts of static data
— Data is not moving!

- For streams: only for large windows

- High latency, low efficiency

How to keep data moving?
Discretized Streams (mini-batch)

ver @ 0 BB
discretizer : , , :
v v v v

while (true) {

// get next few records = : ! =

// issue batch computation i i i i
}

Native streaming

Long-standing
while (true) { operators
// process next record

}

Discretized Stream Processing

- Run a streaming computation as a series of ~ five datastream
very small deterministic batch jobs XTTEe
— Chop the live stream into batches of X \\ f
seconds
- Batch sizes as low as %2 second,

latency of about 1 second

batches of X
secqnds

@ mm -
processed

results

Spark
Streaming

Spark

17

Discussion of Mini-Batch

. [10:00 - 11:00) [11:00 - 12:00) [10:00 - 19:00) (1900 - 12:00)
n ~ 3 L " n o

I | : Tyler Akid
- Easy to implement mages: Tyler Akidau

- Easy consistency and fault-tolerance

- Potential for combining stream with batch processing in the same
system

- Hard to do event time and sessions

Fully Fledged Streamlng Architecture

SRC1 > 151 > 1S3 > SNK1
| 4 i
’
Stateful Operator J Materialized Intermediate
' / Data Stream
: f (blocking data exchange)
Ill
§ _aeemmea
= "
4 '
AAAN .
e N Control Ev
/ 5\ A Control Event
! sy el - A DataRecord
Le==""

Transient Intermediate 8 Operator State

Data Stream (pipelined data exchange)

- Program = DAG* of operators and intermediate streams
- Operator = computation + state
- Intermediate streams = logical stream of records

Streaming Systems

Data Stream Processing Systems Overview

Closed Source

Cloud DataFlow

(BigTable)

InfoSphere
Stream
Processing
Language (SPL)

AWS amazon
Kinesis Mservices

Streaming
Systems

Open Source

Esper
Aurora
NiagaraCQ

caL

@Big Data Stream Processing Tilmann Rabl Berlin Big Data Center

Closed Source/Commercial Systems

Gougle

I
1L
)

| |
:

Cloud DataFlow:

BigTable:

Naiad:

Streaminsights:

InfoSphere:
Stream
Processing
Language (SPL)

Unified primitives for batch and stream processing

Runs in Google's cloud only

Open Source SDK (programs can run on other systems)
Check out the Apache Beam Project! (http://beam.apache.org/)

Not a real streaming solution
Allows to feed streams as source into a google DB
Data can be immediately queried

Goals of Naiad:
High throughput (typical for batch processors)
Low latency (known from single system stream processors)

Is able to process iterative data flows
Can discretize windows only based on time

Available through Microsoft's cloud
Windows based on count-, time- and punctuation/snapshot
Optimized for .NET framework applications

Well specified in several publications

Can be deployed in customer clusters

Own SQL-like query language enables many optimization means
window discretization based on trigger- and eviction policies

Open Source Systems by Apache (1/2)

§g kafka + Reliable handling of huge numbers of concurrent reads and writes
+ Can be used as data-source / data-sink for Storm, Samza, Flink, Spark and many more systems

« Fault tolerant: Messages are persisted on disk and replicated within the cluster. Messages (reads and
writes) can be repeated

é}) STORM - True streaming over distributed dataflow
« Low level APIl: Programmers have to specify the logic of each vertex in the flow graph
« Full understanding and hard coding of all used operators is required

- Enables very high throughput (single purpose programs with small overhead)

m « True streaming built on top of Apache Kafka and Hadoop YARN
« State is first class citizen

« Low level API

Open Source Systems by Apache (2/2)

Spark implements a batch execution engine
« The execution of a job graph is done In stages

» Operator outputs are materialized in memory (or disk) until the consuming operator is
ready to consume the materialized data

Spark uses Discretized Streams (D-Streams)

« Streams are interpreted as a series of deterministic batch-processing jobs
* Micro batches have a fixed granularity

+ All windows defined in queries must be multiples of this granularity

Flinks runtime is a native streaming engine

+ Based on Nephele/PACTs

* Queries are compiled to a program in the form of an operator DAG

* Operator DAGs are compiled to job graphs

» Job graphs are generic streaming programs

Flink implements “true streaming”

« The whole job graph is deployed concurrently in the cluster

* Operators are long-running: Continuously consume input and produce output

« Output tuples are immediately forwarded to succeeding operators and are available for
further processing (enables pipeline parallelism)

Cloud-Based Streaming Systems (example)

Integrated Analytics

75 amazon

0 webservices

-Rapid growth of social
media applications
-Cloud based systems
-Internet of things

-Unending spree of \
iInnovations

Take well calculated
decisions while
launching, upgrading
__ortroubleshooting an \
enterprise application

/

Data Analyst

A vs k

A vs k

Dealing with huge amount of data in an efficient manner
Increased throughput, reduced latency and negligible errors
Data processing deals with the event streams

Introducing three distinct layers.

