
Heuristics-Based Query Processing for Large
RDF Graphs Using Cloud Computing

Mohammad Farhan Husain, James McGlothlin, Mohammad Mehedy Masud,

Latifur R. Khan, and Bhavani Thuraisingham, Fellow, IEEE

Abstract—Semantic web is an emerging area to augment human reasoning. Various technologies are being developed in this arena

which have been standardized by the World Wide Web Consortium (W3C). One such standard is the Resource Description Framework

(RDF). Semantic web technologies can be utilized to build efficient and scalable systems for Cloud Computing. With the explosion of

semantic web technologies, large RDF graphs are common place. This poses significant challenges for the storage and retrieval of

RDF graphs. Current frameworks do not scale for large RDF graphs and as a result do not address these challenges. In this paper, we

describe a framework that we built using Hadoop to store and retrieve large numbers of RDF triples by exploiting the cloud computing

paradigm. We describe a scheme to store RDF data in Hadoop Distributed File System. More than one Hadoop job (the smallest unit of

execution in Hadoop) may be needed to answer a query because a single triple pattern in a query cannot simultaneously take part in

more than one join in a single Hadoop job. To determine the jobs, we present an algorithm to generate query plan, whose worst case

cost is bounded, based on a greedy approach to answer a SPARQL Protocol and RDF Query Language (SPARQL) query. We use

Hadoop’s MapReduce framework to answer the queries. Our results show that we can store large RDF graphs in Hadoop clusters built

with cheap commodity class hardware. Furthermore, we show that our framework is scalable and efficient and can handle large

amounts of RDF data, unlike traditional approaches.

Index Terms—Hadoop, RDF, SPARQL, MapReduce.

Ç

1 INTRODUCTION

CLOUD computing is an emerging paradigm in the IT and
data processing communities. Enterprises utilize cloud

computing service to outsource data maintenance, which
can result in significant financial benefits. Businesses store
and access data at remote locations in the “cloud.” As the
popularity of cloud computing grows, the service providers
face ever increasing challenges. They have to maintain huge
quantities of heterogenous data while providing efficient
information retrieval. Thus, the key emphasis for cloud
computing solutions is scalability and query efficiency.

Semantic web technologies are being developed to
present data in standardized way such that such data can
be retrieved and understood by both human and machine.
Historically, webpages are published in plain html files
which are not suitable for reasoning. Instead, the machine
treats these html files as a bag of keywords. Researchers are
developing Semantic web technologies that have been
standardized to address such inadequacies. The most
prominent standards are Resource Description Framework1

(RDF) and SPARQL Protocol and RDF Query Language2

(SPARQL). RDF is the standard for storing and representing
data and SPARQL is a query language to retrieve data from
an RDF store. Cloud Computing systems can utilize the
power of these Semantic web technologies to provide the
user with capability to efficiently store and retrieve data for
data intensive applications.

Semantic web technologies could be especially useful for
maintaining data in the cloud. Semantic web technologies
provide the ability to specify and query heterogenous data
in a standardized manner. Moreover, via Web Ontology
Language (OWL) ontologies, different schemas, classes,
data types, and relationships can be specified without
sacrificing the standard RDF/SPARQL interface. Conver-
sely, cloud computing solutions could be of great benefit to
the semantic web community. Semantic web data sets are
growing exponentially. More than any other arena, in the
web domain, scalability is paramount. Yet, high speed
response time is also vital in the web community. We
believe that the cloud computing paradigm offers a solution
that can achieve both of these goals.

Existing commercial tools and technologies do not scale
well in Cloud Computing settings. Researchers have started
to focus on these problems recently. They are proposing
systems built from the scratch. In [39], researchers propose
an indexing scheme for a new distributed database3 which
can be used as a Cloud system. When it comes to semantic
web data such as RDF, we are faced with similar challenges.
With storage becoming cheaper and the need to store and
retrieve large amounts of data, developing systems to

1312 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

. M.F. Husain is with Amazon.com, 2201 Westlake Avenue, Seattle, WA
98121. E-mail: mfh062000@utdallas.edu.

. J. McGlothlin, M.M. Masud, L.R. Khan, and B. Thuraisingham are with the
University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX
75080. E-mail: {jpm083000, mehedy,
lkhan, bhavani.thuraisingham}@utdallas.edu.

Manuscript received 2 Apr. 2010; revised 28 Oct. 2010; accepted 23 Feb. 2011;
published online 27 Apr. 2011.
Recommended for acceptance by D. Lomet.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2010-04-0196.
Digital Object Identifier no. 10.1109/TKDE.2011.103.

1. http://www.w3.org/TR/rdf-primer.

2. http://www.w3.org/TR/rdf-sparql-query.
3. http://www.comp.nus.edu.sg/~epic/.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

handle billions of RDF triples requiring tera bytes of disk
space is no longer a distant prospect. Researchers are
already working on billions of triples [30], [33]. Competi-
tions are being organized to encourage researchers to build
efficient repositories.4 At present, there are just a few
frameworks (e.g., RDF-3X [29], Jena [7], Sesame,5 BigOW-
LIM [22]) for Semantic web technologies, and these frame-
works have limitations for large RDF graphs. Therefore,
storing a large number of RDF triples and efficiently
querying them is a challenging and important problem.

A distributed system can be built to overcome the
scalability and performance problems of current Semantic
web frameworks. Databases are being distributed in order
to provide such scalable solutions. However, to date, there
is no distributed repository for storing and managing RDF
data. Researchers have only recently begun to explore the
problems and technical solutions which must be addressed
in order to build such a distributed system. One promising
line of investigation involves making use of readily
available distributed database systems or relational data-
bases. Such database systems can use relational schema for
the storage of RDF data. SPARQL queries can be answered
by converting them to SQL first [9], [10], [12]. Optimal
relational schemas are being probed for this purpose [3].
The main disadvantage with such systems is that they are
optimized for relational data. They may not perform well
for RDF data, especially because RDF data are sets of
triples6 (an ordered tuple of three components called
subject, predicate, and object, respectively) which form
large directed graphs. In an SPARQL query, any number of
triple patterns (TPs)7 can join on a single variable8 which
makes a relational database query plan complex. Perfor-
mance and scalability will remain a challenging issue due to
the fact that these systems are optimized for relational data
schemata and transactional database usage.

Yet another approach is to build a distributed system for
RDF from scratch. Here, there will be an opportunity to
design and optimize a system with specific application to
RDF data. In this approach, the researchers would be
reinventing the wheel.

Instead of starting with a blank slate, we propose to build
a solution with a generic distributed storage system which
utilizes a Cloud Computing platform. We then propose to
tailor the system and schema specifically to meet the needs
of semantic web data. Finally, we propose to build a
semantic web repository using such a storage facility.

Hadoop9 is a distributed file system where files can be
saved with replication. It is an ideal candidate for building a
storage system. Hadoop features high fault tolerance and
great reliability. In addition, it also contains an implementa-
tion of the MapReduce [13] programming model, a
functional programming model which is suitable for the
parallel processing of large amounts of data. Through
partitioning data into a number of independent chunks,
MapReduce processes run against these chunks, making

parallelization simpler. Moreover, the MapReduce pro-
gramming model facilitates and simplifies the task of
joining multiple triple patterns.

In this paper, we will describe a schema to store RDF
data in Hadoop, and we will detail a solution to process
queries against these data. In the preprocessing stage, we
process RDF data and populate files in the distributed file
system. This process includes partitioning and organizing
the data files and executing dictionary encoding.

We will then detail a query engine for information
retrieval. We will specify exactly how SPARQL queries will
be satisfied using MapReduce programming. Specifically,
we must determine the Hadoop “jobs” that will be executed
to solve the query. We will present a greedy algorithm that
produces a query plan with the minimal number of Hadoop
jobs. This is an approximation algorithm using heuristics,
but we will prove that the worst case has a reasonable
upper bound.

Finally, we will utilize two standard benchmark data sets
to run experiments. We will present results for data set
ranging from 0.1 to over 6.6 billion triples. We will show
that our solution is exceptionally scalable. We will show
that our solution outperforms leading state-of-the-art
semantic web repositories, using standard benchmark
queries on very large data sets.

Our contributions are as follows:

1. We design a storage scheme to store RDF data in
Hadoop distributed file system (HDFS10).

2. We propose an algorithm that is guaranteed to
provide a query plan whose cost is bounded by the
log of the total number of variables in the given
SPARQL query. It uses summary statistics for
estimating join selectivity to break ties.

3. We build a framework which is highly scalable and
fault tolerant and supports data intensive query
processing.

4. We demonstrate that our approach performs better
than Jena for all queries and BigOWLIM and RDF-3X
for complex queries having large result sets.

The remainder of this paper is organized as follows: in
Section 2, we investigate related work. In Section 3, we
discuss our system architecture. In Section 4, we discuss
how we answer an SPARQL query. In Section 5, we present
the results of our experiments. Finally, in Section 6, we
draw some conclusions and discuss areas we have
identified for improvement in the future.

2 RELATED WORK

MapReduce, though a programming paradigm, is rapidly
being adopted by researchers. This technology is becoming
increasingly popular in the community which handles large
amounts of data. It is the most promising technology to
solve the performance issues researchers are facing in
Cloud Computing. In [1], Abadi discusses how MapReduce
can satisfy most of the requirements to build an ideal Cloud
DBMS. Researchers and enterprises are using MapReduce
technology for web indexing, searches, and data mining. In

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1313

4. http://challenge.semanticweb.org.
5. http://www.openrdf.org.
6. http://www.w3.org/TR/rdf-concepts/#dfn-rdf-triple.
7. http://www.w3.org/TR/rdf-sparql-query/#defn_TriplePattern.
8. http://www.w3.org/TR/rdf-sparql-query/#defn_QueryVariable.
9. http://hadoop.apache.org. 10. http://hadoop.apache.org/core/docs/r0.18.3/hdfs_design.html.

this section, we will first investigate research related to
MapReduce. Next, we will discuss works related to the
semantic web.

