
Static Analysis and Optimization of Semantic Web Queries

Andrés Letelier Jorge Pérez Reinhard Pichler Sebastian Skritek
Dept. of Computer Science Dept. of Computer Science Faculty of Informatics

PUC Chile Universidad de Chile Technische Universität Wien
aileteli@uc.cl jperez@dcc.uchile.cl [pichler,skritek]@dbai.tuwien.ac.at

ABSTRACT

Static analysis is a fundamental task in query optimization. In
this paper we study static analysis and optimization techniques for
SPARQL, which is the standard language for querying Semantic
Web data. Of particular interest for us is the optionality feature in
SPARQL. It is crucial in Semantic Web data management, where
data sources are inherently incomplete and the user is usually in-
terested in partial answers to queries. This feature is one of the
most complicated constructors in SPARQL and also the one that
makes this language depart from classical query languages such
as relational conjunctive queries. We focus on the class of well-
designed SPARQL queries, which has been proposed in the liter-
ature as a fragment of the language with good properties regard-
ing query evaluation. We first propose a tree representation for
SPARQL queries, called pattern trees, which captures the class of
well-designed SPARQL graph patterns and which can be consid-
ered as a query execution plan. Among other results, we propose
several transformation rules for pattern trees, a simple normal form,
and study equivalence and containment. We also study the enumer-
ation and counting problems for this class of queries.

Categories and Subject Descriptors

H.2.3 [Database Management]: Query languages

Keywords

SPARQL, RDF, Semantic Web, optimization, query containment

1. INTRODUCTION
The Semantic Web is the initiative of the World Wide Web

Consortium (W3C) to make information on the Web readable not
only by humans but also by machines. The Resource Descrip-

tion Framework (RDF) is the standard data model for the Semantic
Web, and since its release as a W3C Recommendation in 1999 [23],
the problem of managing RDF data has been in the focus of the
Semantic Web community. As a result, the language SPARQL was
proposed as a query language for RDF, and became a W3C Recom-
mendation in 2008 [31]. Since the appearance of these standards,
the Web has witnessed a constant growth in the amount of RDF
data published on-line. Moreover, the advent of huge initiatives

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’12, May 21–23, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

like Open Linked Data [6, 7] and Open Government Data [42, 43]
that use RDF as a core technology, and the use of RDF in several
diverse areas such as bio-informatics, social networks, and data in-
tegration, have increased the attention of the research community
to study RDF and SPARQL from a database perspective.

Several particular issues of RDF and SPARQL pose new and in-
teresting challenges for the database community [3]. In fact, sev-
eral research efforts have been pursued towards understanding their
fundamental properties and developing specific techniques to ef-
ficiently deal with these technologies [25, 1, 30, 40, 36, 2, 32,
27, 24, 34, 3]. Nevertheless, and despite the importance of static
query analysis, and in particular of query containment and equiva-
lence for optimization purposes, research on the static analysis of
SPARQL queries has received little attention so far (notable excep-
tions are [35, 9]). The study of static analysis considering the pe-
culiarities of SPARQL and, in particular, query optimization, con-
tainment and equivalence, constitute the main focus of this paper.

Let us briefly recall that the data model underlying RDF data is a
(directed, arc-labeled) graph. An RDF graph is composed of RDF
triples of the form (s, p, o). Regarding SPARQL, its basic construc-
tor is the triple pattern, which is essentially an RDF triple that can
have variables. The most basic fragment of the language are con-
junctions of triple patterns, realized in SPARQL by using the AND
operator (see Section 2 for a formal introduction of the language).
Thus, if one thinks of RDF graphs as sets of tuples, a triple pattern
is essentially a ternary relational atom, and basic SPARQL queries
are essentially relational conjunctive queries (CQs). In view of this
connection, the rich body of work on static analysis and query opti-
mization on relational CQs including the study of equivalence and
containment can be immediately carried over to the conjunctive
fragment of SPARQL. Moreover, most of the research focused on
statistics, indices, and storage optimization has been concentrated
on this fragment [1, 37, 40, 36, 24].

However, when one goes beyond the SPARQL conjunctive frag-
ment, the whole picture changes and the language becomes con-
siderably more complicated. Of particular interest is the optional

matching feature, which has been the focus of most of the theoret-
ical work regarding this language [2, 27, 34, 3]. The idea behind
optional matching, realized in SPARQL by the OPT operator, is to
allow information to be added if the information is available in the
data source instead of just failing to give an answer whenever some
part of the query does not match. This feature is crucial in Semantic
Web data management, where data sources are inherently incom-
plete and have only partial knowledge about the resources that they
are modeling. Recent experimental works [15, 28] show that the
use of the OPT operator in practice is substantial. For instance,
in a query log obtained from the DBPedia SPARQL endpoint [44],

after duplicate query elimination, more than 45% of the analyzed
queries use the OPT operator [28].

The importance of the OPT operator has also been recognized
from a database theory point of view. It has been shown that the
combined complexity of SPARQL query evaluation (i.e., check-
ing if some set of variable bindings is a solution) raises from
PTIME-membership for the conjunctive fragment to PSPACE-
completeness when OPT is considered [27, 34]. In [27], the class
of well-designed SPARQL graph patterns was introduced as a fun-
damental fragment of OPT queries with good behavior for query
evaluation (for a formal definition, see Section 2). In particular, it
was shown that the complexity of the evaluation problem for the
well-designed fragment is coNP-complete [27].

In this paper we embark on the static analysis of SPARQL
queries containing the OPT operator. We focus on the class of
well-designed SPARQL graph patterns mentioned above. As our
first contribution we introduce a tree representation of SPARQL
queries called SPARQL pattern trees. We also introduce a partic-
ular class of pattern trees that we call quasi well-designed pattern
trees (QWDPTs, for short), capturing the class of well-designed
SPARQL graph patterns. We further introduce a procedure to eval-
uate QWDPTs in a top-down way that resembles a top-down eval-
uation of graph patterns proposed in [25]. Our pattern trees are
reminiscent of relational query plans and thus, can be considered
as a first step towards an algebra for logical optimization of queries
in the SPARQL context, very much like the relational algebra used
in relational database systems to construct and manipulate query
plans. Notice that previous works on optimization of SPARQL
have mainly focused on rewriting queries based on properties of
particular operators [27, 34]. We propose transformation rules for
QWDPTs that work at the level of the structure of the trees (and
thus, the structure of queries). These rules are, for example, ca-
pable of eliminating several sources of redundancy in queries, and
thus, can be used for query optimization purposes.

Based on our work on the structure of pattern trees, we study the
fundamental problems of checking equivalence and containment of
SPARQL queries. It is known that full-SPARQL and First-Order
Logic have the same expressive power [2]. From this result it is not
difficult to prove that equivalence and containment for SPARQL in
general are undecidable problems. We show that the equivalence
problem for QWDPTs (and therefore, for well-designed SPARQL
graph patterns) is NP-complete. The difficult part of the proof is the
NP-membership. Recall from the relational world that equivalence
and containment are closely related to the search for homomor-
phisms. The key to our NP-membership result is an appropriate
extension of homomorphisms to QWDPTs – leading to the notion
of strong homomorphisms (for details, see Section 4) and a normal
form via the transformation rules for QWDPTs mentioned above.

For the containment of queries we consider the subsumption re-
lation [3]. As detailed above, solutions for queries containing the
OPT operator are essentially incomplete and may possibly bind
only a subset of the variables in the query [31, 27]. This naturally
leads to the notion of subsumption between solutions: a solution µ1

subsumes another solution µ2, if µ1 extends µ2 with more variable
bindings. More generally, a SPARQL query T1 subsumes another
SPARQL query T2 if, for every RDF graph G, every solution of T2

is subsumed by some solution of T1. It has been argued that sub-
sumption is a meaningful way of comparing the result of SPARQL
queries containing the OPT operator [3]. Moreover, subsumption
has also been used in the past as a meaningful way of testing con-
tainment of queries with incomplete answers over semistructured
data [21]. In principle, subsumption can also be used to test equiv-
alence. However, it is not advisable to do so since we prove that

subsumption is presumably harder than equivalence by showing the
ΠP

2 -completeness of subsumption.
As our final contribution, we study the relationship between

tractable fragments of CQ answering and tractable fragments of
well-designed SPARQL queries containing the OPT operator.
For the classical evaluation problem mentioned above, results on
tractable fragments of CQs smoothly carry over to well-designed
SPARQL graph patterns. The analysis becomes more intricate
when we study the enumeration problem (that is, actually comput-
ing the set of solutions) and the counting problem (i.e., determining
the number of solutions) of well-designed SPARQL graph patterns.
Our main result in this respect states that, for a SPARQL query in
which all its conjunctive parts (sequences of AND operators) be-
long to a tractable class of conjunctive queries, the enumeration of
solutions is feasible with polynomial delay. In contrast, the count-
ing problem remains intractable (more specifically, #P-complete)
also in the restricted case where all conjunctions of triple patterns
in a SPARQL query are acyclic CQs.

Summary of results and structure of the paper. In Section 2,
we formally introduce RDF and SPARQL. A conclusion and an
outlook to future work are given in Section 6. The main results of
the paper are detailed in the Sections 3 – 5, namely:

• Algebra of query plans. In Section 3, we present an algebra of
query plans for well-designed SPARQL graph patterns. To this end,
we introduce the data structure of quasi well-designed pattern trees
(QWDPTs). We show that they allow for a natural evaluation in a
top-down fashion of the tree. Moreover, we introduce transforma-
tion rules to modify these QWDPTs. In particular, these rules allow
us to eliminate redundancies and to define a useful normal form.

• Containment and equivalence. In Section 4, we study the funda-
mental problems of containment (in the form of subsumption) and
equivalence of well-designed SPARQL graph patterns. We estab-
lish the relationship between subsumption and equivalence and pin-
point their complexity, namely NP-completeness for equivalence,
vs. ΠP

2 -completeness for subsumption.