Batch Layer, Speed Layer (also known as Stream layer) and Serving Layer

A Vs «

Query = A (Complete data) = A (live streaming data) * A (Stored data)

II II INPUT DATA

=y -

A Vs «

Pros and Cons of Lambda Architecture

Pros

e Baitch layer of Lambda architecture manages historical data with the fault tolerant distributed storage
which ensures low possibility of errors even if the system crashes.
It is a good balance of speed and reliability.
Fault tolerant and scalable architecture for data processing.

Cons

e It can result in coding overhead due to involvement of comprehensive processing.
e Re-processes every batch cycle which is not beneficial in certain scenarios.
e A data modeled with Lambda architecture is difficult to migrate or reorganize.

\VS K

Query = K (New Data) = K (Live streaming data)

\VS K

Pros and Cons of Kappa architecture

Pros

e Kappa architecture can be used to develop data systems that are online learners and therefore don’t
need the batch layer.

e Re-processing is required only when the code changes.

e |t can be deployed with fixed memory.

e |t can be used for horizontally scalable systems.

e [Fewer resources are required as the machine learning is being done on the real time basis.
Cons

Absence of batch layer might result in errors during data processing or while updating the database that
requires having an exception manager to reprocess the data or reconciliation.

Requirements

= Scalable w0 large clusters

= Second-scale latencies

=Sim ple programming model

* Integrated with batch & interactive processing

= Efficient fault-tolerance in stateful computations

What is Spark Streaming

Spark Streaming

data stream

Key abstraction: discretized streams
o micro-batch = series of RDDs

Receivers]

)

Spori{ Streamin

soak’ | [11L)
batches as results as

RDDs RDDs

o Stream computation = series of deterministic batch computation at a given time

interval

o processed results are pushed out in micro-batches

API very similar to Spark core (Java, Scala, Python)
o (stateless) transformations on DStreams: map, filter, reduce, repartition, cogrop...
o Stateful operators: time-based window operations, incremental aggregation, time-

skewed joins

o Also DataFrame/SQL and Mlib operations
Exactly-once semantics using checkpoints (asyn. replication of state RDDSs)

No event time windows

A akka

Eﬁ . streaming data
' 50Urces
-

MLIib

machine learning

train models use trained
with live data model elasticsearch.

data storage

. <:7 systems qul @'
Spark Streaming i
y Q % Parquet §3 kafka

2 S
cassandra
MysQL
.mongoDB static data
sources
elasticsearch. —l
% Parquet

process with interactively
DataFrames query with SQL

Spark SQL

SQL + DataFrames

https://www.datanami.com/2015/11/30/spark-streaming-what-1is-1it-and-whos-using-it/

Core Functionality

DStream

SAPACHE&

oark

The basic high level abstraction for streaming in spark is called discretized

stream or DStream

~ represents a continuous stream of data

DStreams can be created

~ from input data streams from sources such as Kafka, Flume, and
Kinesis

— by applying high-level operations on other DStreams

* A DStream is represented as a sequence of RDDs

StreamingContext - the main entry point
RDD @time1 RDD@time2 RDD@time3 RDD @ time4

DStream = = - datafrom | __ ' datafrom | __ ' datafrom | _ | datafrom | >
timeOto1l time 1to 2 time 2to 3 time3to4

\\\/ \‘\//Z,-.Z
DStreams + RDDs= Power

> Combine live data streams with historical data
- Generate historical data models with Spark, etc.
- Use data models to process live data stream

> Combine streaming with MLIlib, GraphX algos

- Offline learning, online prediction g [t :
Spark Spark MLIib | GraphX
s i e e

- Online learning and prediction
Apache Sparl

> Interactively query streaming data using SQL
- select * from table_from_streaming_data

= DATABRICKS

StreamingContext Spa

A StreamingContext object has to be created (batch interval)
~ Define the input sources by creating input DStreams