Google uses MapReduce for web indexing, data storage,
and social networking [8]. Yahoo! uses MapReduce exten-
sively in its data analysis tasks [31]. IBM has successfully
experimented with a scale-up scale-out search framework
using MapReduce technology [27]. In a recent work [35],
they have reported how they integrated Hadoop and
System R. Teradata did a similar work by integrating
Hadoop with a parallel DBMS [42].

Researchers have used MapReduce to scale up classifiers
for mining petabytes of data [28]. They have worked on data
distribution and partitioning for data mining, and have
applied three data mining algorithms to test the perfor-
mance. Data mining algorithms are being rewritten in
different forms to take advantage of MapReduce technology.
In [11], researchers rewrite well-known machine learning
algorithms to take advantage of multicore machines by
leveraging MapReduce programming paradigm. Another
area where this technology is successfully being used is
simulation [25]. In [4], researchers reported an interesting
idea of combining MapReduce with existing relational
database techniques. These works differ from our research
in that we use MapReduce for semantic web technologies.
Our focus is on developing a scalable solution for storing
RDF data and retrieving them by SPARQL queries.

In the semantic web arena, there has not been much
work done with MapReduce technology. We have found
two related projects: BioMANTA11 project and Scalable,
High-Performance, Robust and Distributed (SHARD).12

BioMANTA proposes extensions to RDF Molecules [14]
and implements a MapReduce-based Molecule store [30].
They use MapReduce to answer the queries. They have
queried a maximum of four million triples. Our work
differs in the following ways: first, we have queried one
billion triples. Second, we have devised a storage schema
which is tailored to improve query execution performance
for RDF data. We store RDF triples in files based on the
predicate of the triple and the type of the object. Finally,
we also have an algorithm to determine a query processing
plan whose cost is bounded by the log of the total number
of variables in the given SPARQL query. By using this, we
can determine the input files of a job and the order in which
they should be run. To the best of our knowledge, we are
the first ones to come up with a storage schema for RDF
data using flat files in HDFS, and a MapReduce job
determination algorithm to answer an SPARQL query.

SHARD is an RDF triple store using the Hadoop
Cloudera distribution. This project shows initial results
demonstrating Hadoop’s ability to improve scalability for
RDF data sets. However, SHARD stores its data only in a
triple store schema. It currently does no query planning or
reordering, and its query processor will not minimize the
number of Hadoop jobs.

There has been significant research into semantic web
repositories, with particular emphasis on query efficiency
and scalability. In fact, there are too many such repositories to
fairly evaluate and discuss each. Therefore, we will pay
attention to semantic web repositories which are open source

or available for download, and which have received favorable
recognition in the semantic web and database communities.

In [2] and [3], researchers reported a vertically partitioned
DBMS for storage and retrieval of RDF data. Their solution is
a schema with a two-column table for each predicate. Their
schema is then implemented on top of a column-store
relational database such as CStore [37] or MonetDB [6]. They
observed performance improvement with their scheme over
traditional relational database schemes. We have leveraged
this technology in our predicate-based partitioning within
the MapReduce framework. However, in the vertical
partitioning research, only small databases (<100 million)
were used. Several papers [16], [23], [41] have shown that
vertical partitioning’s performance is drastically reduced as
the data set size is increased.

Jena [7] is a semantic web framework for Jena. True to its
framework design, it allows integration of multiple solutions
for persistence. It also supports inference through the
development of reasoners. However, Jena is limited to a triple
store schema. In other words, all data are stored in a single
three-column table. Jena has very poor query performance for
large data sets. Furthermore, any change to the data set
requires complete recalculation of the inferred triples.

BigOWLIM [22] is among the fastest and most scalable
semantic web frameworks available. However, it is not as
scalable as our framework and requires very high end and
costly machines. It requires expensive hardware (a lot of main
memory) to load large data sets and it has a long loading time.
As our experiments show (Section 5.4), it does not perform
well when there is no bound object in a query. However, the
performance of our framework is not affected in such a case.

RDF-3X [29] is considered the fastest existing semantic
web repository. In other words, it has the fastest query
times. RDF-3X uses histograms, summary statistics, and
query optimization to enable high performance semantic
web queries. As a result, RDF-3X is generally able to
outperform any other solution for queries with bound
objects and aggregate queries. However, RDF-3X’s perfor-
mance degrades exponentially for unbound queries, and
queries with even simple joins if the selectivity factor is low.
This becomes increasingly relevant for inference queries,
which generally require unions of subqueries with un-
bound objects. Our experiments show that RDF-3X is not
only slower for such queries, it often aborts and cannot
complete the query. For example, consider the simple query
“Select all students.” This query in LUBM requires us to
select all graduate students, select all undergraduate
students, and union the results together. However, there
are a very large number of results in this union. While both
subqueries complete easily, the union will abort in RDF-3X
for LUBM (30,000) with 3.3 billion triples.

RDF Knowledge Base (RDFKB) [24] is a semantic web
repository using a relational database schema built upon bit
vectors. RDFKB achieves better query performance than
RDF-3X or vertical partitioning. However, RDFKB aims to
provide knowledge base functions such as inference forward
chaining, uncertainty reasoning, and ontology alignment.
RDFKB prioritizes these goals ahead of scalability. RDFKB is
not able to load LUBM (30,000) with three billion triples, so it
cannot compete with our solution for scalability.

Hexastore [41] and BitMat [5] are main memory data
structures optimized for RDF indexing. These solutions
may achieve exceptional performance on hot runs, but they

1314 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

11. http://www.itee.uq.edu.au/eresearch/projects/biomanta.
12. http://www.cloudera.com/blog/2010/03/how-raytheon-

researchers-are-using-hadoop-to-build-a-scalable-distributed-triple-store.

are not optimized for cold runs from persistent storage.
Furthermore, their scalability is directly associated with the
quantity of main memory RAM available. These products
are not available for testing and evaluation.

In our previous works [20], [21], we proposed a greedy
and an exhaustive search algorithm to generate a query
processing plan. However, the exhaustive search algorithm
was expensive and the greedy one was not bounded and its
theoretical complexity was not defined. In this paper, we
present a new greedy algorithm with an upper bound. Also,
we did observe scenarios in which our old greedy algorithm
failed to generate the optimal plan. The new algorithm is
able to obtain the optimal plan in each of these cases.
Furthermore, in our prior research, we were limited to text
files with minimal partitioning and indexing. We now
utilize dictionary encoding to increase performance. We
have also now done comparison evaluation with more
alternative repositories.

3 PROPOSED ARCHITECTURE

Our architecture consists of two components. The upper
part of Fig. 1 depicts the data preprocessing component and
the lower part shows the query answering one.

We have three subcomponents for data generation and
preprocessing. We convert RDF/XML13 to N-Triples14

serialization format using our N-Triples Converter compo-
nent. The Predicate Split (PS) component takes the N-
Triples data and splits it into predicate files. The predicate
files are then fed into the Predicate Object Split (POS)
component which splits the predicate files into smaller files
based on the type of objects. These steps are described in
Sections 3.2, 3.3, and 3.4.

Our MapReduce framework has three subcomponents
in it. It takes the SPARQL query from the user and passes
it to the Input Selector (see Section 4.1) and Plan Generator.
This component selects the input files, by using our
algorithm described in Section 4.3, decides how many
MapReduce jobs are needed, and passes the information to

the Join Executer component which runs the jobs using
MapReduce framework. It then relays the query answer
from Hadoop to the user.

3.1 Data Generation and Storage

For our experiments, we use the LUBM [18] data set. It is a
benchmark data set designed to enable researchers to
evaluate a semantic web repository’s performance [19]. The
LUBM data generator generates data in RDF/XML serial-
ization format. This format is not suitable for our purpose
because we store data in HDFS as flat files and so to retrieve
even a single triple, we would need to parse the entire file.
Therefore, we convert the data to N-Triples to store the data,
because with that format, we have a complete RDF triple
(Subject, Predicate, and Object) in one line of a file, which is
very convenient to use with MapReduce jobs. The processing
steps to go through to get the data into our intended format
are described in following sections.

3.2 File Organization

We do not store the data in a single file because, in Hadoop
and MapReduce Framework, a file is the smallest unit of
input to a MapReduce job and, in the absence of caching, a
file is always read from the disk. If we have all the data in
one file, the whole file will be input to jobs for each query.
Instead, we divide the data into multiple smaller files. The
splitting is done in two steps which we discuss in the
following sections.

3.3 Predicate Split

In the first step, we divide the data according to the
predicates. This division immediately enables us to cut down
the search space for any SPARQL query which does not have
a variable15 predicate. For such a query, we can just pick a file
for each predicate and run the query on those files only. For
simplicity, we name the files with predicates, e.g., all
the triples containing a predicate p1:pred go into a file named
p1-pred. However, in case we have a variable predicate in a
triple pattern16 and if we cannot determine the type of the
object, we have to consider all files. If we can determine the
type of the object, then we consider all files having that type of
object. We discuss more on this in Section 4.1. In real-world
RDF data sets, the number of distinct predicates is in general
not a large number [36]. However, there are data sets having
many predicates. Our system performance does not vary in
such a case because we just select files related to the
predicates specified in a SPARQL query.