• Enumeration and counting. In Section 5, we study both, the
enumeration and counting problem of SPARQL queries. In par-
ticular, we investigate how tractable fragments of CQ evaluation
can be carried over to well-designed SPARQL graph patterns. We
show that tractable fragments of CQ evaluation indeed give rise to
tractable fragments of the SPARQL enumeration problem. In con-
trast, the counting problem remains intractable even if all sets of
triple patterns in the SPARQL query are restricted to acyclic CQs.

We have implemented a prototype tool based on the theoreti-
cal results presented in this paper, which is freely available on-line
from http://db.ing.puc.cl/sparql-algebra. In particular,
we have implemented the containment and equivalence tests, and
the top down evaluation of SPARQL tree patterns, with some en-
couraging initial results. We report on them in Section 6.

Related work. As we have described, our work is heavily based on
the formalization of SPARQL presented in [25, 27] and in partic-
ular on the notion of well-designed SPARQL patterns introduced
in these papers. In [27] the authors also study the complexity of
query evaluation. Schmidt et al. [34] considered several aspects
of SPARQL query optimization focused on rewriting queries based
on properties of operators [34]. Neither of these works [27, 34]
considered the complexity of equivalence and containment, nor the
search for tractable fragments for query evaluation, enumeration
and counting which are the main problems touched in this paper.
The OPT operator in SPARQL resembles a left-outer join in SQL.
Compared with the huge amount of research on static analysis of

CQs, fragments of SQL containing left-outer join have almost been
disregarded with respect to these problems with [22] being one no-
table exception. Nevertheless, to the best of our knowledge, re-
search on fundamental questions such as the complexity of query
equivalence and tractable fragments for query evaluation, has not
been carried out to date for queries containing left-outer joins.

Outside the SPARQL context, Kanza et al. [21] studied contain-
ment and equivalence for queries over a general semistructured data
model. The query language considered in [21] allows for partial
answers, nevertheless, as opposed to SPARQL, it does not allow
to explicitly state optional parts in a query, and partial answers are
generated by considering different semantics for query evaluation.
This makes our approach to partial answers, equivalence and con-
tainment, orthogonal to [21]. Gutierrez et al. [19] studied simi-
lar problems for an abstract RDF query language. The difficulties
in [19] arise from considering blank nodes and RDFS (features that
we do not consider here) but they only consider conjunctive queries
without optional parts, thus making their approach also orthogonal
to ours. Cohen et al. [11] define a polynomial delay iterator for
computing full disjunctions. Full disjunctions are designed to ob-
tain partial answers from relational sources but, in contrast to the
OPT operator in SPARQL, full disjunctions are associative and
commutative. Thus, the source of difficulties in devising an enu-
merator for full disjunctions departs from the difficulties that one
encounters when enumerating SPARQL queries. Regarding count-
ing partial answers, to the best of our knowledge, this paper is the
first one considering the complexity of this problem.

2. BASICS OF RDF AND SPARQL
In this paper we focus on ground RDF graphs, that is, RDF

graphs that do not contain blank nodes. Moreover, we do not make
an explicit distinction between URIs (uniform resource identifiers)
and Literals when defining RDF graphs, and thus we assume that
RDF graphs are composed only of URIs. Thus, let U be an infinite
set of URIs. An RDF triple is a tuple in U×U×U, and an RDF
graph (graph for short) is a finite set of RDF triples. The active do-
main of an RDF graph G, denoted by dom(G) with dom(G) ⊆ U

is the set of URIs actually appearing in G.
SPARQL [31] is the standard query language for RDF. We next

formalize its graph pattern matching facility which forms the core
of the language. Assume the existence of an infinite set V of vari-
ables (disjoint from U). We denote variables in V by using a ques-
tion mark, as with ?X . Then a SPARQL triple pattern is a tuple
t ∈ (U∪V)× (U∪V)× (U∪V). Complex graph patterns are
constructed from triple patterns by using operators AND, OPT,
UNION, and FILTER. In this paper we focus on the SPARQL
fragment composed of the operators AND and OPT. Formally,
SPARQL graph patterns are recursively defined as follows. (1) a
triple pattern is a graph pattern, and (2) if P1 and P2 are graph pat-
terns, then (P1 AND P2) and (P1 OPT P2) are graph patterns.

For a triple pattern t, we write vars(t) to denote the set of vari-
ables occurring in t, and for a graph pattern P we write vars(P)
for the set of variables that occur in the triples that compose P .

To define the semantics of SPARQL graph patterns, we follow
closely the definitions proposed in [27]. A mapping µ is a partial
function µ : V → U. The domain of µ, denoted by dom(µ),
is the set of all variables from V for which µ is defined. Given
a triple pattern t and a mapping µ such that vars(t) ⊆ dom(µ),
we denote by µ(t) the RDF triple obtained by replacing the vari-
ables in t according to µ. Given two mappings µ1 and µ2, we say
that µ1 and µ2 are compatible, denoted by µ1 ∼ µ2, if for every
?X ∈ dom(µ1)∩ dom(µ2) it holds that µ1(?X) = µ2(?X). No-
tice that, for compatible mappings µ1 and µ2, we have that µ1∪µ2

is also a mapping and is such that (µ1 ∪ µ2)(?X) is µ1(?X) if
?X ∈ dom(µ1), or µ2(?X) otherwise. Also notice that the map-
ping with empty domain, denoted by µ∅ is compatible with any
mapping. Before defining the semantics of SPARQL graph pat-
terns, we define some operations between sets of mappings that re-
semble relational operators over sets of tuples. Let M1 and M2 be
sets of mappings. We define the join and the left-outer join between
M1 and M2 as follows:

M1 ✶ M2 = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1 ∼ µ2}

M1 M2 = (M1 ✶ M2) ∪ {µ ∈ M1 | ∀µ′ ∈ M2 : µ 6∼ µ′}

We now have all the necessary prerequisites to formalize the evalu-
ation of a SPARQL graph pattern over an RDF graph G as a func-
tion J · KG that given a pattern returns a set of mappings. Formally,
JP KG is defined recursively as follows [27]:

1. If P is a triple pattern t, then JP KG = {µ | dom(µ) =
vars(t) and µ(t) ∈ G}.

2. If P = (P1 AND P2), then JP KG = JP1KG ✶ JP2KG.

3. If P = (P1 OPT P2), then JP KG = JP1KG JP2KG.

We say that two patterns P1 and P2 are equivalent, denoted by
P1 ≡ P2, if for every RDF graph G, it holds that JP1KG = JP2KG.
Notice that mappings explicitly refer to the variable names. Hence,
unlike for conjunctive queries (CQs), the actual names of the vari-
ables matter, since two graph patterns containing different sets of
variables can never be equivalent. In [27] the authors show sev-
eral algebraic properties for graph patterns. In particular they show
that AND is commutative and associative which allows us to drop
parentheses from sequences of AND operators.

Note that we described the set-semantics of SPARQL, while the
W3C Recommendation defines a bag-semantics for query answer-
ing [31]. Nevertheless, for the fragment considered in this paper
(allowing only for AND and OPT) both semantics coincide [26].
We thus have only formalized the set-semantics of the language.

Example 2.1 (From [27]) Consider an RDF graph G storing in-

formation about professors in a university with the following

triples, and the pattern P1:

(R1, name, paul), (R1, phone, 777-3426),

(R2, name, john), (R2, email, john@acd.edu),

(R3, name, george), (R3, webPage, www.george.edu),

(R4, name, ringo), (R4, email, ringo@acd.edu),

(R4, webPage, www.starr.edu), (R4, phone, 888-4537)

P1 =
((

(?A, name, ?N) OPT (?A, email, ?E)
)

OPT (?A,webPage, ?W)
)

If we evaluate P1 over G, then intuitively we are retrieving the

name of the resources in G and, optionally, for the resources that

have an email we retrieve the email, and, optionally, for the re-

sources that have a Web page we retrieve the Web page. When

evaluating P1 over G we obtain the set of mappings JP1KG =
{µ1, µ2, µ3, µ4} where

µ1 = {?A → R1, ?N → paul},
µ2 = {?A → R2, ?N → john, ?E → john@acd.edu},
µ3 = {?A → R3, ?N → george, ?W → www.george.edu},
µ4 = {?A → R4, ?N → ringo, ?E → ringo@acd.edu,

?W → www.starr.edu}.

Also, consider now pattern P2 given by the following expression:

P2 =
(

(?A, name, ?N) OPT
(

(?A, email, ?E) OPT (?A,webPage, ?W)
))

In this case the evaluation of P2 over G is the set of mappings

JP2KG = {µ1, µ2, µ3, µ4} where

µ1 = {?A → R1, ?N → paul},

µ2 = {?A → R2, ?N → john, ?E → john@acd.edu},
µ3 = {?A → R3, ?N → george},
µ4 = {?A → R4, ?N → ringo, ?E → ringo@acd.edu,

?W → www.starr.edu}.

Notice that we obtain no information for the Web page of george,

since in P2 that information is retrieved only for the resources that

have an email (and george does not have an email address in G).

Well-designed graph patterns. An important class of SPARQL
graph patterns identified in [27], that also plays a central role in this
paper, is the class of well-designed graph patterns. A pattern P is
well-designed if for every subpattern P ′ = (P1 OPT P2) of P
and every variable ?X occurring in P , it holds that: if ?X occurs
inside P2 and outside P ′, then ?X also occurs inside P1.

Notice that patterns P1 and P2 in Example 2.1 are well-designed.
In [27] the authors studied several properties of well-designed pat-
terns. Among others, they showed that the complexity of the eval-
uation problem is lower for well-designed patterns compared with
the general language. Moreover, they suggested that well-designed
patterns are suitable for optimization procedures, proposing a set of
rewriting rules. In this paper we go an important step further in this
direction by proposing an algebra of query plans for well-designed
SPARQL graph patterns by introducing an appropriate data struc-
ture (so-called pattern trees) and equivalence-preserving transfor-
mation rules.

3. PATTERN TREES AND QUERY PLANS
In this section we propose a novel representation of SPARQL

graph patterns based on trees, together with an evaluation method
for these trees. This tree representation of patterns plays a central
role when we study optimization, query equivalence and contain-
ment, and also tractable fragments of SPARQL queries.

As usual, we define a rooted tree as a tuple T = (V,E, r). We
further assume trees to be undirected and unordered. Using this
terminology, we can now define our tree representation of SPARQL
graph patterns.