— Define the streaming computations (transformations/output

operations) to DStreams
— Start receiving data and processing it (start())
~ Wiait for the processing to stop (awaitTermination())

~ Manually stop using it (stop())

import org.apache.spark._
import org.apache.spark.streaming._

val conf = new SparkConf().setAppName(appName).setMaster (master)
val ssc = new StreamingContext(conf, Seconds(1))

StreamingContext: Remember Spa

* Once a context has been started no new computations can be set
up

* Once a context has been stopped it cannot be restarted

* Only one StreamingContext can be active in a JVM at the same
time

* stop() also stops the SparkContext (set the optional parameter of
stop() called stopSparkContext to false)

A SparkContext can be re-used to create multiple StreamingContexts
as long as there is only one StreamingContext active

Operations applied on DStream

SAPACHEa

oark

Operations applied on a DStream are translated to operations on

the underlying RDDs

Use Case: Converting a stream of lines to words by applying the

operation flatMap on each RDD in the "lines DStream”.

lines
DStream

words
DStream

lines from lines from lines from lines from
timeOto1l time 1to 2 1 time2to3 time3to4
flatMap
operation
words from words from words from words from
timeOto1l time 1to 2 time2to3 time3to4

APACHE&

File Streams Spark

* Besides sockets, the StreamingContext APl provides methods

for creating DStreams from files

* Reading data from files on any file system compatible with the

HDFS API (that is, HDFS, S3, NFS, etc.)

* Spark Streaming will monitor a directory and process any files

created in that directory

_ Kafka

Flume

HDFs/s3 | Spar K [:‘J> (Databases |
Xifvests Stfeam I n 9 Dashboards

Twitter

SAPACHE&

park

Input DStream and Receivers

* Every input DStream except file stream is associated with a Receiver
~ Receiver receives data from a source and stores it in spark memory
* Two build-in streaming sources

— Basic Sources: Sources directly available in the Streaming Context API

(file systems and socket connections)

Advanced Sources: Kafka, Flume, Kinesis (need more dependencies —

check the bitbucket repository given at the end for kafka example)

* Reliable and Unreliable receivers (regarding loss of data due to failure)

A reliable receiver sends ack to a reliable source when the data has
been received and stored in Spark with replication

http://spark.apache.org/docs/2.2.0/streaming-custom-receivers.html

Check-points Spa

A streaming application must be resilient to failures
Two types of check-points
* Metadata check-pointing
Store information regarding the streaming computation to HDFS

Recovery from failures - configuration, operations, incomplete

batches
* Data check-pointing
Store generated RDDs to HDFS

This is necessary in some stateful transformations

Transformations on DStreams Spa

* DStreams support most of the RDD transformations

map
flatMap filter
repartition countByValue
count reduce union
reduceByKey join

cogroup

* Also introduces special transformations related to state

& windows

Stateless vs Stateful Operations Spa

* By design streaming operators are stateless
* they know nothing about any previous batches
* Stateful operations have a dependency on
previous batches of data
* continuously accumulate metadata overtime

* data check-pointing is used for saving the generated

RDDs to a reliable stage

sAPACHE&

DStreams transformations park

Return a new DStream by passing each element of

map (func) the source DStream through a function func.
Similar to map, but each input item can be mapped
flatMap (func) to O or more output items.
. Return a new DStream by selecting only the records
filter (func) of the source DStream on which func returns true.

Changes the level of parallelism in this DStream by

repartition(numPartitions) creating more or fewer partitions.

Return a new DStream that contains the union of the

union(otherStream) elements in the source DStream and otherDStream.

Return a new DStream of single-element RDDs b {
counting the number of elements in each RDD of the
source DStream.

count()

DStreams transformations (cont.) Spark

countByValue()

reduceByKey (func, [numTasks])

join(otherStream, [numTask])

cogroup (otherStream, [numTask])

K4

When called on a DStream of elements of type K,
return a new DStream of (K, Long) pairs where the
value of each key is its frequency in each RDD of

the source DStream.

When called on a DStream of (K, V) pairs, return a
new DStream of (K, V) pairs where the values for
each key are aggregated using the given reduce
function. Note: By default, this uses Spark’s default
number of parallel tasks (2 for local mode, and in
cluster mode the number is determined by the config
¢roperty spark.default.parallelism) to do the grouping.

ou can pass an optional numTasks argument to set
a different number of tasks.

