
CS-562 Programming Assignment 2

Deadline: March 29 th 2024

Create a folder including all the .scala files you used and the (.pdf or .docx) report for the answers.

Send an email to hy562@csd.uoc.gr (not the mailing list!) with subject:

Assign2_StudentIdNumber.

Exercise 0 – Setting up the Environment

Dataset – Wikimedia Projects

The Wikimedia Foundation supports hundreds of thousands of people around the world in

creating the largest free knowledge projects in history. The work of volunteers helps millions of

people around the globe discover information, contribute knowledge, and share it with others no

matter their bandwidth.

In this assignment you are going to explore the page views of Wikimedia projects. Download the

page view statistics generated between 0-1am on Jan 1, 2016 from here.

Each line, delimited by a white space, contains the statistics for one Wikimedia page. The schema

looks as follows:

Field Meaning

Project code The project identifier for each page.

Page title A string containing the title of the page.

Page hits Number of requests on the specific hour.

Page size Size of the page.

Spark Framework – Initialize

Launch the spark shell and then create an RDD named pagecounts from the input file (the file

must be copied on the same directory as the spark-shell).

A) Libraries need to be imported

• import org.apache.spark;

• import org.apache.spark.rdd.RDD;

• import org.apache.spark.storage.StorageLevel._;

• import org.apache.spark.sql._;

mailto:hy562@csd.uoc.gr
https://wikimediafoundation.org/our-work/wikimedia-projects/
https://drive.google.com/file/d/1qr-SBzlojgxzXu2fJx0xaWH9P6vrDpnS/view

• import org.apache.spark.sql.SparkSession;

B) Create a new Spark Session

• val spark = SparkSession.builder().getOrCreate()

C) Load Dataset

• val pagecounts = sc.textFile("directory_to/pagecounts-20160101-

000000_parsed.out")

Exercise 1 – Explore the Web Logs with Spark (40%)

First convert the pagecounts from RDD[String] into RDD[Log] using the following guideline:

1. create a case class called Log using the four field names of the dataset.

2. create a function that takes a string, split it by white space and converts it into a log object.

3. create a function that takes an RDD[String] and returns an RDD[Log] using your convert

function via the built in map function.

In the rest sections of this exercise you have to make use of the RDD[Log] that you have created.

For each of the questions below implement a Scala function that takes as input an RDD[Log] and

prints requested values. You must also include all of those results in your report.

Question 1 (3 points)

Retrieve the first k records and beautify.

Use the take() operation of an RDD to get the first k records, with k = 15.The take() operation

returns an array and Scala simply prints the array with each element separated by a comma. This

is not easy to read. Make the output prettier by traversing the array to print each record on its own

line.

Question 2 (3 points)

Determine the number of records the dataset has in total.

Question 3 (4 points)

Compute the min, max, and average page size.

Hint: Use Map and Reduce/ReducebyKey functions provided by the RDD api. See the following

links

• https://spark.apache.org/examples.html

• https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/rdd/RDD.html

Question 4 (4 points)

Determine the record with the largest page size. If multiple records have the same size, list all of

them.

Question 5 (6 points)

Determine the record with the largest page size again. But now, pick the most popular.

https://spark.apache.org/examples.html
https://spark.apache.org/docs/2.0.1/api/java/org/apache/spark/rdd/RDD.html

Question 6 (4 points)

Determine the record with the largest page title. If multiple titles have the same length, list all of

them.

Question 7 (6 points)

Use the results of question 3, and create a new RDD with the records that have greater page size

from the average.

Hint: use the function filter provided by the RDD api. See the following link

• https://spark.apache.org/docs/2.1.1/programming-guide.html

Question 8 (3 points)

Compute the total number of pageviews for each project (as the schema shows, the first field of

each record contains the project code).

Question 9 (5 points)

Report the 10 most popular pageviews of all projects, sorted by the total number of hits.

Question 10 (5 points)

Determine the number of page titles that start with the article “The”. How many of those page

titles are not part of the English project (Pages that are part of the English project have “en” as

first field)?

Question 11 (5 points)

Determine the percentage of pages that have only received a single page view in this one hour

of log data.

Question 12 (6 points)

Determine the number of unique terms appearing in the page titles. Note that in page titles, terms

are delimited by “_” instead of a white space. You can use any number of normalization steps

(e.g. lowercasing, removal of non-alphanumeric characters).

Question 13 (6 points)

Determine the most frequently occurring page title term in this dataset.

Exercise 2 – Explore the Web Logs with Spark SQL (40%)

First convert the pagecounts from RDD[String] into DataFrame using the toDF function with

appropriate arguments similarly to the following example here.

Hint: You may need to transform RDD[String] into RDD[Log] and then DataFrame. Your resulted

DataFrame (DF) should look similar to the following figure:

https://spark.apache.org/docs/2.1.1/programming-guide.html
https://stackoverflow.com/questions/29383578/how-to-convert-rdd-object-to-dataframe-in-spark

Figure 1 – The first n = 10 rows of the DataFrame using the show(n) built in function of the DataFrame api.

Next you must use your DF to answer again to the questions 3, 5, 7, 12, 13 of Ex.1, but this time

by running SQL queries programmatically, as shown in the following tutorial here. You must

also include all of those results (with the table format to be visible) in your report.

Hint: From the DF api you have to use the following functions,

• createOrReplaceTempView

• sql

• show()

Exercise 3 – Spark Pseudo-distributed Execution (20%)

On this exercise you are going to experiment with the pseudo-distributed execution on Spark. You

have to change the default configurations in order to emulate a local cluster environment with

more than one nodes. Follow the examples of the given link to setup the cluster settings: here.

Configure the number of slaves and memory/cores that you think is more suitable for your PC,

and create two simple topologies:

• Small cluster: with small number of workers, number of cores and slaves. (20 points)

• Big cluster: with the maximum computation power that you can give. (20 points)

For each setup mentioned above, run again questions 3, 5, 6, 7, 12, 13 of Ex.1, and compare the

execution time on the two emulated clusters. You are asked not only to report the execution

times for the two topologies, but compare and explain the two setup configurations and answer

the following questions:

1. How master and slaves interact with the Spark environment?

2. Does the number of slaves affect the execution time?

3. Suppose you have input files that are greater than 10 GB and you are given a machine (like

a google cloud) with 16 virtual CPUs and 60 GB of memory. You have two options:

a) 1 master and 1 slave with the maximum memory/computation power.

b) 1 master and n slaves with the maximum computation power and memory divided across

slaves.

What is the range of n on this setup? What would you choose?

https://spark.apache.org/docs/2.2.0/sql-programming-guide.html#running-sql-queries-programmatically
https://github.com/jaceklaskowski/mastering-apache-spark-book/blob/master/spark-standalone-example-2-workers-on-1-node-cluster.adoc

How would you compare the options above with your emulated topologies? Is it better or

worse?

Have Fun!