Definition 3.1 (Pattern Tree) A pattern tree T is a pair T =
(T,P), where T = (V,E, r) is a rooted tree, and P =

(

Pn

)

n∈V

is a labeling of the nodes of T such that Pn is a nonempty set of

triple patterns, for every n ∈ V .

Given a pattern tree T = ((V,E, r), (Pn)n∈V) and a node
n ∈ V , a subtree of T rooted at n is a pattern tree composed of
n and a connected subset of its descendants. Moreover, the com-

plete subtree of T rooted at n, that we usually denote by Tn, is
the pattern tree composed of n and all its descendants. We further
denote by vars(Pn) the set of variables that occur in the triples of
Pn, and by vars(T) the set

⋃

n∈V
vars(Pn). For pattern trees, we

usually depict the tree structure with the corresponding labels in
every node, as in the following example.

Example 3.2 The following are pattern trees that intuitively cor-

respond to the queries introduced in Example 2.1.

T1: {(?A, name, ?N)}

{(?A, email, ?E)} {(?A,webPage, ?W)}

T2: {(?A, name, ?N)}

{(?A, email, ?E)}

{(?A,webPage, ?W)}

Next, we give a meaning to pattern trees by transforming pattern
trees into SPARQL graph patterns. Towards this goal, we need the

following definition of a transformation function TR(·, ·, ·). Con-
sider a pattern tree T = ((V,E, r),P) and a set Σ of functions
{σn | n ∈ V } such that for every n ∈ V , function σn defines an
ordering on the children of n. That is, if n has k children, then σn

is a function from {1, . . . , k} to the set of children of n, such that
σn(1) is the first child in the order, σn(2) is the second one, and
so on. We need a last definition before presenting the transforma-
tion. Given a set P = {t1, . . . , tℓ} of triple patterns, we denote
by and(P) the graph pattern (t1 AND t2 AND · · · AND tℓ).
For T and n ∈ V , we are now ready to define the transformation
TR(T , n,Σ) of Tn, the complete subtree of T rooted at n, given
the order Σ. Assume that n has k children in T , then TR(T , n,Σ)
is defined as the graph pattern expression

(

· · ·
((

and(Pn) OPT TR(T , σn(1),Σ)
)

OPT TR(T , σn(2),Σ)
)

· · · OPT TR(T , σn(k),Σ)
)

,

and if n has no children, then TR(T , n,Σ) = and(Pn). Finally,
given a pattern tree T = ((V,E, r),P) and an ordering Σ for T ,
we define TR(T ,Σ) as TR(T , r,Σ).

Example 3.3 Consider the tree T1 in Example 3.2, and let Σ be

the order induced by the picture in the example. Then TR(T1,Σ) is

pattern P1 in Example 2.1.

3.1 Semantics of well-designed pattern trees
We have established a syntactic relationship between pattern

trees and SPARQL graph patterns. We now want to establish a
semantic relationship between these representations. In particu-
lar, we are interested in defining the evaluation of a pattern tree
over an RDF graph. Notice that several (different) SPARQL pat-
terns can be obtained from a pattern tree depending on the ordering
functions used in the transformation. Thus, we cannot directly de-
fine the evaluation of a pattern tree T by using the evaluation of
an arbitrary transformation of T . In this section we introduce a
well-designedness condition for pattern trees that will be crucial
in defining a semantics for pattern trees. In particular it will al-
low us to choose an arbitrary transformation of a pattern tree in
order to evaluate it. We begin with the definition of the the well-
designedness condition for pattern trees.

Definition 3.4 A pattern tree T = ((V,E, r),P) is well-designed
if for every variable ?X occurring in T , the set {n ∈ V |?X ∈
vars(Pn)} induces a connected subgraph of T .

Example 3.5 The pattern trees in Example 3.2 are well-designed,
while the following pattern trees are not:

{(?A, name, ?N)}

{(?A, email, ?I)} {(?A,webPage, ?I)}

{(?A, name, ?N)}

{(?B, email, ?E)}

{(?A,webPage, ?W)}

Variable ?I in the tree on the left, and variable ?A in the tree on

the right, induce disconnected subgraphs.

As expected, this well-designedness condition over trees is tightly
connected to the well-designedness condition for graph patterns. In
particular, the following holds.

Proposition 3.6 Let T be a well-designed pattern tree, and Σ an

arbitrary set of ordering functions for T . Then TR(T ,Σ) is a well-

designed graph pattern.

Before defining the semantics, we introduce a relaxation of well-
designedness that plays a fundamental role in our study.

Definition 3.7 A pattern tree T = ((V,E, r), (Pn)n∈V) is a quasi
well-designed pattern tree (QWDPT for short) if for every pair of

nodes u, v ∈ V and each variable ?X ∈ vars(Pu) ∩ vars(Pv)
there exists a node n that is a common ancestor of u and v in T ,

such that ?X ∈ vars(Pn).

The pattern tree on the right in Example 3.5 is a QWDPT,
while the pattern on the left is not (notice that the common an-
cestor of u and v in Definition 3.7 may be u or v, as in Exam-
ple 3.5). Another notion that we need to introduce is that of du-

plicating triples to children. Formally, we say that a pattern tree
T ′ = ((V ′, E′, r′), (P ′

n)n∈V ′) was derived from a pattern tree
T = ((V,E, r), (Pn)n∈V) by duplicating a triple to a child, de-
noted by T →֒ T ′, if (V ′, E′, r′) = (V,E, r) (that is, the under-
lying trees are the same), and there exist a node u ∈ V , a triple
t ∈ Pu, and a child v of u, such that P ′

v = Pv ∪{t}, and Pn = P ′
n

for all n 6= v. We denote by →֒∗ the reflexive and transitive clo-
sure of →֒, that is, T →֒∗ T ′ if T = T ′ or there exists a sequence
T1 →֒ T2 →֒ . . . →֒ Tm with T1 = T and Tm = T ′. It is easy to
observe that every QWDPT can be converted into a well-designed
pattern tree by duplicating triples along branches. Formally, for ev-
ery QWDPT T , there exists a well-designed pattern tree T ′ such
that T →֒∗ T ′. It is also easy to observe that the (quasi) well-
designed property is invariant under →֒∗. We now have all the nec-
essary ingredients to define a semantics of pattern trees. We first
define the set of SPARQL graph patterns defined by a QWDPT.

Definition 3.8 Let T be a QWDPT. The set of SPARQL graph pat-

terns defined by T is

SEM(T) = {TR(T ′,Σ) | Σ is an ordering for T ′,

T →֒∗ T ′
and T ′

is well-designed}.

To define the result of evaluating a QWDPT T over an RDF
graph G, we first show that all queries in SEM(T) are equivalent.
Using this property, we then define the evaluation of T to be exactly
the same as that of an arbitrarily chosen query from SEM(T).

Lemma 3.9 Let T be a well-designed pattern tree, let Σ1, Σ2 be

two arbitrary orderings for T , and let P1 = TR(T ,Σ1) and P2 =
TR(T ,Σ2) be the graph patterns obtained by transforming T with

Σ1 and Σ2, respectively. Then P1 ≡ P2.

Lemma 3.10 Let T be a QWDPT, let Σ be an ordering for T , and

let T1 and T2 be well-designed pattern trees such that T →֒∗ T1

and T →֒∗ T2. If P1 = TR(T1,Σ) and P2 = TR(T2,Σ), then

P1 ≡ P2.

Putting these two lemmas together, we get the following result.

Theorem 3.11 Let T be a QWDPT. Then all graph patterns in

SEM(T) are equivalent, i.e., for any two graph patterns P1, P2 ∈
SEM(T), it holds that P1 ≡ P2.

Definition 3.12 Let T be a QWDPT and G an RDF graph. Then

the evaluation of T over G, denoted by JT KG, is defined as the set

of mappings JP KG for an arbitrary P ∈ SEM(T).

By Theorem 3.11, the semantics of a QWDPT according to Defini-
tion 3.12 is well defined. This means that, for QWDPT T , we may
choose any representative from SEM(T) for evaluation. In partic-
ular, if T is already well-designed, we may simply fix the order of
the child nodes of each node and evaluate this SPARQL pattern.

Given two QWDPTs T1 and T2, we say that T1 and T2 are equiv-
alent, denoted by T1 ≡ T2, if for every RDF graph G it holds

that JT1KG = JT2KG. Similarly, a QWDPT T is equivalent to a
SPARQL graph pattern P , denoted by T ≡ P , if for every RDF
graph G it holds that JT KG = JP KG. Notice that Definition 3.12
plus Proposition 3.6 imply that for every QWDPT T there exists a
well-designed graph pattern P such that T ≡ P . The last result of
this section states that the opposite also holds, and thus, QWDPTs
can represent the entire class of well-designed SPARQL graph pat-
terns.

Proposition 3.13 For every well-designed graph pattern P , there

exists a QWDPT T such that P ≡ T . Moreover, given a well-

designed graph pattern, an equivalent QWDPT can be constructed

in polynomial time.

3.2 Evaluating pattern trees
In this section we introduce a procedural semantics for QWDPTs

that takes advantage of our tree representation. In [25] the authors
proposed a top-down evaluation method for SPARQL graph pat-
terns and they showed that given a graph G, it is equivalent to the
evaluation given by J·KG. Our proposal is similar to the approach
in [25], but it is based on an alternative characterization of the eval-
uation of well-designed graph patterns proposed in [27]. We re-
formulate here this characterization for the case of pattern trees. It
will later play an important role when we study transformations of
pattern trees as well as containment and equivalence testing. We
first introduce the necessary terminology.

We say that a mapping µ1 is subsumed by µ2, denoted by
µ1 ⊑ µ2, if dom(µ1)∩dom(µ2) = dom(µ1) and for every ?X ∈
dom(µ1) it holds that µ1(?X) = µ2(?X) (implying that µ1 ∼
µ2). We write µ1 ❁ µ2 whenever µ1 ⊑ µ2 and µ1 6= µ2. Further,
recall that given a set P = {t1, . . . , tℓ} of triple patterns, we denote
by and(P) the graph pattern (t1 AND t2 AND · · · AND tℓ).
Now given a pattern tree T = ((V,E, r), (Pn)n∈V), we use
and(T) to denote the SPARQL pattern constructed by taking the
conjunction (AND) of all the triples that occur in T . That is, if
V = {n1, . . . , nℓ}, then

and(T) =
(

and(Pn1
) AND · · · AND and(Pnℓ

)
)

.