When called on two DStreams of (K, V) and (K, W

pairs, return a new DStream of (K, (V, W)) pairs wit
all pairs of elements for each key.

When called on a DStream of (K, V) and (K, W)
pairls, return a new DStream of (K, Seq[V], Seq[W])
tuples.

DStreams transformations (cont.)

transform(func)

updateStateByKey (func)

SAPACHE&

oark

Return a new DStream by applying a RDD-to-RDD
function to every RDD of the source DStream. This
can be used to do arbitrary RDD operations on the
DStream.

Return a new "state” DStream where the state for
each key is updated by applying the given function
on the previous state of the key and the new values
for the key. This can be used to maintain arbitrary
state data for each key.

UpdateStateByKey Operation Spa

A stateful operation that allows you to maintain arbitrary state while

continuously updating it with new information

Three requirements:

* Define the state - The state can be an arbitrary data type

* Define the "state update function” used for updating the current state using the

previous state and the new values from an input stream

* Regardless of whether they have new data in a batch or not

If the update function returns None then the key-value pair will be
eliminated.

* Requires check-pointing to be configured

Transform Operation Spa

A stateless operation that allows arbitrary RDD-to-RDD functions
to be applied on a DStream

It can be used to apply any RDD operation that is not exposed in
the DStream API

Example:
val dataset: RDD[String, String] = .. // RDD
val wordCounts = .. // Stream from first example

val joinedStream = wordCounts.transform {
// transform
rdd = rdd.join(dataset)

Window Operations Spa

Windowed computations apply transformations over a sliding
window of data

The window slides over a source DStream and combines the
RDDs that fall within the window

time 1 time 2 time 3 time 4 time 5
original
DStream

window-based
operation

windowed
DStream

window window window

at time 1 at time 3 at time 5

SAPACHE&

Window Operations park
Any window operation needs to specify two parameters:
* window length - The duration of the window (3 in the figure)

* sliding interval - The interval at which the window operation is

performed (2 in the figure)

time 1 time 2 time 3 time 4 time 5
original | |
DStream |)

window-based
operation
windowed Y
t
DStream L
window window window

at time 1 at time 3 at time 5

APACHE&

Join Operations Spark

In each batch interval the RDD generated by stream| can be

joined with the RDD generated by stream?2

val s1: DStream[String, String] = .. //
val s2: DStream[String, String] = .. //
val jS1 = sl.join(s2)

val jS2 = sl.leftOuterJoin(s2)

val jS3 = sl.rightOuterJoin(s2)

val jS4 = sl.fullOuterJoin(s2)

// The same with windowed streams

val wS1 = sl.window(Seconds(20))
val wS2 = s2.window(Minutes(1l))
val wlS = wSl.join(wS2)

Output operations

print()

saveAsTextFiles(prefix, [suffix])

saveAsObjectFiles(prefix,
[suffix])

saveAsHadoopFiles(prefix,
[suffix])

foreachRDD (func)

ST

Prints the first ten elements of every batch of data in
a DStream on the driver node running the streaming
apglication. This is useful for development and

de

ugging.

Save this DStream's contents as text files. The file

name at each batch interval is generated based on
prefix and suffix: "prefix-TIME_IN_MS[.suffix]".

Save this DStream's contents as SequenceFiles of
serialized Java objects. The file name at each batch
interval is generated based on prefix and suffix:
"prefix-TIME_IN_MS[.suffix]".

Save this DStream'’s contents as Hadoop files. The file

name at each batch interval is generated based on
prefix and suffix: "prefix-TIME_IN_MS[.suffix]".

The most generic output operator that applies a
function, func, to each RDD generated from the
stream. This function should push the data in each
RDD to an external system, such as saving the RDD
to files, or writing it over the network to a database.

Core Functionality Example

APACHE&I

DStream - Example Spa

// Create a DStream that will connect to a server
// listening on a TCP socket, say <IP>:9990

val ssc = new StreamingContext(conf, Seconds(5))
val lines = ssc.socketTextStream("<Some_IP>", 9990)

// Word count again

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word = (word.trim, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print()

// Start the computation

ssc.start()

// Wait for the application to terminate
ssc.awaitTermination()

// ssc.stop() forces application to stop

SAPACHE&

UpdateStateByKey Example park

val ssc = new StreamingContext(conf, Seconds(5))

// Setting checkpoint directory in HDFS
ssc.checkpoint("hdfs://139.91.183.88:9000/checkpointDir")