3.4 Predicate Object Split

3.4.1 Split Using Explicit Type Information of Object

In the next step, we work with the explicit type information
in the rdf_type file. The predicate rdf:type is used in RDF to
denote that a resource is an instance of a class. The rdf_type
file is first divided into as many files as the number of
distinct objects the rdf:type predicate has. For example, if in
the ontology, the leaves of the class hierarchy are
c1; c2; . . . ; cn, then we will create files for each of these
leaves and the file names will be like type_c1, type_c2; . . . ,
type_cn. Please note that the object values c1; c2; . . . ; cn are no

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1315

Fig. 1. The system architecture.

13. http://www.w3.org/TR/rdf-syntax-grammar.
14. http://www.w3.org/2001/sw/RDFCore/ntriples.

15. http://www.w3.org/TR/rdf-sparql-query/#sparqlQueryVariables.
16. http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns.

longer needed to be stored within the file as they can be
easily retrieved from the file name. This further reduces the
amount of space needed to store the data. We generate such
a file for each distinct object value of the predicate rdf:type.

3.4.2 Split Using Implicit Type Information of Object

We divide the remaining predicate files according to the type
of the objects. Not all the objects are URIs, some are literals.
The literals remain in the file named by the predicate: no
further processing is required for them. The type information
of a URI object is not mentioned in these files but they can be
retrieved from the type_* files. The URI objects move into
their respective file named as predicate_type. For example, if a
triple has the predicate p and the type of the URI object is
ci, then the subject and object appear in one line in the file
p_ci. To do this split, we need to join a predicate file with the
type_* files to retrieve the type information.

In Table 1, we show the number of files we get after PS
and POS steps. We can see that eventually we organize the
data into 41 files.

Table 1 shows the number of files and size gain we get at
each step for data from 1,000 universities. LUBM generator
generates 20,020 small files, with a total size of 24 GB. After
splitting the data according to predicates, the size drasti-
cally reduces to only 7.1 GB (a 70.42 percent gain). This
happens because of the absence of predicate columns and
also the prefix substitution. At this step, we have only
17 files as there are 17 unique predicates in the LUBM data
set. In the final step, space is reduced another 7.04 percent,
as the split rdf-type files no longer have the object column.
The number of files increases to 41 as predicate files are split
using the type of the objects.

3.5 Example Data

In Table 2, we have shown sample data for three predicates.
The leftmost column shows the type file for student objects
after the splitting by using explicit type information in POS
step. It lists only the subjects of the triples having rdf:type
predicate and student object. The rest of the columns show
the advisor, takesCourse, and teacherOf predicate files after
the splitting by using implicit type information in POS step.
The prefix ub: stands for http://www.lehigh.edu/~zhp2/
2004/0401/univ-bench.owl#. Each row has a pair of subject
and object. In all cases, the predicate can be retrieved from
the filename.

3.6 Binary Format

Up to this point, we have shown our files in text format. Text
format is the natively supported format by Hadoop.
However, for increased efficiency, storing data in binary
format is an option. We do dictionary encoding to encode the
strings with a long value (64-bit). In this way, we are able to

store up to 264 unique strings. We dictionary encode the data
using Hadoop jobs. We build a prefix tree in each reducer
and generate a unique id for a string by using the reducer id,
which is unique across the job. We generate the dictionary in
one job and then run three jobs to replace the subject,
predicate, and object of a triple with their corresponding id as
text. In the final job, we convert the triples consisting of ids in
text to binary data.

4 MAPREDUCE FRAMEWORK

In this section, we discuss how we answer SPARQL queries
in our MapReduce framework component. Section 4.1
discusses our algorithm to select input files for answering
the query. Section 4.2 talks about cost estimation needed to
generate a plan to answer an SPARQL query. It introduces
few terms which we use in the following discussions.
Section 4.2.1 discusses the ideal model we should follow to
estimate the cost of a plan. Section 4.2.2 introduces the
heuristics-based model we use in practice. Section 4.3
presents our heuristics-based greedy algorithm to generate
a query plan which uses the cost model introduced in
Section 4.2.2. We face tie situations in order to generate a
plan in some cases and Section 4.4 talks about how we
handle these special cases. Section 4.5 shows how we
implement a join in a Hadoop MapReduce job by working
through an example query.

4.1 Input Files Selection

Before determining the jobs, we select the files that need to
be inputted to the jobs. We have some query rewriting
capability which we apply at this step of query processing.
We take the query submitted by the user and iterate over
the triple patterns. We may encounter the following cases:

1. In a triple pattern, if the predicate is variable, we
select all the files as input to the jobs and terminate
the iteration.

2. If the predicate is rdf:type and the object is concrete,
we select the type file having that particular type. For
example, for LUBM query 9 (Listing 1), we could
select file type_Student as part of the input set.
However, this brings up an interesting scenario. In
our data set, there is actually no file named type_
Student because Student class is not a leaf in the
ontology tree. In this case, we consult the LUBM
ontology,17 part of which is shown in Fig. 2, to

1316 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

17. http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl.

TABLE 1
Data Size at Various Steps for 1,000 Universities

TABLE 2
Sample Data for LUBM Query 9

determine the correct set of input files. We add the
files type_GraduateStudent, type_UndergraduateStu-
dent, and type_ResearchAssistant as GraduateStudent,
UndergraduateStudent, and ResearchAssistant are the
leaves of the subtree rooted at node Student.

3. If the predicate is rdf:type and the object is variable,
then if the type of the variable is defined by
another triple pattern, we select the type file having
that particular type. Otherwise, we select all type
files.

4. If the predicate is not rdf:type and the object is

variable, then we need to determine if the type of the

object is specified by another triple pattern in the

query. In this case, we can rewrite the query

eliminate some joins. For example, in LUBM Query

9 (Listing 1), the type of Y is specified as Faculty and
Z as Course and these variables are used as objects in

last three triple patterns. If we choose files advisor_

Lecturer, advisor_PostDoc, advisor_FullProfessor, advi-

sor_AssociateProfessor, advisor_AssistantProfessor, and

advisor_ VisitingProfessor as part of the input set, then

the triple pattern in line 2 becomes unnecessary.

Similarly, triple pattern in line 3 becomes unneces-

sary if files takesCourse_Course and takesCourse_Gra-

duateCourse are chosen. Hence, we get the rewritten

query shown in Listing 2. However, if the type of the

object is not specified, then we select all files for that

predicate.

5. If the predicate is not rdf:type and the object is
concrete, then we select all files for that predicate.

Listing 1. LUBM Query 9

SELECT ?X ?Y ?Z WHERE {

?X rdf:type ub:Student.
?Y rdf:type ub:Faculty.

?Z rdf:type ub:Course.

?X ub:advisor ?Y.

?Y ub:teacherOf ?Z.

?X ub:takesCourse ?Z}

Listing 2. Rewritten LUBM Query 9

SELECT ?X ?Y ?Z WHERE {

?X rdf:type ub:Student.

?X ub:advisor ?Y.

?Y ub:teacherOf ?Z.

?X ub:takesCourse ?Z}

4.2 Cost Estimation for Query Processing

We run Hadoop jobs to answer an SPARQL query. In this

section, we discuss how we estimate the cost of a job.

However, before doing that, we introduce some definitions

which we will use later:

Definition 1 (Triple Pattern, TP). A triple pattern is an

ordered set of subject, predicate, and object which appears in an

SPARQL query WHERE clause. The subject, predicate, and

object can be either a variable (unbounded) or a concrete value

(bounded).

Definition 2 (Triple Pattern Join, TPJ). A triple pattern join

is a join between two TPs on a variable.

Definition 3 (MapReduceJoin, MRJ). A MapReduceJoin is a

join between two or more triple patterns on a variable.

Definition 4 (Job, JB). A job JB is a Hadoop job where one or

more MRJs are done. JB has a set of input files and a set of

output files.

Definition 5 (Conflicting MapReduceJoins, CMRJ). Con-

flicting MapReduceJoins is a pair of MRJs on different

variables sharing a triple pattern.

Definition 6 (Nonconflicting MapReduceJoins, NCMRJ).

Nonconflicting MapReduceJoins is a pair of MRJs either not

sharing any triple pattern or sharing a triple pattern and the

MRJs are on same variable.

An example will illustrate these terms better. In Listing 3,

we show LUBM Query 12. Lines 2, 3, 4, and 5 each have a

triple pattern. The join between TPs in lines 2 and 4 on

variable ?X is an MRJ. If we do two MRJs, one between TPs

in lines 2 and 4 on variable ?X and the other between TPs in

lines 4 and 5 on variable ?Y , there will be a CMRJ as TP in

line 4 (?X ub:worksFor ?Y) takes part in two MRJs on two

different variables ?X and ?Y . This is shown on the right in

Fig. 3. This type of join is called CMRJ because in a Hadoop

job, more than one variable of a TP cannot be a key at the

same time and MRJs are performed on keys. An NCMRJ,

shown on the left in Fig. 3, would be one MRJ between

triple patterns in lines 2 and 4 on variable ?X and another

MRJ between triple patterns in lines 3 and 5 on variable ?Y .

These two MRJs can make up a JB.

Listing 3. LUBM Query 12

SELECT ?X WHERE {

?X rdf:type ub:Chair.

?Y rdf:type ub:Department.

?X ub:worksFor ?Y.

?Y ub:subOrganizationOf http://www.U0.edu}

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1317

Fig. 2. Partial LUBM ontology (are denotes subClassOf relationship).