We next characterize the evaluation of a QWDPT. It follows di-
rectly from the results in [27] for well-designed graph patterns, and
the relationship with QWDPTs shown in the previous section.

Lemma 3.14 Let T be a QWDPT with root r, and G an RDF

graph. A mapping µ is in JT KG if and only if

1. µ ∈ Jand(T ′)KG for a subtree T ′ of T rooted at r, and

2. there are no mapping ν and subtree T ′′ of T rooted at r,

such that µ ❁ ν and ν ∈ Jand(T ′′)KG.

Lemma 3.14 essentially states that the mappings in the evalua-
tion of a QWDPT over some graph G are exactly those that map all
triples in some subtree T ′ of T (hence and(T ′)) into G, and that
cannot be further extended by considering another subtree T ′′ of
T . This characterization inspires the following procedural seman-
tics that is obtained by evaluating the pattern tree by a top-down
traversal. For simplicity, given a label Pn of node n and a graph G,
we denote by JPnKG the set Jand(Pn)KG.

Definition 3.15 Consider an RDF graph G, a QWDPT T =
((V,E, r), (Pn)n∈V), and a set M of mappings. For n ∈ V ,

we define the evaluation of Tn (the complete subtree of T rooted at

n) given M over G, denoted by ext(M,n,G) as follows. If n is a

leaf, then

ext(M,n,G) = M ✶ JPnKG,

and, otherwise, if n1, . . . , nk are the child nodes of n, then

ext(M,n,G) = M1 ✶ M2 ✶ · · · ✶ Mk,

where Mi = (M ✶ JPnKG) ext(M ✶ JPnKG, ni, G). We

define the top-down evaluation of T over G, denoted by JT KtdG , as

JT KtdG = ext({µ∅}, r, G),

where µ∅ is the mapping with the empty domain.

The following theorem shows that the top-down evaluation de-
fined above coincides with the semantics of pattern trees introduced
in the previous section.

Theorem 3.16 Let T be a QWDPT and G an RDF graph. Then

JT KG = JT Ktd
G.

Recall that in Definition 3.12 we defined the semantics of
QWDPTs by their extensions to well-designed SPARQL patterns.
Theorem 3.16 now allows us to define the semantics of QWDPTs
directly via their tree representation. This nicely supports the
idea of using QWDPTs as query execution plans for well-designed
SPARQL query patterns: they provide a syntactical representation
of a query together with an operational semantics working on this
representation. In these terms, the relaxation from well-designed
pattern trees to QWDPTs provides additional potential for opti-
mization and redundancy elimination for those query plans.

3.3 Transformation of QWDPTs
One advantage of QWDPTs is that they allow us to define sev-

eral equivalence-preserving transformations on the structure of the
pattern trees. Previous works [27, 34] on transformation rules
for SPARQL patterns have been based on the properties of the
SPARQL operators. In contrast, the transformations that we intro-
duce in this section are based on the tree structure of QWDPTs (i.e.
the operator structure) and the structure of the sets of triple pat-
terns composing the pattern tree. These structural transformations
provide further evidence that pattern trees are a suitable query-
plan representation for SPARQL in the spirit of classical relational-
algebra query plans.

Before presenting our rules, we need to introduce some addi-
tional notation. Let T = ((V,E, r),P) be a pattern tree, and
n a node in V . We define the branch of n in T , denoted by
branch(n, T), as the unique path from r to n, given as the se-
quence of nodes n1, . . . , nk with n1 = r and nk = n. If it is clear
from the context, we may drop the name of the pattern tree and sim-
ply write branch(n). We denote by Pbranch(n,T) the set of triple
patterns

⋃k

i=1 Pni
. Given two sets P1 and P2 of triple patterns, a

homomorphism h from P1 into P2, written h : P1 → P2, is a map-
ping h : vars(P1) → U × V s.t. for all triple patterns t ∈ P1 it
holds that h(t) ∈ P2, where h(t) denotes the triple obtained from
t by replacing all variables ?X ∈ vars(t) by h(?X) and leaving
URIs unchanged. It is further convenient to introduce the following
notation to speak about variables occurring in some Pn.

Definition 3.17 Let T = ((V,E, r),P) be a pattern tree and

n, n̂ ∈ V s.t. n̂ is the parent node of n. Then the new variables
at n are defined as newvars(n) = vars(Pn) \ vars(Pbranch(n̂)).
For the case of the root r, we define newvars(r) as vars(Pr).

We are now ready to state a set of transformation rules for
QWDPTs. In the formulation of the rules we assume that when-
ever we remove a node n from a pattern tree, then all edges inci-
dent to n are removed as well. We further assume a fixed QWDPT
T = ((V,E, r), (Pn)n∈V) to be the pattern tree before the applica-
tion, and we consider T ′ = ((V ′, E′, r′), (P ′

n)n∈V ′) as the result-

ing QWDPT after applying the rule. If P ′
n is not defined explicitly

for some n ∈ V ′, we always consider P ′
n = Pn by “default”.

Rule R1 (deletion of redundant triples): Let n ∈ V . If there
exists a triple t ∈ Pn s.t. t ∈ Pn′ for some ancestor n′ of n, then
delete t from Pn, i.e. P ′

n = Pn \{t}. If P ′
n = ∅, delete n and turn

its child nodes into children of the parent of n.

Rule R2 (deletion of unproductive nodes): Let n, n̂ ∈ V s.t. n̂ is
the parent of n, and let n1, . . . , nk ∈ V be the children of n. If
newvars(n) = ∅, then merge n into each of its children and make
each ni a child of n̂. I.e. let P ′

ni
= Pni

∪ Pn for i = {1, . . . , k},
V ′ = V \ {n}, and E′ = (E \ {(n̂, n), (n, n1), . . . , (n, nk)}) ∪
{(n̂, n1), . . . , (n̂, nk)}. If n has no child node, then applying this
rule is equivalent to deleting n.

Rule R3 (homomorphism upwards): Let n, n̂ ∈ V be nodes
s.t. n̂ is the parent of n, and let n1, . . . , nk ∈ V be the children
of n. If there exists a homomorphism h : Pn → Pbranch(n̂) with
h(?X) =?X for all variables ?X ∈ vars(Pn)∩vars(Pbranch(n̂)),
then merge n into n̂, i.e. let P ′

n̂ = Pn̂ ∪ Pn, V ′ = V \ {n}
(remove n) and E′ = (E \ {(n̂, n), (n, n1), . . . , (n, nk)}) ∪
{(n̂, n1), . . . , (n̂, nk)} (turn n’s child nodes into children of n̂).

Rule R4 (parallelization): Consider nodes n̂, n, n′ ∈ V s.t. n̂
is the parent of n, and n is the parent of n′. If there exists a
homomorphism h : Pn → Pn′ ∪Pbranch(n̂) with h(?X) =?X for
all variables ?X ∈ vars(Pn)∩vars(Pbranch(n̂)), then turn n′ from
a child of n into a child of n̂, if the resulting pattern tree is quasi
well-designed. I.e. V ′ = V , E = (E \ {(n, n′)}) ∪ {(n̂, n′)}, if
T ′ is still quasi well-designed.

The following result shows the correctness of the rules.

Theorem 3.18 Let T be a QWDPT and T ′ the pattern tree that

results from applying either rule R1, or R2, or R3, or R4, to T .

Then T ′ is a QWDPT such that T ≡ T ′.

We say that a QWDPT T is reduced w.r.t. to some rule R, if R
cannot be applied to T . While checking if some QWDPT T is
reduced w.r.t. R3 or R4 is an expensive task (it requires to decide the
existence of some homomorphisms), it is rather easy to determine
if T is reduced w.r.t. R1 or R2. Moreover, already if T is reduced
only w.r.t. R1 and R2, it possesses some useful properties that make
it easier to work with – and reason about – T . We thus introduce a
first normal form for QWDPTs based on these two rules.

Definition 3.19 We say that a QWDPT T is in non-redundant nor-
mal form (NR normal form) if T is reduced w.r.t. rules R1 and R2.

Next, we discuss some properties of the NR normal form.

Proposition 3.20 Let T be a QWDPT. Then the following hold:

1. Iteratively applying rules R1 and R2 (in arbitrary order) to

T leads to a unique pattern tree T ∗ in NR normal form.

2. If T is in NR normal form then it remains in NR normal form

when applying rules R3 or R4 to T .

The crucial property of the NR normal form is the following. Let
T = ((V,E, r),P) be a QWDPT in NR normal form. Then for
every n ∈ V s.t. n 6= r, it holds that newvars(n) 6= ∅. This simple
property, which follows directly from the definition of rule R2, al-
lows us to define an alternative characterization of the solutions of
QWDPTs in terms of maximal subtrees. In the characterization we
use the following notation. Given a mapping µ and a set of map-
pings M , we say that M subsumes µ, denoted by µ ⊑ M if there
exists a mapping ν ∈ M such that µ ⊑ ν.

Lemma 3.21 Let T be a QWDPT in NR normal form with root r,

and G an RDF graph. Then µ ∈ JT KG if and only if there exists a

subtree T ′ of T rooted at r such that

1. dom(µ) = vars(T ′), and

2. T ′ is the maximal subtree of T such that µ ⊑ Jand(T ′)KG.

Notice that as opposed to Lemma 3.14 that characterizes the map-
pings in the evaluation of a QWDPT as the maximal (w.r.t. ⊑) map-
pings satisfying some property, Lemma 3.21 takes advantage of the
NR normal form to characterize mappings in terms of the structure
of a QWDPT, in particular, in terms of maximal subtrees.

The NR normal form provides a “cheap” elimination of some re-
dundancies. As such it will be an integral part of the equivalence
test for QWDPTs in Section 4.2. But also rule R3, which can re-
duce some more complex sources of redundancy in the structure of
trees, will play an important role in the equivalence test. We thus
introduce another normal form.

