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Big Stream Analysis



Big Fast Data

● Data is growing and can be evaluated

○ Tweets, social networks (statuses, 

check-ins, shared content), blogs, 

click streams, various logs, …

○ Facebook: > 845M active users, > 8B 

messages/day

○ Twitter: > 140M active users, > 340M 

tweets/day

● Everyone is interested!
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But there is so much more…

● Autonomous Driving

○ Requires rich navigation info

○ Rich data sensor readings

○ 1GB data per minute per car (all sensors)

● Traffic Monitoring

○ High event rates: millions events / sec

○ High query rates: thousands queries / sec

○ Queries: filtering, notifications, analytical

● Pre-processing of sensor data

○ CERN experiments generate ~1PB of measurements per second

○ Unfeasible to store or process directly, fast preprocessing is a must



Interactive vs Streaming Analytics

● https://www.slideshare.net/arunkejariwal/velocity-2015final





Requirements for Stream Data Processing Systems

● Automatic partitioning and distributed processing

○ Scales to large clusters (hundreds of nodes)

● Instantaneous processing and response

○ Achieves second-scale latency

● Handle data imperfections

○ Late, missing, unordered items 

● Predictable outcomes (consistency, event time)

● Data safety and availability

○ Efficient fault tolerance in stateful computations

● Hybrid stream and batch (or interactive) processing 



Why is this hard?

● Tension between performance and algorithmic expressiveness
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Streaming and Real Time Processing



Streaming and Real Time Processing

● Online Processing: a method that continuously process data 

as they flow through the system

○ no compulsory time limitations

● Real time Processing: a method that process real-time data 

under tight deadlines in terms of time

○ Capturing events within 1 ms, is called real-time data of true 

streaming 
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(Near) Real-time Data Pipelines
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▪ Lambda architecture: have 3 layers (Batch, Speed, Serving) to 

provide real-time streaming and compensate any data error occurs

▪ Kappa architecture: handle both real-time and continuous data 

processing using a stream processing engine

– avoids maintaining two separate code bases for the batch and 

speed layers



Lambda Architecture
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▪ The batch layer has two major tasks: (a) managing historical data; 

(b) re-computing results such as ML models

▪ The speed layer provides results in a low-latency, near real time 

fashion



Kappa Architecture
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▪ The key idea is to handle both real time processing and continuous 

data reprocessing using a single stream processing engine



Why MR is not a Solution for Fast Big Data

Images: Tyler Akidau

▪ Great for large amounts of static data

– Data is not moving!

▪ For streams: only for large windows

▪ High latency, low efficiency



How to keep data moving?



Discretized Stream Processing
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▪ Run a streaming computation as a series of 

very small deterministic batch jobs

– Chop the live stream into batches of X 

seconds

– Batch sizes as low as  ½  second, 

latency of about 1 second



Discussion of Mini-Batch

▪ Easy to implement

▪ Easy consistency and fault-tolerance

▪ Potential for combining stream with batch processing in the same 

system

▪ Hard to do event time and sessions
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Fully Fledged Streaming Architecture

▪ Program = DAG* of operators and intermediate streams

▪ Operator = computation + state

▪ Intermediate streams = logical stream of records



Streaming Systems



Data Stream Processing Systems Overview

@Big Data Stream Processing Tilmann Rabl Berlin Big Data Center



Closed Source/Commercial Systems



Open Source Systems by Apache (1/2)



Open Source Systems by Apache (2/2)



Cloud-Based Streaming Systems (example)



λ vs κ-Rapid growth of social 

media applications 

-Cloud based systems

-Internet of things 

-Unending spree of 

innovations

Take well calculated 

decisions while 

launching, upgrading 

or troubleshooting an 

enterprise application

Data Analyst



λ vs k



λ vs k

Dealing with huge amount of data in an efficient manner

Increased throughput, reduced latency and negligible errors

Data processing deals with the event streams

Introducing three distinct layers. 

Batch Layer, Speed Layer (also known as Stream layer) and Serving Layer



λ vs k

Query = λ (Complete data) = λ (live streaming data) * λ (Stored data)



λ vs k

Pros and Cons of Lambda Architecture

Pros

● Batch layer of Lambda architecture manages historical data with the fault tolerant distributed storage 

which ensures low possibility of errors even if the system crashes.

● It is a good balance of speed and reliability.

● Fault tolerant and scalable architecture for data processing.

Cons

● It can result in coding overhead due to involvement of comprehensive processing.

● Re-processes every batch cycle which is not beneficial in certain scenarios.

● A data modeled with Lambda architecture is difficult to migrate or reorganize.



λ vs k
Query = K (New Data) = K (Live streaming data)



λ vs k

Pros and Cons of Kappa architecture

Pros

● Kappa architecture can be used to develop data systems that are online learners and therefore don’t 

need the batch layer.

● Re-processing is required only when the code changes.

● It can be deployed with fixed memory.

● It can be used for horizontally scalable systems.

● Fewer resources are required as the machine learning is being done on the real time basis.

Cons

Absence of batch layer might result in errors during data processing or while updating the database that 

requires having an exception manager to reprocess the data or reconciliation.





What is Spark Streaming



Spark Streaming

● Key abstraction: discretized streams

○ micro-batch = series of RDDs

○ stream computation = series of deterministic batch computation at a given time 

interval

○ processed results are pushed out in micro-batches

● API very similar to Spark core (Java, Scala, Python)

○ (stateless) transformations on DStreams: map, filter, reduce, repartition, cogrop…

○ Stateful operators: time-based window operations, incremental aggregation, time-

skewed joins

○ Also DataFrame/SQL and Mlib operations 

● Exactly-once semantics using checkpoints (asyn. replication of state RDDs)

● No event time windows





Core Functionality









































Core Functionality Example









Performance of Spark Streaming









Storm vs Spark



Real World Application Example (Twitter)













Hall of Fame

Spark Streaming Tathagata Das ( TD )

https://stanford.edu/~rezab/sparkclass/slides/td_streaming.pdf

Big Data Stream Processing - Berlin Big Data Center Tilmann Rabl

www.bbdc.berlin/fileadmin/news/photos/BD.../StreamProcessing-TilmannRabl.pdf

Spark Streaming: Large-scale near-real-time stream processing Tathagata Das ( TD )

http://ampcamp.berkeley.edu/wp-content/uploads/2013/07/Spark-Streaming-AMPCamp-3.pptx

Spark Streaming Programming Guide

http://spark.apache.org/docs/latest/streaming-programming-guide.html