Fig. 3. NCMRJ and CMRJ example.

4.2.1 Ideal Model

To answer an SPARQL query, we may need more than one
job. Therefore, in an ideal scenario, the cost estimation for
processing a query requires individual cost estimation of
each job that is needed to answer that query. A job contains
three main tasks, which are reading, sorting, and writing.
We estimate the cost of a job based on these three tasks. For
each task, a unit cost is assigned to each triple pattern it
deals with. In the current model, we assume that costs for
reading and writing are the same.

Cost ¼
Xn�1

i¼1

MIi þMOi þRIi þROi

 !

þMIn þMOn þRIn

ð1Þ

¼
Xn�1

i¼1

Jobi

 !
þMIn þMOn þRIn ð2Þ

Jobi ¼MIi þMOi þRIi þROi ðif i < nÞ: ð3Þ

Where,
MIi ¼ Map Input phase for Job i.
MOi ¼ Map Output phase for Job i.
RIi ¼ Reduce Input phase for Job i.
ROi ¼ Reduce Output phase for Job i.
Equation (1) is the total cost of processing a query. It is

the summation of the individual costs of each job and only
the map phase of the final job. We do not consider the cost
of the reduce output of the final job because it would be
same for any query plan as this output is the final result
which is fixed for a query and a given data set. A job
essentially performs a MapReduce task on the file data.
Equation (2) shows the division of the MapReduce task into
subtasks. Hence, to estimate the cost of each job, we will
combine the estimated cost of each subtask.

Map Input (MI) phase. This phase reads the triple
patterns from the selected input files stored in the HDFS.
Therefore, we can estimate the cost for the MI phase to be
equal to the total number of triples in each of the selected files.

Map Output (MO) phase. The estimation of the MO
phase depends on the type of query being processed. If the
query has no bound variable (e.g., [?X ub:worksFor ?Y]),
then the output of the Map phase is equal to the input. All
of the triple patterns are transformed into key-value pairs
and given as output. Therefore, for such a query the MO
cost will be the same as MI cost. However, if the query
involves a bound variable, (e.g., [?Y ub:subOrganizationOf
<http://www.U0.edu>]), then, before making the key-
value pairs, a bound component selectivity estimation can
be applied. The resulting estimate for the triple patterns will
account for the cost of Map Output phase. The selected
triples are written to a local disk.

Reduce Input (RI) phase. In this phase, the triples from
the Map output phase are read via HTTP and then sorted
based on their key values. After sorting, the triples with
identical keys are grouped together. Therefore, the cost
estimation for the RI phase is equal to the MO phase. The
number of key-value pairs that are sorted in RI is equal to
the number of key-value pairs generated in the MO phase.

Reduce Output (RO) phase. The RO phase deals with
performing the joins. Therefore, it is in this phase we can
use the join triple pattern selectivity summary statistics to
estimate the size of its output. Section 4.2.2 talks in detail
about the join triple pattern selectivity summary statistics
needed for our framework.

However, in practice, the above discussion is applicable
for the first job only. For the subsequent jobs, we lack both
the precise knowledge and estimate of the number of triple
patterns selected after applying the join in the first job.
Therefore, for these jobs, we can take the size of the RO
phase of the first job as an upper bound on the different
phases of the subsequent jobs.

Equation (3) shows a very important postulation. It
illustrates the total cost of an intermediate job, when i < n,
includes the cost of the RO phase in calculating the total
cost of the job.

4.2.2 Heuristic Model

In this section, we show that the ideal model is not practical
or cost effective. There are several issues that make the ideal
model less attractive in practice. First, the ideal model
considers simple abstract costs, namely, the number of
triples read and written by the different phases ignoring the
actual cost of copying, sorting, etc., these triples, and the
overhead for running jobs in Hadoop. But accurately
incorporating those costs in the model is a difficult task.
Even making reasonably good estimation may be nontrivial.
Second, to estimate intermediate join outputs, we need to
maintain comprehensive summary statistics. In a MapRe-
duce job in Hadoop, all the joins on a variable are joined
together. For example, in the rewritten LUBM Query 9
(Listing 2), there are three joins on variable X. When a job is
run to do the join on X, all the joins on X between triple
patterns 1, 2, and 4 are done. If there were more than three
joins onX, all will still be handled in one job. This shows that
in order to gather summary statistics to estimate join
selectivity, we face an exponential number of join cases.
For example, between triple patterns having predicates p1,
p2, and p3, there may be 23 types of joins because in each triple
pattern, a variable can occur either as a subject or an object. In
the case of the rewritten Query 9, it is a subject-subject-
subject join between 1, 2, and 4. There can be more types of
join between these three, e.g., subject-object-subject, object-
subject-object, etc. That means, between P predicates, there
can be 2P type of joins on a single variable (ignoring the
possibility that a variable may appear both as a subject and
object in a triple pattern). If there are P predicates in the data
set, total number of cases for which we need to collect
summary statistics can be calculated by the formula:

22 � CP
2 þ 23 � CP

3 þ � � � þ 2P � CP
P :

In LUBM data set, there are 17 predicates. So, in total,
there are 129,140,128 cases which is a large number.
Gathering summary statistics for such a large number of
cases would be very much time and space consuming.
Hence, we took an alternate approach.

We observe that there is significant overhead for running
a job in Hadoop. Therefore, if we minimize the number of
jobs to answer a query, we get the fastest plan. The
overhead is incurred by several disk I/O and network

1318 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

transfers that are integral part of any Hadoop job. When a

job is submitted to Hadoop cluster, at least the following set

of actions take place:

1. The Executable file is transferred from client
machine to Hadoop JobTracker.18

2. The JobTracker decides which TaskTrackers19 will
execute the job.

3. The Executable file is distributed to the TaskTrackers
over the network.

4. Map processes start by reading data from HDFS.
5. Map outputs are written to discs.
6. Map outputs are read from discs, shuffled (trans-

ferred over the network to TaskTrackers which
would run Reduce processes), sorted, and written
to discs.

7. Reduce processes start by reading the input from
the discs.

8. Reduce outputs are written to discs.

These disk operations and network transfers are ex-

pensive operations even for a small amount of data. For

example, in our experiments, we observed that the over-

head incurred by one job is almost equivalent to reading a

billion triples. The reason is that in every job, the output of

the map process is always sorted before feeding the reduce

processes. This sorting is unavoidable even if it is not

needed by the user. Therefore, it would be less costly to

process several hundred million more triples in n jobs,

rather than processing several hundred million less triples

in nþ 1 jobs.
To further investigate, we did an experiment where we

used the query shown in Listing 4. Here, the join selectivity

between TPs 2 and 3 on ?Z is the highest. Hence, a query plan

generation algorithm which uses selectivity factors to pick

joins would select this join for the first job. As the other TPs 1

and 4 share variables with either TP 2 or 3, they cannot take

part in any other join, moreover, they do not share any

variables so the only possible join that can be executed in this

job is the join between TPs 2 and 3 on ?X. Once this join is

done, the two joins left are between TP 1 and the join output

of first job on variable ?X and between TP 4 and the join

output of first job on variable ?Y . We found that the

selectivity of the first join is greater than the latter one.

Hence, the second job will do this join and TP 4 will again not

participate. In the third and last job, the join output of the

second job will be joined with TP 4 on ?Y . This is the plan

generated using join selectivity estimation. But the minimum

job plan is a 2-job plan where the first job joins TPs 1 and 2 on

?X and TPs 3 and 4 on ?Y . The second and final job joins the

two join outputs of the first job on ?Z. The query runtimes we

found are shown in Table 3 in seconds.

Listing 4. Experiment Query

?S1 ub:advisor ?X.

?X ub:headOf ?Z.
?Z ub:subOrganizationOf ?Y.

?S2 ub:mastersDegreeFrom ?Y

We can see that for each data set, the 2-job plan is faster
than the 3-job plan even though the 3-job plan produced less
intermediate data because of the join selectivity order. We
can explain this by an observation we made in another small
experiment. We generated files of sizes 5 and 10 MB
containing random integers. We put the files in HDFS. For
each file, we first read the file by a program and recorded the
time needed to do it. While reading, our program reads from
one of the three available replica of the file. Then, we ran a
MapReduce job which rewrites the file with the numbers
sorted. We utilized MapReduces sorting to have the sorted
output. Please also note than when it writes the file, it writes
three replications of it. We found that the MapReduce job,
which does reading, sorting, and writing, takes 24.47 times
longer to finish for 5 MB. For 10 MB, it is 42.79 times. This
clearly shows how the write and data transfer operations of a
MapReduce job are more expensive than a simple read from
only one replica. Because of the number of jobs, the 3-job
plan is doing much more disk read and write operations as
well as network data transfers and as a result is slower than
the 2-job plan even if it is reading less input data.

Because of these reasons, we do not pursue the ideal
model. We follow the practical model, which is to generate
a query plan having minimum possible jobs. However,
while generating a minimum job plan, whenever we need to
choose a join to be considered in a job among more than one
joins, instead of choosing randomly, we use the summary
join statistics. This is described in Section 4.4.

4.3 Query Plan Generation

In this section, first we define the query plan generation
problem, and show that generating the best (i.e., least cost)
query plan for the ideal model (Section 4.2.1) as well as for
the practical model (Section 4.2.2) is computationally
expensive. Then, we will present a heuristic and a greedy
approach to generate an approximate solution to generate
the best plan.