Definition 3.22 Let T be a QWDPT. We say that T is in R3 normal
form if T is reduced w.r.t. rules R1, R2, and R3.

One intuition of the R3 normal form is that given some QWDPT
((V,E, r),P) in this normal form, for every n ∈ V with par-
ent n̂, there exists at least one RDF graph G and mapping µ with
µ(Pbranch(n̂)) ⊆ G that cannot be extended to a mapping µ′ s.t.
µ′(Pn) ⊆ G. I.e. from the fact that some variable assignment
maps Pbranch(n̂) into G, we cannot derive any statement about Pn.
This intuitively implies that every node in the tree carries some in-
formation which is non-redundant with respect to its ancestors. We
next discuss some basic properties of the R3 normal form.

Proposition 3.23 Let T be a QWDPT. Then the following hold:

1. Iteratively applying R1, R2, and R3 to T eventually leads to

a (not necessarily unique) pattern T ∗ that is in R3 normal

form. Moreover, if T is in NR-normal form, then iteratively

applying R3 leads to a unique pattern T ∗ in R3 normal form.

2. The number of rule applications of R1, R2, and R3 needed to

arrive at a pattern in R3 normal form is linear in the size of

T .

We have proposed a tree representation of SPARQL queries and
a set of rules that can be used to restructure these trees. We can con-
sider these trees as query plans for SPARQL queries. The results
presented in this section therefore describe a starting point for the
study of an algebra of query plans, which forms the basis of query
optimization for this language. QWDPTs together with rules R1 –
R3 will also be crucial for studying classical static analysis prob-
lems for SPARQL in the next section. Rule R4 has been mainly
presented so as to give a flavor of what further transformation rules
in this algebra could look like. It may be beneficial in particular in
an environment where parallel processing is supported.

4. CONTAINMENT AND EQUIVALENCE
In this section we study the fundamental problems of contain-

ment and equivalence of well-designed SPARQL queries. Simi-
larly to query languages on relational databases, these problems
are crucial for query optimization. For containment we consider
the subsumption relation (⊑) introduced in Section 3.2 rather than
the classical subset relation (⊆). Clearly, for CQs, the two notions
coincide. However, in the presence of partial query answers, sub-
sumption is the more natural notion of containment [21, 3], and has
also been considered in recent work to compare the evaluation of
two patterns containing OPT operators [27, 3]. This is illustrated
in the following example (taken from [3]).

Example 4.1 (From [3]) Consider two SPARQL graph patterns

P1 = (?X,n, ?Y) and P2 = (?X,n, ?Y) OPT (?X, e, ?Z), and

an RDF graph G = {(a, n, b), (a, e, c)}. Then JP1KG = {µ =
{?X → a, ?Y → b}}, while JP2KG = {µ′ = {?X → a, ?Y →
b, ?Z → c}}. Hence P1 6⊆ P2. This is, however, unintuitive, since

the answer to P2 contains strictly more information than that to P1,

and it is easy to see that for no graph G, pattern P2 returns fewer

bindings than P1.

For CQs without existentially quantified variables, both equiv-
alence and containment are tractable. In the presence of exis-
tential quantifiers, they are classical NP-complete problems [8].
In this paper, we study equivalence and containment for well-
designed SPARQL queries, or, equivalently, for our representation
by quasi well-designed pattern trees (QWDPTs). In contrast to
CQs, the complexities of containment (in the form of subsump-
tion) and equivalence diverge in this case. Indeed, we prove that
subsumption between QWDPTs is ΠP

2 -complete while the equiv-
alence problem is NP-complete. The NP-membership will be the
most difficult part to prove. The key to this NP-membership result
is the R3-normal form introduced in the previous section and an
appropriate extension of homomorphisms, which we shall refer to
as “strong homomorphisms”.

4.1 Complexity of subsumption
We extend the definition of subsumption of mappings introduced

in Section 3.2, to subsumption of sets of mappings. Given sets of
mappings M1 and M2 we say that M1 is subsumed by M2, denoted
by M1 ⊑ M2, if for every µ1 ∈ M1 there exists a µ2 ∈ M2 such
that µ1 ⊑ µ2. Further, for two QWDPTs T1 and T2, we say that T1

is subsumed by T2, denoted by T1 ⊑ T2, if JT1KG ⊑ JT2KG holds
for every graph G. We are now ready to provide a necessary and
sufficient condition to test whether T1 ⊑ T2.

Lemma 4.2 Consider QWDPTs T1 and T2 with roots r1 and r2,

respectively. Then T1 ⊑ T2 if and only if for every subtree T ′
1 of T1

rooted at r1, there exists a subtree T ′
2 of T2 rooted at r2 s.t.:

1. vars(T ′
1) ⊆ vars(T ′

2), and

2. there exists a homomorphism from the triples in T ′
2 to the

triples in T ′
1 that is the identity over vars(T ′

1).

Lemma 4.2 yields a straightforward ΠP
2 procedure to check

whether T1 ⊑ T2 holds: check for every subtree T ′
1 of T1 that there

exists a subtree T ′
2 of T2 and a homomorphism satisfying properties

(1) and (2). Below, we also show the matching lower bound.

Theorem 4.3 The subsumption problem of QWDPTs (and, there-

fore, of well-designed SPARQL graph patterns) is ΠP
2 -complete.

PROOF IDEA. The membership was argued above. The hard-
ness is shown by reduction from the well-known ΠP

2 -hard problem
3-QSAT∀,2. Given an arbitrary instance of this problem by a quan-
tified Boolean formula Ψ = ∀~x ∃~y φ(~x, ~y) where φ is in 3-CNF,
we define two QWDPTs T1 and T2, s.t. T1 ⊑ T2 iff Ψ is valid. The
QWDPT T2 consists of the root only and contains a variable ?Xi

and ?Yj for every variable xi in ~x resp. yj in ~y. Moreover, T2 con-
tains triple patterns which “encode” the clauses in φ. The QWDPT
T1 consists of the root plus one child node ni for every variable xi

in ~x. Recall from Lemma 3.14 the correspondence between map-
pings µ1 in JT1KG (for a some RDF graph G) and subtrees of T1.
Now every µ1 ∈ JT1KG corresponds to some subtree T ′

1 of T1 con-
taining a particular subset of the child nodes ni of the root of T1.
Moreover, every such µ1 requires a particular binding of the vari-
ables ?Xi in T2 and thus defines a particular truth assignment I on
~x (with I(xi) = true iff µ1(Pni

) ⊆ G). Then µ1 can be extended

to a mapping µ2 in JT1KG if all triple patterns in T2 can be sent to
G by an appropriate instantiation of the variables ?Yj . Again the
variable bindings of the variables ?Yj are in 1-to-1 correspondence
with truth value assignments to the variables yj in ~y. Moreover,
sending the triple patterns in T2 (which encode the clauses of φ)
into G comes down to satisfying the clauses in φ.

Our next result establishes the close connection between sub-
sumption and equivalence of well-designed SPARQL queries.

Lemma 4.4 Let T1 and T2 be two QWDPTs. Then T1 ≡ T2 if and

only if T1 ⊑ T2 and T2 ⊑ T1.

From Theorem 4.3 and Lemma 4.4 we obtain that equivalence of
well-designed SPARQL queries can be tested in ΠP

2 . However, in
the next section we provide a better upper-bound, namely NP.

4.2 Complexity of equivalence
We now prove that testing the equivalence of two QWDPTs (and,

thus of two well-designed SPARQL queries) is NP-complete. The
difficult part is the NP-membership. A key concept for this proof
is the notion of a strong homomorphism between two branches of
one or two pattern trees. Based on this concept, we introduce the
notion of strongly homomorphically equivalent branches.

Definition 4.5 (strong homomorphism) Consider two QWDPTs

T1 = ((V1, E1, r1),P1) and T2 = ((V2, E2, r2),P2). Moreover,

let n1 ∈ V1, n2 ∈ V2, and let branch(n1, T1) be the sequence of

nodes r1 = n1, . . . , nk = n1.

We say that there exists a strong homomorphism
H : branch(n1, T1) → branch(n2, T2) if H is a set H =
{hi | 1 ≤ i ≤ k} of homomorphisms hi : Pni → Pbranch(n2,T2) ∪
Pbranch(ni−1,T1)

s.t. hi(?X) =?X for all ?X ∈ vars(Pni) ∩
vars(Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)

) (where for i = 1 let

Pbranch(ni−1,T1)
= ∅).

We further say that branch(n1, T1) and branch(n2, T2) are

strongly homomorphically equivalent if there exist strong ho-

momorphisms H1 : branch(n1, T1) → branch(n2, T2) and

H2 : branch(n2, T2) → branch(n1, T1).

The basic intuition of a strong homomorphism H : branch(n1)
→ branch(n2) is that every variable assignment µ that maps
Pbranch(n2) into some RDF graph G can be extended to a variable
assignment µ′ that also maps Pbranch(n1) into G. Note that a sim-
ple homomorphism h : Pbranch(n1) → Pbranch(n2) is not enough
to guarantee this, as can be seen in the following example.

Example 4.6 Consider the following QWDPTs T1 and T2:

n1 : {(?V, c, ?V)}

n2 : {(?Y1, a, ?Y2),
(?X1, a, ?Z)}

n3 : {(?Y3, a, ?Y4),
(?X1, b, ?X1)}

n′
1 : {(?V, c, ?V)}

n′
2 : {(?Y1, a, ?Y2)}

n′
3 : {(?Y3, a, ?Y4),
(?Y1, b, ?Y1)}

n′
4 : {(?X1, a, ?Z)}

Consider the branches branch(n3, T1) and branch(n′
3, T2). It is

easy to see that there exists a homomorphism h : Pbranch(n3,T1) →
Pbranch(n′

3
,T2), that is the identity on all shared variables ?Y1,

?Y2, ?Y3, ?Y4, ?V , and with h(?X1) = ?Y1 and h(?Z) =
?Y2. However, there does not exist a strong homomorphism

H : Pbranch(n3,T1) → Pbranch(n′

3
,T2) because a homomorphism

h3 : Pn3
→ Pbranch(n′

3
,T2)∪Pbranch(n2,T1) with the desired prop-

erties according to Definition 4.5 is missing.