// apply it on a DStream containing pairs(word, 1)

def updateFunction(newValues: Seq[Int], runningCount: Option[Int]): Option[Int]

= {

// add the new values to the previous running count to get the new count
val newCount = newValues.sum + runningCount.getOrElse(0)
Some (newCount)

}

val lines = ssc.socketTextStream("139.91.183.88", 999@)

val words = lines.flatMap(_.split(" "))

val pairs words.map(word = (word.trim, 1))

val runningCounts = pairs.updateStateByKey[Int] (updateFunction _)

runningCounts.print()

ssc.start() // Start the computation
ssc.awaitTermination() // Wait for the computation to finish

UpdateStateByKey Example Spa

1. this is spark tutorial 3. apache spark
Time: t1 Time: t3
(this,1) (this,1)
(is,1) (is,2)
(tutorial,1) (fast,1)
(spark,1) (apache,1)

(tutorial,1)

2. spark is fast (spark,3)
Time: t2
(this,1)

(is,2)
(fast,1)

(tutorial,1)
(spark,2)

Performance of Spark Streaming

Fault-tolerance: Worker

= RDDs remember the operations tweets
that created them RDD input data
replicated
in memory

= Batches of input data are replicated
in memory for fault-tolerance

= Data lost due to worker failure, can
be recomputed from replicated ha;f[‘)T[;‘gs
input data lost partitions

@“ 2 “ @k recomputed on
other workers
= All transformed data is fault-tolerant, and

exactly-once transformations

Fault-tolerance: Master

= Master saves the state of the DStreams to a checkpoint file
- Checkpoint file saved to HDFS periodically

= |f master fails, it can be restarted using the checkpoint file

= More information in the Spark Streaming guide

- Link later in the presentation

= Automated master fault recovery coming soon

Fast Fault Recovery

Recovers from faults/stragglers within 1 sec

Failure Happens

Interval Processing
Time (s)

Sliding WordCount on 10 nodes with 30s checkpoint interval

Storm vs Spark

Higher throughput than Storm
- Spark Streaming: 670k records/second/node
- Storm: 115k records/second/node

- Apache S4: 7.5k records/second/node

3 Grep] WordCount
e 120 aspark H 30
E, 100 ®Storm i 25
> 80 € 20
a 60 - 2 15
% & 40 1 3% 10
@ 20 a .
EZo - £2 0
100 1000 100 1000

Record Size (bytes) Record Size (bytes)

Real World Application Example (Twitter)

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

WRDDS representing a stream of data}

tweets DStream W W
BUBY DI

stored in memory as an RDD
(immutable, distributed)

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()

val hashTags = tweets.flatMap (status => getTags(status))

transformation: modify data in one DStream to create
new DStream

another DStream

ezher bah@wl bnes2 [

tweets DStream

s

ﬂa’lchf“lap

hashTags Dstream

[#cat, #dog, ...]

new RDDs created
for every batch

BUGE BUUE BEUE

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

ﬁ output operation: to push data to external storage J

batch @ t batch @ &1 batch @ t+2

tweets DStream

flatMap flatMap

hashTags DStream

| 5 ’ | ’5:’ | 5 ’ every batch
saved to HDFS

Example — Get hashtags from Twitter

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.foreach(hashTagRDD => { ... })

\[foreach: do whatever you want with the processed data J

batch @ t batch @ =1 batch @ t+2
tweets DStream

flatMap flatMap flatMap

hashTags DStream

foreach foreach foreach

Write to database, update analytics
Ul, do whatever you want

Window-based Transformations

val tweets = ssc.twitterStream()
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()

sliding window
operation

window length | | sliding interval

window length
A

= T =
DStream of data W_)

sliding interval

Hall of Fame

Spark Streaming Tathagata Das (TD)
https://stanford.edu/~rezab/sparkclass/slides/td_streaming.pdf

Big Data Stream Processing - Berlin Big Data Center Tilmann Rabl
www.bbdc.berlin/fileadmin/news/photos/BD.../StreamProcessing-TilmannRabl.pdf

Spark Streaming: Large-scale near-real-time stream processing Tathagata Das (TD)
http://ampcamp.berkeley.edu/wp-content/uploads/2013/07/Spark-Streaming-AMPCamp-3.pptx
Spark Streaming Programming Guide

http://spark.apache.org/docs/latest/streaming-programming-guide.html