Running example. We will use the following query as a
running example in this section:

Listing 5. Running Example

SELECT ?V,?X,?Y,?Z WHERE{
?X rdf:type ub:GraduateStudent

?Y rdf:type ub:University

?Z ?V ub:Department

?X ub:memberOf ?Z

?X ub:undergraduateDegreeFrom ?Y}

In order to simplify the notations, we will only refer to
the TPs by the variable in that pattern. For example, the first
TP (?X rdf:type ub:GraduateStudent) will be represented as
simply X. Also, in the simplified version, the whole query
would be represented as follows: {X,Y,Z,XZ,XY}. We shall

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1319

TABLE 3
2-Job Plan versus 3-Job Plan

18. http://wiki.apache.org/hadoop/JobTracker.
19. http://wiki.apache.org/hadoop/TaskTracker.

use the notation join(XY,X) to denote a join operation

between the two TPs XY and X on the common variable X.

Definition 7 (The Minimum Cost Plan Generation

Problem). (Bestplan Problem). For a given query, the

Bestplan problem is to generate a job plan so that the total cost

of the jobs is minimized. Note that Bestplan considers the more

general case where each job has some cost associated with it

(i.e., the ideal model).

Example. Given the query in our running example, two

possible job plans are as follows:

Plan 1. job1 ¼ joinðX;XZ;XYÞ, resultant TPs¼fY;Z;YZg.
job2 ¼ joinðY;YZÞ, resultant TPs ¼ Z;Z. job3 ¼ joinðZ;ZÞ.
Totalcost ¼ costðjob1Þ þ costðjob2Þ þ costðjob3Þ.

Plan 2. job1 ¼ joinðXZ;ZÞ and join(XY,Y) resultant

TPs¼X;X;X. job2 ¼ joinðX;X;XÞ: Totalcost ¼ costðjob1Þ þ
costðjob2Þ.

The Bestplan problem is to find the least cost job plan

among all possible job plans.
Related terms.

Definition 8 (Joining Variable). A variable that is common in

two or more triple patterns. For example, in the running

example query, X,Y,Z are joining variables, but V is not.

Definition 9 (Complete Elimination). A join operation that

eliminates a joining variable. For example, in the example

query, Y can be completely eliminated if we join (XY,Y).

Definition 10 (Partial Elimination). A join operation that

partially eliminates a joining variable. For example, in the

example query, if we perform join(XY,Y) and join(X,ZX) in

the same job, the resultant triple patterns would be {X,Z,X}.

Therefore, Y will be completely eliminated, but X will be

partially eliminated. So, the join(X,ZX) performs a partial

elimination.

Definition 11 (E-Count(v)). E-count(v) is the number of

joining variables in the resultant triple pattern after a

complete elimination of variable v. In the running example,

join(X,XY,XZ) completely eliminates X, and the resultant

triple pattern (YZ) has two joining variables Y and Z.

So, E-countðXÞ ¼ 2. Similarly, E-countðY Þ ¼ 1 and

E-countðZÞ ¼ 1.

4.3.1 Computational Complexity of Bestplan

It can be shown that generating the least cost query plan is

computationally expensive, since the search space is

exponentially large. At first, we formulate the problem,

and then show its complexity.
Problem formulation. We formulate Bestplan as a search

problem. Let G ¼ ðV ;EÞ be a weighted directed graph,

where each vertex vi 2 V represents a state of the triple

patterns, and each edge ei ¼ ðvi1 ; vi2Þ 2 E represents a job

that makes a transition from state vi1 to state vi2 . v0 is the

initial state, where no joins have been performed, i.e., the

given query. Also, vgoal is the goal state, which represents a

state of the triple pattern where all joins have been

performed. The problem is to find the shortest weighted

path from v0 to vgoal.

For example, in our running example query, the initial
statev0 ¼ fX;Y ; Z;XY ;XZg, and the goal state, vgoal ¼ �, i.e.,
no more triple patterns left. Suppose the first job (job1)
performs join(X,XY,XZ). Then, the resultant triple patterns
(new state) would be v1 ¼ fY ; Z; Y Zg, and job1 would be
represented by the edge ðv0; v1Þ. The weight of edge ðv0; v1Þ is
the cost of job1 ¼ costðjob1Þ, where cost is the given cost
function. Fig. 4 shows the partial graph for the example query.

Search space size. Given a graph G ¼ ðV ;EÞ, Dijkstra’s
shortest path algorithm can find the shortest path from a
source to all other nodes in OðjV jlogjV j þ jEjÞ time.
However, for Bestplan, it can be shown that in the worst
case, jV j � 2K , where K is the total number of joining
variables in the given query. Therefore, the number of
vertices in the graph is exponential, leading to an
exponential search problem.

Theorem 1. The worst case complexity of the Bestplan problem
is exponential in K, the number of joining variables in the
given query.

Proof. Let us consider the number of possible jobs on the
initial query (i.e., number of outgoing edges from v0). Let
n be the maximum number of concurrent complete
eliminations possible on the initial query (i.e., maximum
number of complete eliminations possible in one job).
Any of the 2n � 1 combinations of complete eliminations
can lead to a feasible job. In our running example, n ¼ 2,
we can completely eliminate both Y and Z concurrently
in one job. However, we may choose among these
eliminations in 22 � 1 ways, namely, eliminate only Y,
eliminate only Z, and eliminate both Y and Z in one job.
22 � 1 different jobs can be generated. For each combina-
tion of complete eliminations, there may be zero or more
possible partial eliminations. Again, we may choose any
combination of those partial eliminations. For example, if
we choose to eliminate Y only, then we can partially
eliminate X. We may or may not choose to partially
eliminate X, leading to two different job patterns.
Therefore, the minimum number of possible jobs (out-
going edges) on the initial query (i.e., v0) is 2n � 1. Note

1320 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

Fig. 4. The (partial) graph for the running example query with the initial
state and all states adjacent to it.

that each of these jobs (i.e., edges) will lead to a unique

state (i.e., vertex). Therefore, the number of vertices

adjacent to v0 is at least 2n � 1. In the worst case, n ¼ K,

meaning, the minimum number of vertices adjacent to v0

is 2K � 1. Note that we are not even counting the vertices

(i.e., states) that are generated from these 2K � 1 vertices.

Since the complexity of computing the least cost path

from v0 to vgoal is at least OðjV jlogjV j þ jEjÞ, the solution

to the Bestplan problem is exponential in the number of

joining variables in the worst case. tu

However, we may still solve Bestplan in reasonable

amount of time if K is small. This solution would involve

generating the graph G and then finding the shortest path

from v0 to vgoal.

4.3.2 Relaxed Bestplan Problem and Approximate

Solution

In the Relaxed Bestplan problem, we assume uniform cost for

all jobs. Although this relaxation does not reduce the search

space, the problem is reduced to finding a job plan having the

minimum number of jobs. Note that this is the problem for

the practical version of the model (Section 4.2.2).

Definition 12 (Relaxed Bestplan Problem). The Relaxed

Bestplan problem is to find the job plan that has the minimum

number of jobs.

Next, we show that if joins are reasonably chosen, and no

eligible join operation is left undone in a job, then we may set

an upper bound on the maximum number of jobs required

for any given query. However, it is still computationally

expensive to generate all possible job plans. Therefore, we

resort to a greedy algorithm (Algorithm 1), that finds an

approximate solution to the Relaxed Bestplan problem, but is

guaranteed to find a job plan within the upper bound.

Algorithm 1. Relaxed-Bestplan (Query Q)
1: Q Remove_non-joining_variables(Q)

2: while Q 6¼ Empty do

3: J 1 //Total number of jobs

4: U ¼ fu1; . . . ; uKg All variables sorted in

non-decreasing order of their E-counts

5: JobJ Empty //List of join operations in the

//current job

6: tmp Empty // Temporarily stores resultant
//triple patterns

7: for i ¼ 1 to K do

8: if Can-Eliminate(Q,ui)=true then

// complete or partial elimination possible

9: tmp tmp [Join-result(TP(Q,ui))

10: Q Q - TP(Q,ui)

11: JobJ JobJ [join(TP(Q,ui))

12: end if

13: end for

14: Q Q [tmp

15: J J þ 1

16: end while

17: return {Job1; . . . ; JobJ�1}

Definition 13 (Early Elimination Heuristic). The early
elimination heuristic makes as many complete eliminations
as possible in each job.

This heuristic leaves the fewest number of variables for
join in the next job. In order to apply the heuristic, we must
first choose the variable in each job with the least E-count.
This heuristic is applied in Algorithm 1.