Now consider the RDF graph G = {(v, c, v), (y1, a, y2),
(x1, a, z), (y3, a, y4), (y1, b, y1)}, and some variable assignment

τ that is defined only on variables in branch(n′
3, T2). If τ maps

branch(n′
3, T2) into G, then because of the homomorphism h there

exists and extension τ ′ of τ that also maps branch(n3, T1) into G.

However, if we consider variable mappings that assign a value

to variables not occurring in branch(n′
3, T2) (which will be neces-

sary in order to test equivalence), then simple homomorphisms are

not enough. This is especially true if the additional variables occur

somewhere in the branch of n3. Consider µ : {?V → v, ?Z →
z} ∪ {?Yi → yi | 1 ≤ i ≤ 4} ∪ {?X1 → x1}, for which

µ(Pbranch(n′

3
,T2)) ⊆ G holds. But µ(Pbranch(n3,T1)) * G: be-

cause of µ(?X1) = x1, the triple (?X1, b, ?X1) is mapped to

(x1, b, x1) by µ, but (x1, b, x1) /∈ G. Hence, despite the existence

of h and µ(branch(n′
3, T2)) ⊆ G, µ is not a solution to T1.

Note that if we replace the pattern (?X1, b, ?X1) in n3

by (?Y1, b, ?Y1), then there exists a strong homomorphism

H : Pbranch(n3,T1) → Pbranch(n′

3
,T2). Actually, T1 and T2 can

then be shown to be equivalent.

Consider nodes n1 and n2 as in Definition 4.5. Intuitively, the rea-
son why a simple homomorphism is not enough is that there may
be RDF graphs G and variable assignments µ that not only map
all triple patterns in branch(n2) into G, but also the triple pat-
terns contained in some “prefix” of branch(n1). Hence to extend
such variable assignments to the complete branch branch(n1), the
existing variable assignments on the variables in this “prefix” of
branch(n1) must not be altered. This idea, which will be crucial
for our NP equivalence test, is formalized in the following lemma.

Lemma 4.7 Consider two QWDPTs T1 = ((V1, E1, r1),P1) and

T2 = ((V2, E2, r2),P2), and let n1 ∈ V1 and n2 ∈ V2 with

branch(n1, T1) = n1, . . . , nk. Then the following statements are

equivalent:

1. There exists a strong homomorphism H : branch(n1, T1)→
branch(n2, T2).

2. For every i ∈ {1, . . . , k}, for every RDF graph G and ev-

ery mapping µ : vars(Pbranch(n2,T2)∪Pbranch(ni−1,T1)
) →

dom(G) the following holds:

If µ(Pbranch(n2,T2) ∪ Pbranch(ni−1,T1)
) ⊆ G, then there ex-

ists a mapping µ′ : vars(Pbranch(n1,T1)) → dom(G) s.t.

µ′(Pbranch(n1,T1)) ⊆ G and µ(?X) = µ′(?X) for all ?X ∈
dom(µ)∩dom(µ′) (where for i = 1, let Pbranch(ni−1) = ∅).

If n1 and n2 are from the same pattern tree, we can show a
slightly stronger result below, namely: for every solution that maps
the triple patterns at the branch to n2 into an RDF graph G, the
same solution also maps the triple patterns at the branch to n1

into G, provided that a strong homomorphism branch(n1) →
branch(n2) exists.

Proposition 4.8 Consider a QWDPT T = ((V,E, r),P) and

nodes n1, n2 ∈ V . Then the following statements are equivalent:

1. There exists a strong homomorphism H : branch(n1, T)→
branch(n2, T).

2. For every RDF graph G and µ ∈ JT KG it holds that

µ(Pbranch(n1)) ⊆ G whenever µ(Pbranch(n2)) ⊆ G.

For convenience, we introduce some more notation. Let T1 =
((V1, E1, r1),P1) and T2 = ((V2, E2, r2),P2) be two QWDPTs.
For n1 ∈ V1, we denote with cor(n1, V2) the set of corresponding

nodes in V2, i.e., cor(n1, V2) = {n2 | n2 ∈ V2, newvars(n1) ∩
newvars(n2) 6= ∅}. If clear from the context, we may drop the V2

and just write cor(n1) to increase readability.

Before showing the NP-membership of testing the equivalence
between two QWDPTs (and, hence, of two well-designed SPARQL
queries), we still need some further results. The following lemma
gives 3 necessary conditions for the equivalence of two QWDPTs
in R3-normal form: the two QWDPTs must have identical roots,
the same set of variables and the same set of triples. Note that the
R3-normal form is crucial for the first and the last condition.

Lemma 4.9 Consider two QWDPTs T1 = ((V1, E1, r1),P1) and

T2 = ((V2, E2, r2),P2) in R3-normal form. If T1 ≡ T2 then the

following properties hold:

1. Pr1 = Pr2

2. vars(T1) = vars(T2)

3.
⋃

n∈V1
Pn =

⋃

n∈V2
Pn

Lemma 4.10 Consider two QWDPTs T1 = ((V1, E1, r1),P1)
and T2 = ((V2, E2, r2),P2) in R3-normal form. Let n1, n3 ∈ V1

and n2 ∈ V2.

If there exist strong homomorphisms H : branch(n3, T1) →
branch(n2, T2) and H′ : branch(n2, T2) → branch(n1, T1),
then n1 is not an ancestor of n3.

We are now ready to formulate necessary and sufficient conditions
for the equivalence of two QWDPTs in R3-normal form.

Theorem 4.11 Let T1 = ((V1, E1, r1),P1) and T2

= ((V2, E2, r2),P2) be two QWDPTs in R3-normal form.

Then T1 ≡ T2 iff (1)
⋃

n∈V1
Pn =

⋃

n∈V2
Pn, (2) Pr1 = Pr2 ,

and (3) for all pairs (n1, n2) of nodes n1 ∈ V1 and n2 ∈ V2 with

newvars(n1) ∩ newvars(n2) 6= ∅ it holds that branch(n1, T1)
and branch(n2, T2) are strongly homomorphically equivalent.

We want to point out that the requirement that both queries contain
the same set of atoms is necessary, and does not follow from the
strong homomorphical equivalence of all nodes that share “new”
variables, as can be seen in the following example.

Example 4.12 Consider the following two QWDPTs.

{(?X, a, ?X)}

{(?X1, b, ?Y1)}

{(?X, a, ?X)}

{(?X1, b, ?Y1),
(?X2, b, ?Y2)}

Obviously these two QWDPTs are not equivalent, as they do not

even contain the same set of variables. However it can be easily

checked that all required strong homomorphisms exist.

Theorem 4.11 immediately yields an equivalence test for well-
designed SPARQL queries T1 and T2: just consider the SPARQL
queries as QWDPTs, transform them into R3-normal form, and
check if the conditions from Theorem 4.11 are fulfilled. How-
ever, there is a serious problem with such an algorithm. Indeed,
we cannot afford to transform T1 and T2 into R3-normal form in
an NP-algorithm, since this includes a coNP-test for checking that
no further application of rule R3 is possible. The following theo-
rem provides a way to overcome this problem. Intuitively it states
that we do not need to transform T1 and T2 into R3-normal form.
Instead, it suffices to apply rule R3 “often enough” so that the con-
ditions from Theorem 4.11 are fulfilled. Theorem 4.13 guarantees
that these conditions still hold for the R3 normal form, which we
never explicitly need to compute.

Theorem 4.13 Consider two QWDPTs T1 = ((V1, E1, r1),P1)
and T2 = ((V2, E2, r2),P2) in NR normal form such that

(1)
⋃

n∈V1
Pn =

⋃

n∈V2
Pn, (2) Pr1 = Pr2 , and (3) for

all pairs (n1, n2) of nodes n1 ∈ V1 and n2 ∈ V2 with

newvars(n1)∩newvars(n2) 6= ∅ it holds that branch(n1, T1) and

branch(n2, T2) are strongly homomorphically equivalent. Fur-

ther, let T ∗
1 = ((V ∗

1 , E∗
1 , r

∗
1),P

∗
1) and T ∗

2 = ((V ∗
2 , E∗

2 , r
∗
2),P

∗
2)

be R3 normal forms of T1 and T2 respectively.

Then the following conditions still hold for T ∗
1 and T ∗

2 :

(1)
⋃

n∈V ∗

1

Pn =
⋃

n∈V ∗

2

Pn, (2) Pr∗
1

= Pr∗
2

, and (3) for

all pairs (n∗
1, n

∗
2) of nodes n∗

1 ∈ V ∗
1 and n∗

2 ∈ V ∗
2 with

newvars(n∗
1) ∩ newvars(n∗

2) 6= ∅, it holds that branch(n∗
1, T

∗
1)

and branch(n∗
2, T

∗
2) are strongly homomorphically equivalent.

Now we have all ingredients to prove the main result of this section.

Theorem 4.14 The equivalence problem of QWDPTs (and, there-

fore, of well-designed SPARQL graph patterns) is NP-complete.

PROOF. The NP-hardness is shown by a straightforward reduc-
tion from 3-Colorability. The NP-membership can be seen by the
following algorithm, which takes two QWDPTs T1 and T2 as input.

1. Transform T1 and T2 into NR normal forms T ∗
1 and T ∗

2 , resp.

2. Guess two application sequences of rule R3 (i.e., nodes
where to apply rule R3 and the corresponding homomor-
phisms).

3. Check that the homomorphisms from step 2 fulfill the condi-
tions of rules R3. Denote the QWDPTs resulting from these
R3 applications with T ′

1 and T ′
2 .

4. For any two nodes n1 in T ′
1 and n2 in T ′

2 with
newvars(n1) ∩ newvars(n2) 6= ∅, guess strong homo-
morphisms (i.e., collections of homomorphisms according to
Definition 4.5) in both directions between branch(n1, T

′
1)

and branch(n2, T
′
2).

5. Check that T ′
1 and T ′

2 fulfill conditions (1) – (3) of Theo-
rem 4.13.