Description of Algorithm 1. The algorithm starts by
removing all the nonjoining variables from the query Q. In
our running example, Q ¼ fX;Y;VZ;XY;XZg, and remov-
ing the nonjoining variable V makes Q ¼ fX;Y;Z;XY;XZg.
In the while loop, the job plan is generated, starting from
Job1. In line 4, we sort the variables according to their E-
count. The sorted variables are: U ¼ fY ; Z;Xg, since Y, and
Z have E-count ¼ 1, and X has E-count ¼ 2. For each job, the
list of join operations is stored in the variable JobJ , where J
is the ID of the current job. Also, a temporary variable tmp
is used to store the resultant triples of the joins to be
performed in the current job (line 6). In the for loop, each
variable is checked to see if the variable can be completely
or partially eliminated (line 8). If yes, we store the join result
in the temporary variable (line 9), update Q (line 10), and
add this join to the current job (line 11). In our running
example, this results in the following operations: Iteration 1
of the for loop: u1ð¼ YÞ can be completely eliminated. Here,
TPðQ;YÞ ¼ the triple patterns in Q containing

Y ¼ fY;XYg: Join-resultðTPðQ;YÞÞ ¼ Join-resultðfY;XYgÞ
¼ resultant

triple after the joinðY;XYÞ ¼ X. So,

tmp ¼ fXg:Q ¼ Q� TPðQ;YÞ
¼ fX;Y;Z;XY;XZg � fY;XYg ¼ fX;Z;XZg:

Job1 ¼ fjoinðY;XYÞg:

Iteration 2 of the for loop: u2ð¼ ZÞ can be completely
eliminated. Here, TPðQ;ZÞ ¼ fZ;XZg, and

Join-resultðfZ;XZgÞ ¼ X: So; tmp ¼ fX;Xg;
Q ¼ Q� TPðQ;ZÞ ¼ fX;Z;XZg � fZ;ZXg ¼ fXg;
Job1 ¼ fjoinðY;XYÞ; joinðZ;XZÞg:

Iteration 3 of the for loop: u3ð¼ XÞ cannot be completely or
partially eliminated, since there is no other TP left to join
with it. Therefore, when the for loop terminates, we have
Job1 ¼ fjoinðY;XYÞ; joinðZ;XZÞg, and Q ¼ fX;X;Xg. In the
second iteration of the while loop, we will have
Job2 ¼ joinðX;X;XÞ. Since after this join, Q becomes Empty,
the while loop is exited. Finally, fJob1; Job2g are returned
from the algorithm.

Theorem 2. For any given query Q, containing K joining
variables andN triple patterns, Algorithm Relaxed-Bestplan(Q)
generates a job plan containing at most J jobs, where

J ¼
0; N ¼ 0;
1; N ¼ 1 or K ¼ 1;
minðd1:71 log2 Ne; KÞ; N;K > 1:

8<
: ð4Þ

Proof. The first two cases are trivial. For the third case, we
need to show that the number of jobs is 1) at most K, and
2) at most d1:71 log2 Ne. It is easy to show that the

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1321

number of jobs can be at most K. Since with each job, we
completely eliminate at least one variable, we need at
most K jobs to eliminate all variables. In order to show
that 2) is true, we consider the job construction loop (for
loop) of the algorithm for the first job. In the for loop, we
try to eliminate as many variables as possible by joining
TPs containing that variable. Suppose L TPs could not
participate in any join because of conflict between one (or
more) of their variables and other triple patterns already
taken by another join in the same job. In our running
example, TP X could not participate in any join in Job1

since other TPs containing X have already been taken by
other joins. Therefore, L ¼ 1 in this example. Note that
each of the L TPs had conflict with one (or more) joins in
the job. For example, the left-over TP X had conflict with
both Join(Y,XY), and Join(Z,ZX). It can be shown that for
each of the L TPs, there is at least one unique Join
operation which is in conflict with the TP. Suppose there
is a TP tpi, for which it is not true (i.e., tpi does not have a
unique conflicting Join). Therefore, tpi must be sharing a
conflicting Join with another TP tpj (that is why the Join
is not unique for tpi). Also, tpi and tpj do not have any
variable in common, since otherwise we could join them,
reducing the value of L. Since both tpi and tpj are in
conflict with the Join, the Join must involve a variable
that does not belong to either tpi or tpj. To illustrate this
with an example, suppose the conflicting Join is join
(UX,UV), and tpi ¼ X, tpj ¼ V. It is clear that E-count of
U must be at least 2, whereas E-count of X and V is 1.
Therefore, X and Y must have been considered for
elimination before U. In this case, we would have chosen
the joins: join(X,UX) and join(V,UV), rather than join
(UX,UV). So, either tpi (and tpj) must have a unique
conflicting Join, or tpi must have participated in a join.

To summarize the fact, there have been at least
M >¼ L joins selected in Job1. So, the total number of
TPs left after executing all the joins of Job1 is M þ L.
Note that each of the M joins involves at least two TPs.
Therefore, 2M þ L � N , where N is the total number of
TPs in the given query. From the above discussion, we
come up with the following relationships:

2M þ L � N) 2ðLþ �Þ þ L � N ðLetting � � 0Þ
) 3Lþ 2� � N

) 2Lþ 4

3
� � 2

3
N ðMultiplying both sides with 2=3Þ

) 2Lþ � � 2

3
N)M þ L � 2

3
N:

So, the first job, as well as each remaining jobs reduces
the number of TPs to at least two third. Therefore, there
is an integer J such that

2

3

� �J
N � 1 � 2

3

� �Jþ1

N) 3

2

� �J
� N � 3

2

� �Jþ1

) J � log3=2 N ¼ 1:71 log2 N � J þ 1:

So, the total number of jobs, J is also bounded by
d1:71 log2 Ne. tu

In most real-world scenarios, we can safely assume that
more than 100 triples in a query are extremely rare. So, the

maximum number of jobs required with the Relaxed-
Bestplan algorithm is at most 12.

Complexity of the Relaxed-Bestplan algorithm. The
outer loop (while loop) runs at most J times, where J is the
upper bound of the number of jobs. The inner (for) loop
runs at most K times, where K is the number of joining
variables in the given query. The sorting requires
OðK logKÞ time. Therefore, the overall complexity of the
algorithm is OðKðJ þ logKÞÞ.

4.4 Breaking Ties by Summary Statistics

We frequently face situations where we need to choose a
join for multiple join options. These choices can occur when
both query plans (i.e., join orderings) require the minimum
number of jobs. For example, the query shown in Listing 6
poses such a situation.

Listing 6. Query Having Tie Situation

?X rdf:type ub:FullProfessor.

?X ub:advisorOf ?Y.

?Y rdf:type ub:ResearchAssistant.

The second triple pattern in the query makes it
impossible to answer and solve the query with only one
job. There are only two possible plans: we can join the first
two triple patterns on X first and then join its output with
the last triple pattern on Y or we can join the last two
patterns first on Y and then join its output with the first
pattern on X. In such a situation, instead of randomly
choosing a join variable for the first job, we use join
summary statistics for a pair of predicates. We select the join
for the first job which is more selective to break the tie. The
join summary statistics we use is described in [36].

4.5 MapReduce Join Execution

In this section, we discuss how we implement the joins
needed to answer SPARQL queries using MapReduce
framework of Hadoop. Algorithm 1 determines the number
of jobs required to answer a query. It returns an ordered set
of jobs. Each job has associated input information. The Job
Handler component of our MapReduce framework runs the
jobs in the sequence they appear in the ordered set. The
output file of one job is the input of the next. The output file
of the last job has the answer to the query.

Listing 7 shows LUBM Query 2, which we will use to
illustrate the way we do a join using map and reduce
methods. The query has six triple patterns and nine joins
between them on the variables X, Y , and Z. Our input
selection algorithm selects files type_GraduateStudent, type_
University, type_Department, all files having the prefix
memberOf, all files having the prefix subOrganizationOf,
and all files having the prefix underGraduateDegreeFrom as
the input to the jobs needed to answer the query.

Listing 7. LUBM Query 2

SELECT ?X, ?Y, ?Z WHERE {
?X rdf:type ub:GraduateStudent.

?Y rdf:type ub:University.

?Z rdf:type ub:Department.

?X ub:memberOf ?Z.

?Z ub:subOrganizationOf ?Y.

?X ub:undergraduateDegreeFrom ?Y}

1322 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

The query plan has two jobs. In job 1, triple patterns of
lines 2, 5, and 7 are joined on X and triple patterns of lines 3
and 6 are joined on Y . In job 2, triple pattern of line 4 is
joined with the outputs of previous two joins on Z and also
the join outputs of job 1 are joined on Y .

The input files of job 1 are type_GraduateStudent, type_
University, all files having the prefix memberOf, all files
having the prefix subOrganizationOf, and all files having the
prefix underGraduateDegreeFrom. In the map phase, we first
tokenize the input value which is actually a line of the input
file. Then, we check the input file name and, if input is from
type_GraduateStudent, we output a key-value pair having the
subject URI prefixed with X# the key and a flag string GS#
as the value. The value serves as a flag to indicate that the
key is of type GraduateStudent. The subject URI is the first
token returned by the tokenizer. Similarly, for input from
file type_University output a key-value pair having the
subject URI prefixed with Y# the key and a flag string U# as
the value. If the input from any file has the prefix memberOf,
we retrieve the subject and object from the input line by the
tokenizer and output a key-value pair having the subject
URI prefixed with X# the key and the object value prefixed
with MO# as the value. For input from files having the
prefix subOrganizationOf, we output key-value pairs making
the object prefixed with Y# the key and the subject prefixed
with SO# the value. For input from files having the prefix
underGraduateDegreeFrom, we output key-value pairs mak-
ing the subject URI prefixed with X# the key and the object
value prefixed with UDF# the value. Hence, we make either
the subject or the object a map output key based on which
we are joining. This is the reason why the object is made the
key for the triples from files having the prefix subOrgani-
zationOf because the joining variable Y is an object in the
triple pattern in line 6. For all other inputs, the subject is
made the key because the joining variables X and Y are
subjects in the triple patterns in lines 2, 3, 5, and 7.

In the reduce phase, Hadoop groups all the values for a
single key and for each key provides the key and an iterator
to the values collection. Looking at the prefix, we can
immediately tell if it is a value for X or Y because of the
prefixes we used. In either case, we output a key-value pair
using the same key and concatenating all the values to make
a string value. So, after this reduce phase, join on X is
complete and on Y is partially complete.

The input files of job 2 are type_Department file and the
output file of job 1, job1.out. Like the map phase of job 1, in
the map phase of job 2, we also tokenize the input value
which is actually a line of the input file. Then, we check
the input file name and, if input is from type_Department,
we output a key-value pair having the subject URI
prefixed with Z# the key and a flag string D# as the
value. If the input is from job1.out, we find the value
having the prefix Z#. We make this value the output key
and concatenate rest of the values to make a string and
make it the output value. Basically, we make the Z# values
the keys to join on Z.

In the reduce phase, we know that the key is the value for
Z. The values collection has two types of strings. One has X
values, which are URIs for graduate students and also Y
values from which they got their undergraduate degree.
The Z value, i.e., the key, may or may not be a
subOrganizationOf the Y value. The other types of strings
have only Y values which are universities and of which the

Z value is a suborganization. We iterate over the values
collection and then join the two types of tuples on Y values.
From the join output, we find the result tuples which have
values for X, Y , and Z.

5 RESULTS

In this section, we first present the benchmark data sets
with which we experimented. Next, we present the
alternative repositories we evaluated for comparison. Then,
we detail our experimental setup. Finally, we present our
evaluation results.

5.1 Data Sets

In our experiments with SPARQL query processing, we use
two synthetic data sets: LUBM [18] and SP2B [34]. The
LUBM data set generates data about universities by using
an ontology.20 It has 14 standard queries. Some of the
queries require inference to answer. The LUBM data set is
very good for both inference and scalability testing. For all
LUBM data sets, we used the default seed. The SP2B data
set is good for scalability testing with complex queries and
data access patterns. It has 16 queries most of which have
complex structures.

5.2 Baseline Frameworks

We compared our framework with RDF-3X [29], Jena,21

and BigOWLIM.22 RDF-3X is considered the fastest
semantic web framework with persistent storage. Jena is
an open source framework for semantic web data. It has
several models which can be used to store and retrieve
RDF data. We chose Jena’s in-memory and SDB models to
compare our framework with. As the name suggests, the
in-memory model stores the data in main memory and
does not persist data. The SDB model is a persistent model
and can use many off-the-shelf database management
systems. We used MySQL database as SDB’s backend in
our experiments. BigOWLIM is a proprietary framework
which is the state-of-the-art significantly fast framework
for semantic web data. It can act both as a persistent and
nonpersistent storage. All of these frameworks run in a
single machine setup.

5.3 Experimental Setup

5.3.1 Hardware

We have a 10-node Hadoop cluster which we use for our
framework. Each of the nodes has the following configura-
tion: Pentium IV 2.80 GHz processor, 4 GB main memory,
and 640 GB disk space. We ran Jena, RDF-3X, and
BigOWLIM frameworks on a powerful single machine
having 2.80 GHz quad core processor, 8 GB main memory,
and 1 TB disk space.

5.3.2 Software

We used hadoop-0.20.1 for our framework. We compared
our framework with Jena-2.5.7 which used MySQL 14.12 for
its SDB model. We used BigOWLIM version 3.2.6. For RDF-
3X, we utilized version 0.3.5 of the source code.

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1323

20. http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl.
21. http://jena.sourceforge.net.
22. http://www.ontotext.com/owlim/big/index.html.

5.4 Evaluation

In this section, we present performance comparison
between our framework, RDF-3X, Jena In-Memory and
SDB models, and BigOWLIM.

Table 4 summarizes our comparison with RDF-3X. We
used three LUBM data sets: 10,000, 20,000, and 30,000 which
have more than 1.1, 2.2, and 3.3 billion triples, respectively.
Initial population time for RDF-3X took 655, 1,756, and
3,353 minutes to load the data sets, respectively. This shows
that the RDF-3X load time is increasing exponentially.
LUBM (30,000) has three times as many triples as LUBM
(10,000) yet it requires more than five times as long to load.

For evaluation purposes, we chose LUBM Queries 1, 2, 4,
9, 12, and 13 to be reported in this paper. These queries
provide a good mixture and include simple and complex
structures, inference, and multiple types of joins. They are
representatives of other queries of the benchmark and so
reporting only these covers all types of variations found in
the queries we left out and also saves space. Query 1 is a
simple selective query. RDF-3X is much faster than
HadoopRDF for this query. RDF-3X utilizes six indexes
[29] and those six indexes actually make up the data set. The
indexes provide RDF-3X a very fast way to look up triples,
similar to a hash table. Hence, a highly selective query is
efficiently answered by RDF-3X. Query 2 is a query with
complex structures, low selectivity, and no bound objects.
The result set is quite large. For this query, HadoopRDF
outperforms RDF-3X for all three data set sizes. RDF-3X
fails to answer the query at all when the data set size is
3.3 billion triples. RDF-3X returns memory segmentation
fault error messages, and does not produce any query
results. Query 4 is also a highly selective query, i.e., the
result set size is small because of a bound object in the
second triple pattern but it needs inferencing to answer it.
The first triple pattern uses the class Person which is a
superclass of many classes. No resource in LUBM data set is
of type Person, rather there are many resources which are its
subtypes. RDF-3X does not support inferencing so we had
to convert the query to an equivalent query having some
union operations. RDF-3X outperforms HadoopRDF for this
query. Query 9 is similar in structure to Query 2 but it
requires significant inferencing. The first three triple
patterns of this query use classes of which are not explicitly
instantiated in the data set. However, the data set includes
many instances of the corresponding subclasses. This is also
the query which requires the largest data set join and
returns the largest result set out of the queries we evaluated.
RDF-3X is faster than HadoopRDF for 1.1 billion triples data
set but it fails to answer the query at all for the other two

data sets. Query 12 is similar to Query 4 because it is both
selective and has inferencing in one triple pattern. RDF-3X
beats HadoopRDF for this query. Query 13 has only two
triple patterns. Both of them involve inferencing. There is a
bound subject in the second triple pattern. It returns the
second largest result set. HadoopRDF beats RDF-3X for this
query for all data sets. RDF-3X’s performance is slow
because the first triple pattern has very low selectivity and
requires low selectivity joins to perform inference via
backward chaining.

These results lead us to some simple conclusions. RDF-
3X achieves the best performance for queries with high
selectivity and bound objects. However, HadoopRDF out-
performs RDF-3X for queries with unbound objects, low
selectivity, or large data set joins. RDF-3X cannot execute
the two queries with unbound objects (Queries 2 and 9) for
a 3.3 billion triples data set. This demonstrates that
HadoopRDF is more scalable and handles low selectivity
queries more efficiently than RDF-3X.

We also compared our implementation with the Jena In-
Memory model and the SDB models and BigOWLIM. Due
to space and time limitations, we performed these tests only
for LUBM Queries 2 and 9 from the LUBM data set. We
chose these queries because they have complex structures
and require inference. It is to be noted that BigOWLIM
needed 7 GB of Java heap space to successfully load the
billion triples data set. Figs. 5 and 6 show the performance
comparison for the queries, respectively. In each of these
figures, the X-axis represents the number of triples (in
billions) and the Y-axis represents the time (in seconds). We
ran BigOWLIM only for the largest three data sets as we are
interested in its performance with large data sets. For each
set, on the X-axis, there are four columns which show the
results of Jena In-Memory model, Jena SDB model, our
Hadoop implementation, and BigOWLIM, respectively. A
cross represents either that the query could not complete or that it
ran out of memory. In most of the cases, our approach was the
fastest. For Query 2, Jena In-Memory Model and Jena SDB
model were faster than our approach, giving results in
3.9 and 0.4 seconds, respectively. However, as the size of the
data set grew, Jena In-Memory model ran out of memory
space. Our implementation was much faster than Jena SDB
model for large data sets. For example, in Fig. 5 for
110 million triples, our approach took 143.5 seconds as
compared to about 5,000 seconds for Jena-SDB model. In
Fig. 6, we can see that Jena SDB model could not finish
answering Query 9. Jena In-Memory Model worked well for
small data sets but became slower than our implementation
as the data set size grew and eventually ran out of memory.

1324 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

TABLE 4
Comparison with RDF-3X

For Query 2 (Fig. 5), BigOWLIM was slower than us for the
110 and 550 million data sets. For 550 million data set, it
took 22693.4 seconds, which is abruptly high compared to
its other timings. For the billion triple data set, BigOWLIM
was faster. It should be noted that our framework does not
have any indexing or triple cache whereas BigOWLIM
exploits indexing which it loads into main memory when it
starts. It may also prefetch triples into main memory. For
Query 9 (Fig. 6), our implementation is faster than
BigOWLIM in all experiments.

It should be noted that our RDF-3X queries and
HadoopRDF queries were tested using cold runs. What
we mean by this is that main memory and file system cache
were cleared prior to execution. However, for BigOWLIM, we
were forced to execute hot runs. This is because it takes a
significant amount of time to load a database into BigOWLIM.
Therefore, we will always easily outperform BigOWLIM for
cold runs. So, we actually tested BigOWLIM for hot runs
against HadoopRDF for cold runs. This gives a tremendous
advantage to BigOWLIM, yet for large data sets, HadoopRDF
still produced much better results. This shows that Ha-
doopRDF is much more scalable than BigOWLIM, and
provides more efficient queries for large data sets.