Step 1 is feasible in polynomial time since rules R1 and R2 are
“cheap”. The certificate guessed in steps 2 and 4 is polynomially
bounded. Finally, the computation and checks in step 3 and the
checks in step 5 fit into polynomial time.

5. ENUMERATION AND COUNTING
Conjunctive query (CQ) evaluation1 is a classical NP-complete

problem [8]. A lot of effort has thus been invested into the search
for tractable fragments of CQs [41, 10, 13, 17, 18, 16]. This search
for tractable fragments of CQs has also been extended to the enu-
meration problem (i.e., given a CQ Q and a database D, output all
tuples in the result of Q over D) and the counting problem of CQs
(i.e., given a CQ Q and a database D, compute the number of tuples
in the result of Q over D) [13, 14, 4, 29]. Sets of triple patterns are
essentially CQs over a relational schema with a single ternary pred-
icate. We now want to extend the study of tractable fragments of
CQ evaluation to tractable fragments of evaluating well-designed
SPARQL graph patterns. For the decision problem (i.e., given an
RDF graph G, a well-designed SPARQL graph pattern P and a
variable binding µ, check if µ is a solution), tractable fragments
of CQ evaluation immediately carry over to tractable fragments of
SPARQL evaluation. For the enumeration problem (i.e., given an
1There are several strongly related problems like asking if a given tuple is
contained in the result of a given CQ over a given database, or asking if a
given Boolean CQ evaluates to true over a given database, or query contain-
ment, etc. All these problems have straightforward reductions between each
other. By slight abuse of notation we thus simply speak of “CQ evaluation”
to refer to any of these problems.

RDF graph G and a well-designed SPARQL graph pattern P , com-
pute all solutions µ) and the counting problem (i.e., given an RDF
graph G and a well-designed SPARQL graph pattern P , compute
the number of solutions µ), a much more detailed analysis is re-
quired. This is the main topic of this section.

But let us first look at the decision problem of evaluating well-
designed SPARQL graph patterns. In [27], this problem was
shown to be coNP-complete. For our representation of SPARQL
graph patterns as QWDPT, a coNP test can work as follows. Let
T = ((V,E, r),P) be a QWDPT and assume that it is in NR
normal form (which can be computed in polynomial time). By us-
ing the characterization of the evaluation of QWDPTs provided in
Lemma 3.21, in order to check if µ is a solution of T over G,
the coNP-algorithm can first find a subtree T ′ of T rooted at r
s.t. dom(µ) = vars(T ′). Notice that if this subtree exists, then
it is unique (since T is in NR normal form), and thus, this step
can be done in polynomial time. Then the algorithm checks that
T ′ is a maximal subtree such that µ ⊑ Jand(T ′)KG. The latter
test requires coNP-power since we have to check that µ cannot be
extended to match any of the sets of triple patterns at nodes “be-
low” the leaf nodes of T ′. Note that this simple coNP-algorithm
heavily relies on the NR normal form from Section 3.3 (the coNP-
algorithm provided in [27] is considerably more complex).

Clearly, if all sets of triple patterns are from tractable fragments
of CQ evaluation, the problem of checking if µ is a solution of T
over G becomes tractable:

Corollary 5.1 Suppose that we only consider QWDPTs (and thus

well-designed SPARQL graph patterns), where for each node t the

set Pt of triple patterns is from tractable fragments of CQ evalua-

tion. Then the decision problem of such QWDPTs is also tractable.

Note that tractability is required for each set Pt individually,
hence for different nodes t and t′, the sets Pt and Pt′ may belong
to different tractable fragments.

5.1 Enumeration of well-designed SPARQL
Recall that an appropriate notion of tractable enumeration has to

take the size of the output into account. Indeed, even for a single
set of triple patterns, the set of solutions can be exponentially big.
Hence, our goal is to identify conditions under which the enumera-
tion of the solutions is feasible with polynomial delay, i.e., the time
to either compute the next solution or to detect that no further so-
lution exists must be polynomially bounded in the input size. For
instance, acyclic CQs and CQs of bounded treewidth or hypertree-
width [41, 10, 13, 17] have this property.

Polynomial delay algorithms are usually implemented in the
form of iterators. I.e., they are implemented in terms of functions
next() and hasNext(), where next() returns the next solution, while
hasNext() returns if there exists yet another solution. For polyno-
mial delay algorithms, both functions run in polynomial time.

Following the presentation in [11], in order to increase readabil-
ity we do not define the functions next() and hasNext() explicitly.
Instead, the enumeration algorithm is described as an ordinary al-
gorithm, and we consider iterators as constructs that take an enu-
meration algorithm as argument and provide the next() and has-

Next() functions. I.e., consider an iterator I := new Iterator(E(x))
for an enumeration algorithm E with input x. In response to
I .next() being called, the iterator executes E(x) until it encoun-
ters output(A) for the first time. Then the execution of E is inter-
rupted, and A is returned as the result of I .next(). At the next call
of I .next(), the execution of E is continued at the position where it
was last interrupted, i.e. right after the last output(.) command ex-
ecuted (and the last state of E is restored). Once E terminates (in-

Enumerate(t,µ)
1: cqit := new Iterator(EnumerateCQ(Pt, µ));
2: while(cqit.hasNext()){

// let t1, . . . , tk be the children of t
3: maxi := 0;
4: µcurr := cqit.next();
5: for(i = 1 to k){
6: iti := new Iterator(Enumerate(ti, µcurr));
7: flagi := iti.hasNext();
8: if(flagi){
9: µi := iti.next();

10: maxi := i;
11: }
12: }
13: if(

∧k

i=1 ¬flagi){
14: output(µcurr);
15: continue;
16: }
17: repeat{
18: output(µcurr ∪

⋃

1≤i≤k∧flagi=true
µi);

19: continueflag := false;
20: for(i = maxi downto 1){
21: if(iti.hasNext()){
22: µi := iti.next();
23: continueflag := true;
24: for(j = i+1 to maxi){
25: if(flagj) {
26: itj := new Iterator(Enumerate(tj , µcurr));
27: µj := itj .next();
28: }
29: }
30: i := 0; // leave the for-loop
31: }
32: }
33: } until(¬continueflag)
34: }

Figure 1: Iterator for SPARQL tree patterns.

stead of being interrupted), no further answer exists. The function
hasNext() can be either implemented by continuing the execution
of E and checking if another result is generated or not, or (like in
our case) it is implemented by checking the current state of E.

In the following, assume a QWDPT T = ((V,E, r),P)
to be evaluated over some RDF graph G. The algorithm in
Figure 1 assumes the existence of some enumeration algorithm
EnumerateCQ(Pt,µ) that, given a set Pt of triple patterns and a
partial variable assignment µ returns all extensions of µ to Pt over
G. We consider EnumerateCQ(Pt,µ) as a black box. The idea
of our (recursive) enumeration algorithm Enumerate(t,µ) is as fol-
lows. For t ∈ V and a partial assignment µ, the algorithm first
checks if µ can be extended to Pt (lines 1–2). For each such ex-
tension µcurr , it checks recursively for each child node ti if there
exists an extension of µcurr to Pti (lines 5–7). Next, for each ti
that has such an extension the first solution is stored, together with
the biggest index i s.t. ti provides a solution (lines 8–10). If µcurr

cannot be extended to any child node, then the algorithm just re-
turns µcurr as one extension of µ to the complete subtree rooted at
t (line 14; recall that the execution of the output(.) statement ends
the execution of the call to next(), and the control flow is returned
to the caller), and then considers the next extension of µ on t (line

15 jumps to the next iteration of the while loop in line 2). If on
the other hand µcurr can be extended to some children of t (lines
17 – 33), the algorithm enumerates all these extensions as follows.
(For the sake of simplicity, in the following we only consider the
ℓ children to which µcurr can be extended.) In lines 17–33, all
possible solutions are created that can be built from combining the
extensions of µcurr to t1, . . . , tℓ. Note that the first possible ex-
tension for each ti was saved in µi in line 9. After returning this
solution (line 18), the solutions are enumerated by iterating over
the solutions for t1, . . . , tℓ as follows. First, the child node ti with
the highest index i is identified that has yet another solution (lines
20–21). This extension is saved in µi (line 22), and for all children
tj with i < j ≤ ℓ the iterators are reset to the first extension of
µcurr , which is stored in µj (lines 24–27). If such an index i ex-
ists, the new solution is returned in the next iteration of the repeat
loop (line 18), otherwise all extensions of µcurr have already been
returned, and the algorithm terminates.

Theorem 5.2 The problem of enumerating all solutions of a

QWDPT (and hence, of a well-designed SPARQL graph pattern)

can be reduced in polynomial time (by a Turing reduction) to the

problem of enumerating all solutions of CQs.

PROOF IDEA. The iterator described in Figure 1 reduces the
problem of enumerating all solutions of a QWDPT to the problem
of enumerating all solutions of CQs. Moreover, neglecting the cost
of the calls to the iterator for CQs, the algorithm in Figure 1 clearly
works in polynomial time.

We may thus conclude that any tractability results for CQs im-
mediately carry over to well-designed SPARQL graph patterns.

Theorem 5.3 Suppose that we only consider QWDPTs where the

sets of triple patterns at each node are from tractable fragments of

CQ evaluation. Then the enumeration problem of such QWDPTs

can be solved with polynomial-time delay.

An inspection of our iterator for QWDPTs reveals that Theo-
rem 5.3 could be further strengthened: for the tractability of the
enumeration problem, it is sufficient that the sets of triple patterns
are from tractable fragments of CQ evaluation after considering all

“old variables” at each node as constants. In general, such an
elimination of variables from a CQ may yield a significantly bigger
tractable class.

5.2 Counting of well-designed SPARQL
Before studying the counting problem of well-designed

SPARQL graph patterns, we recall some basic notions and results
from counting complexity. The most intensively studied count-
ing complexity class is #P. It contains those problems which
consist in counting the number of accepting computation paths
of a non-deterministic polynomial-time Turing machine. In other
words, #P captures the counting problems corresponding to de-
cision problems in NP. Alternatively, counting problems can be
presented using a witness function R which for every input x re-
turns a set R(x) of witnesses for x. Every witness function gives
rise to the counting problem #·R defined as follows: given a string
x ∈ Σ∗, find the cardinality |R(x)| of the witness set R(x). Ac-
cording to [20], if C is a complexity class of decision problems, we
define # · C as the class of all counting problems whose witness
function R satisfies the following conditions.

1. There is a polynomial p(n) such that for every x ∈ Σ∗ and
every y ∈ R(x) we have |y| ≤ p(|x|);

2. The problem “given x and y, is y ∈ R(x)?” is in C.

0

50

100

150

200

250

300

350

400

450

1MB 5MB 10MB 15MB 20MB

T
im

e
(s

ec
on

ds
)

Database size

Tree-pattern based evaluation

+ +
+

+

+

+
ARQ main engine

× ×

×

×

×

×
ARQ reference engine

∗
∗

∗

∗

∗
∗

Figure 2: Performance of the QWDPT-based evaluation com-

pared with non-optimized and optimized ARQ, for a modified

version of Query 7 of SP2Bench benchmark [33].

It is easy to verify that #P = # · P. Moreover, the following
inclusions hold [20]: #P ⊆ # · NP ⊆ # · coNP.

Counting the number of answer tuples of a CQ is #P-complete
for CQs with free variables only and # · NP-complete for CQs
which may contain existential quantifiers [5]. Recently, it has been
shown that the counting problem of CQs where not all variables are
free, remains #P-complete even if we restrict ourselves to acyclic
CQs. In contrast, the counting problem of CQs without existen-
tial quantifiers becomes tractable for CQs of bounded hypertree-
width [29]. In this section, we extend the study of the counting
problem from CQs to well-designed SPARQL patterns showing
that, as opposed to the enumeration problem, tractability does not
carry over. More specifically, we prove the following theorems.

Theorem 5.4 The problem of counting all solutions of a QWDPT

(and hence, of a well-designed SPARQL graph pattern) is #·coNP-

complete.

PROOF IDEA. We only discuss the #·coNP-membership. Con-
sider the following witness function R: it takes as argument a pair
(T , G) consisting of a QWDPT T and a graph G. Then R maps
each pair (T , G) to the set of solutions of T over G. The problem
of counting all solutions of a QWDPT T over a graph G corre-
sponds to the counting problem # ·R. The # · coNP-membership
follows from the fact that it can be tested in coNP if a given map-
ping µ is a solution of T over G [27].

Theorem 5.5 The problem of counting all solutions of a QWDPT

(and hence, of a well-designed SPARQL graph pattern) is in #P if

the sets of triple patterns at each node are from tractable fragments

of CQ evaluation. The problem remains #P-complete even if all

sets of triple patterns correspond to acyclic CQs.

PROOF IDEA. The #P-hardness is shown by reduction from
the problem of counting the number of perfect matchings in a bi-
partite graph, which is a classical #P-complete problem [39].

For the #P-membership, we consider the same witness func-
tion R as in the proof of Theorem 5.4. If all sets of triple patterns
are from tractable fragments of CQ evaluation, then we can test in
PTIME if a given mapping µ is a solution of T over G.

6. CONCLUDING REMARKS
Static analysis is a fundamental task in query optimization. In

this paper we have studied this problem for SPARQL queries. One

of our main contributions is the introduction of an abstract repre-
sentation of well-designed queries as trees that resemble relational
query plans. This representation allowed us to provide transforma-
tion rules and normal forms that proved to be useful when studying
equivalence, containment, and tractable query enumeration. An in-
teresting line for future work is the inclusion of more SPARQL
operators to our study, in particular, projection and filtering.

On the practical side, we are currently developing a prototype
based on the results presented in this paper, by modifying the non-
optimized version of the ARQ SPARQL engine [45]. Our prelim-
inary results are encouraging. In particular, the top-down evalu-
ation of QWDPTs performs very well whenever a node in some
branch of the tree provides a small set of results. We created exam-
ples of queries along with data which represent this case, by using
the SP2Bench benchmark [33], in particular modifying Query 7 of
the benchmark (that uses various levels of OPT nesting). In this
scenario, our prototype even outperforms ARQ’s optimized engine
(Figure 2). An extension of these experiments to a systematic com-
parison of our approach with previous ones is left for future work.
We have also implemented some transformation rules, the normal
forms, and equivalence test. An on-line interface for our prototype
is available from http://db.ing.puc.cl/sparql-algebra.

Acknowledgements

This work was funded in part by Marie Curie action IRSES under
Grant No. 24761 (Net2), and by the Vienna Science and Technol-
ogy Fund (WWTF) through project ICT08-032. Jorge Pérez was
supported by Fondecyt grant 11110404 and by VID grant U-Inicia
11/04 Universidad de Chile.

7. REFERENCES

[1] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable
semantic web data management using vertical partitioning. In
VLDB, pages 411–422. ACM, 2007.

[2] R. Angles and C. Gutierrez. The expressive power of SPARQL. In
ISWC, pages 114–129. Springer, 2008.

[3] M. Arenas and J. Pérez. Querying Semantic Web data with
SPARQL. In PODS, pages 305–316. ACM, 2011.

[4] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive
queries and constant delay enumeration. In CSL, pages 208–222.
Springer, 2007.

[5] M. Bauland, P. Chapdelaine, N. Creignou, M. Hermann, and
H. Vollmer. An algebraic approach to the complexity of generalized
conjunctive queries. In SAT 2004 - Revised Selected Papers, pages
30–45. Springer, 2005.

[6] T. Berners-Lee. Linked data – design issues.
http://www.w3.org/DesignIssues/LinkedData.html, 2006.

[7] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so far.
Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[8] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, pages 77–90.
ACM, 1977.

[9] M. Chekol, J. Euzenat, P. Genevès, and N. Layaïda. PSPARQL
query containment. In DBPL, 2011.

[10] C. Chekuri and A. Rajaraman. Conjunctive query containment
revisited. Theor. Comput. Sci., 239(2):211–229, 2000.

[11] S. Cohen and I. Fadida and Y. Kanza and B. Kimelfeld and Y. Sagiv.
Full Disjunctions: Polynomial-Delay Iterators in Action. In VLDB,
pages 739–750. ACM, 2006.

[12] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions
and complete problems for counting complexity classes. Theor.

Comput. Sci., 340(3):496–513, 2005.
[13] J. Flum, M. Frick, and M. Grohe. Query evaluation via

tree-decompositions. J. ACM, 49(6):716–752, 2002.
[14] J. Flum and M. Grohe. The parameterized complexity of counting

problems. SIAM J. Comput., 33(4):892–922, 2004.

[15] M. A. Gallego, J. D. Fernández, M. A. Martínez-Prieto, and P. de la
Fuente. An empirical study of real-world SPARQL queries. In
USEWOD, 2011.

[16] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural
CSP decomposition methods. Artif. Intell., 124(2):243–282, 2000.

[17] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions
and tractable queries. J. Comput. Syst. Sci., 64(3):579–627, 2002.

[18] G. Greco and F. Scarcello. The power of tree projections: local
consistency, greedy algorithms, and larger islands of tractability. In
PODS 2010, pages 327–338. ACM, 2010.

[19] C. Gutierrez, C. A. Hurtado, A. O. Mendelzon, and J. Pérez.
Foundations of semantic web databases. J. Comput. Syst. Sci.,
77(3):520–541, 2011.

[20] L. A. Hemaspaandra and H. Vollmer. The satanic notations:
Counting classes beyond #P and other definitional adventures.
SIGACT News, Complexity Theory Column 8, 26(1):2–13, 1995.

[21] Y. Kanza and W. Nutt and Y. Sagiv. Querying Incomplete
Information in Semistructured Data. J. Comput. Syst. Sci.,
64(3):655–693, 2002.

[22] P.-Å. Larson and J. Zhou. View matching for outer-join views. In
VLDB, pages 445–456. ACM, 2005.

[23] O. Lassila and R. Swick. Resource description framework (RDF)
model and syntax. W3C Recommnedation, January 1999.

[24] T. Neumann and G. Weikum. The rdf-3x engine for scalable
management of rdf data. VLDB J., 19(1):91–113, 2010.

[25] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of
SPARQL. In ISWC, pages 30–43. Springer, 2006.

[26] J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL.
Technical Report, Universidad de Chile TR/DCC-2006-17, October
2006.

[27] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[28] F. Picalausa and S. Vansummeren. What are real SPARQL queries
like? In SWIM, pages 7:1–7:6. ACM, 2011.

[29] R. Pichler and S. Skritek. Tractable counting of the answers to
conjunctive queries. In AMW. CEUR-WS.org, 2011.

[30] A. Polleres. From SPARQL to rules (and back). In WWW, pages
787–796. ACM, 2007.

[31] E. Prud’Hommeaux and A. Seaborne. SPARQL query language for
RDF. W3C Recommnedation, January 2008.

[32] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and C. Pinkel. An
experimental comparison of RDF data management approaches in a
SPARQL benchmark scenario. In ISWC, pages 82–97. Springer,
2008.

[33] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A
SPARQL performance benchmark. In ICDE, pages 222–233. IEEE,
2009.

[34] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL
query optimization. In ICDT, pages 4–33. ACM, 2010.

[35] G. Serfiotis, I. Koffina, V. Christophides, and V. Tannen.
Containment and minimization of RDF/S query patterns. In ISWC,
pages 607–623. Springer, 2005.

[36] L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and
S. Manegold. Column-store support for RDF data management: not
all swans are white. PVLDB, 1(2):1553–1563, 2008.

[37] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds.
Sparql basic graph pattern optimization using selectivity estimation.
In WWW, pages 595–604. ACM, 2008.

[38] J. D. Ullman. Information integration using logical views. In ICDT,
pages 19–40. Springer, 1997.

[39] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8(3):410–421, 1979.

[40] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing
for semantic web data management. PVLDB, 1(1):1008–1019, 2008.

[41] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB,
pages 82–94. IEEE, 1981.

[42] http://data.gov.uk.
[43] http://www.data.gov.
[44] http://DBpedia.org/sparql.
[45] ARQ. http://sourceforge.net/projects/jena/files/ARQ/.