The final tests we have performed are an in-depth
scalability test. For this, we repeated the same queries for
eight different data set sizes, all the way up to 6.6 billion.
Table 5 shows query time to execute the plan generated
using Relaxed-Bestplan algorithm on different-sized data sets.
The first column represents the number of triples in the data

set. Columns 2 to 6 of Table 5 represent the five selected
queries from the LUBM data set whereas the last three
columns are the queries from SP2B data set. Query
answering time is in seconds. The number of triples is
rounded. As expected, as the number of triples increases, the
time to answer a query also increases. For example, Query 1
for 100 million triples took 66.3 seconds whereas for
1,100 million triples 248.3 seconds and for 6.6 billion triples
1253.8 seconds. But we can see that this increase in time is
sublinear which is a very good property of our framework.
Query 1 is simple and requires only one join, thus it took the
least amount of time among all the queries. Query 2 is one of
the two queries having the greatest number of triple
patterns. We can observe that even though it has three times
more triple patterns, it does not take thrice the time of Query
1 answering time because of our storage schema. Query 4 has
one less triple pattern than Query 2, but it requires
inferencing. As we determine inferred relations on the fly,
queries requiring inference take longer times in our frame-
work. Queries 9 and 12 also require inferencing.

As the size of the data set grows, the increase in time to
answer a query does not grow proportionately. The increase
in time is always less. For example, there are 10 times as
many triples in the data set of 10,000 universities than
1,000 universities, but for Query 1, the time only increases
by 3.76 times and for query 9 by 7.49 times. The latter is the
highest increase in time, yet it is still less than the increase
in the size of the data sets. Due to space limitations, we do
not report query runtimes with PS schema here. We
observed that PS schema is much slower than POS schema.

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1325

Fig. 5. Response time of LUBM Query 2. Fig. 6. Response time of LUBM Query 9.

TABLE 5
Query Runtimes for LUBM and SP2B Data Set

6 CONCLUSIONS and FUTURE WORKS

We have presented a framework capable of handling
enormous amount of RDF data. Since our framework is
based on Hadoop, which is a distributed and highly fault
tolerant system, it inherits these two properties automati-
cally. The framework is highly scalable. To increase capacity
of our system, all that needs to be done is to add new nodes to
the Hadoop cluster. We have proposed a schema to store RDF
data, an algorithm to determine a query processing plan,
whose worst case is bounded, to answer an SPARQL query
and a simplified cost model to be used by the algorithm. Our
experiments demonstrate that our system is highly scalable.
If we increase the data volume, the delay introduced to
answer a query does not increase proportionally. The results
indicate that for very large data sets (over one billion triples),
HadoopRDF is preferable and more efficient if the query
includes low selectivity joins or significant inference. Other
solutions may be more efficient if the query includes bound
objects which produce high selectivity.

In the future, we would like to extend the work in few
directions. First, we will investigate more sophisticated
query model. We will cache statistics for the most frequent
queries and use dynamic programming to exploit the
statistics. Second, we will evaluate the impact of the
number of reducers, the only parameter of a Hadoop job
specifiable by user, on the query runtimes. Third, we will
investigate indexing opportunities and further usage of
binary formats. Finally, we will handle more complex
SPARQL patterns, e.g., queries having OPTIONAL blocks.

ACKNOWLEDGMENTS

This material is based upon work supported by the AFOSR
under Award No. FA9550-08-1-0260 and NASA under
Award No. 2008-00867-01.

REFERENCES

[1] D.J. Abadi, “Data Management in the Cloud: Limitations and
Opportunities,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 3-12,
Mar. 2009.

[2] D.J. Abadi, A. Marcus, S.R. Madden, and K. Hollenbach, “SW-
Store: A Vertically Partitioned DBMS for Semantic Web Data
Management,” VLDB J., vol. 18, no. 2, pp. 385-406, Apr. 2009.

[3] D.J. Abadi, A. Marcus, S.R. Madden, and K. Hollenbach, “Scalable
Semantic Web Data Management Using Vertical Partitioning,”
Proc. 33rd Int’l Conf. Very Large Data Bases, 2007.

[4] A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A. Silberschatz,
and A. Rasin, “HadoopDB: An Architectural Hybrid of MapRe-
duce and DBMS Technologies for Analytical Workloads,” Proc.
VLDB Endowment, vol. 2, pp. 922-933, 2009.

[5] M. Atre, J. Srinivasan, and J.A. Hendler, “BitMat: A Main-Memory
Bit Matrix of RDF Triples for Conjunctive Triple Pattern Queries,”
Proc. Int’l Semantic Web Conf., 2008.

[6] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J.
Teubner, “MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 479-490, 2006.

[7] J.J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: Implementing the Semantic Web Recom-
mendations,” Proc. 13th Int’l World Wide Web Conf. Alternate Track
Papers and Posters, pp. 74-83, 2004.

[8] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: A
Distributed Storage System for Structured Data,” Proc. Seventh
USENIX Symp. Operating System Design and Implementation, Nov.
2006.

[9] A. Chebotko, S. Lu, and F. Fotouhi, Semantics Preserving SPARQL-
to-SQL Translation, Technical Report TR-DB-112007-CLF, 2007.

[10] E.I. Chong, S. Das, G. Eadon, and J. Srinivasan, “An Efficient SQL-
Based RDF Querying Scheme,” Proc. Int’l Conf. Very Large Data
Bases (VLDB ’05), 2005.

[11] C.T. Chu, S.K. Kim, Y.A. Lin, Y. Yu, G. Bradski, A.Y. Ng, and K.
Olukotun, “Map-Reduce for Machine Learning on Multicore,”
Proc. Neural Information Processing Systems (NIPS), 2007.

[12] R. Cyganiak, A Relational Algebra for SPARQL, Technical Report
HPL-2005-170, 2005.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Proces-
sing on Large Clusters,” Proc. Sixth Conf. Symp. Operating Systems
Design and Implementation, 2004.

[14] L. Ding, T. Finin, Y. Peng, P.P. da Silva, and D.L. Mcguinness,
“Tracking RDF Graph Provenance Using RDF Molecules,” Proc.
Fourth Int’l Semantic Web Conf., 2005.

[15] R. Elmasri and B. Navathe, Fundamentals of Database Systems.
Pearson Education, 1994.

[16] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and S.
Manegold, “Column-Store Support for RDF Data Management:
Not All Swans Are White,” Proc. VLDB Endowment, vol. 1, no. 2,
pp. 1553-1563, Aug. 2008.

[17] Y. Guo and J. Heflin, “A Scalable Approach for Partitioning OWL
Knowledge Bases,” Proc. Second Int’l Workshop Scalable Semantic
Web Knowledge Base Systems, 2006.

[18] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A Benchmark for OWL
Knowledge Base Systems,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, pp. 158-182, 2005.

[19] Y. Guo, Z. Pan, and J. Heflin, “An Evaluation of Knowledge Base
Systems for Large OWL Datasets,” Proc. Int’l Semantic Web Conf.,
2004.

[20] M.F. Husain, P. Doshi, L. Khan, and B. Thuraisingham, “Storage
and Retrieval of Large RDF Graph Using Hadoop and MapRe-
duce,” Proc. First Int’l Conf. Cloud Computing, http://www.utdal-
las.edu/mfh062000/techreport1.pdf, 2009.

[21] M.F. Husain, L. Khan, M. Kantarcioglu, and B. Thuraisingham,
“Data Intensive Query Processing for Large RDF Graphs Using
Cloud Computing Tools,” Proc. IEEE Int’l Conf. Cloud Computing,
pp. 1-10, July 2010.

[22] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM: A Pragmatic
Semantic Repository for OWL,” Proc. Int’l Workshop Scalable
Semantic Web Knowledge Base Systems (SSWS), 2005.

[23] J.P. Mcglothlin and L.R. Khan, “RDFKB: Efficient Support for RDF
Inference Queries and Knowledge Management,” Proc. Int’l
Database Eng. and Applications Symp. (IDEAS), 2009.

[24] J.P. McGlothlin and L. Khan, “Materializing and Persisting
Inferred and Uncertain Knowledge in RDF Datasets,” Proc. AAAI
Conf. Artificial Intelligence, 2010.

[25] A.W. Mcnabb, C.K. Monson, and K.D. Seppi, “MRPSO: MapRe-
duce Particle Swarm Optimization,” Proc. Ann. Conf. Genetic and
Evolutionary Computation (GECCO), 2007.

[26] P. Mika and G. Tummarello, “Web Semantics in the Clouds,” IEEE
Intelligent Systems, vol. 23, no. 5, pp. 82-87, Sept./Oct. 2008.

[27] J.E. Moreira, M.M. Michael, D. Da Silva, D. Shiloach, P. Dube, and
L. Zhang, “Scalability of the Nutch Search Engine,” Proc. 21st Ann.
Int’l Conf. Supercomputing (ICS ’07), pp. 3-12, June 2007.

[28] C. Moretti, K. Steinhaeuser, D. Thain, and N. Chawla, “Scaling Up
Classifiers to Cloud Computers,” Proc. IEEE Int’l Conf. Data
Mining (ICDM ’08), 2008.

[29] T. Neumann and G. Weikum, “RDF-3X: A RISC-Style Engine for
RDF,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 647-659, 2008.

[30] A. Newman, J. Hunter, Y.F. Li, C. Bouton, and M. Davis, “A Scale-
Out RDF Molecule Store for Distributed Processing of Biomedical
Data,” Proc. Semantic Web for Health Care and Life Sciences Workshop,
2008.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 2008.

[32] P. Pantel, “Data Catalysis: Facilitating Large-Scale Natural
Language Data Processing,” Proc. Int’l Symp. Universal Comm.,
2007.

[33] K. Rohloff, M. Dean, I. Emmons, D. Ryder, and J. Sumner, “An
Evaluation of Triple-Store Technologies for Large Data Stores,”
Proc. OTM Confederated Int’l Conf. On the Move to Meaningful
Internet Systems, 2007.

1326 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

[34] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2Bench: A
SPARQL Performance Benchmark,” Proc. 25th Int’l Conf. Data Eng.
(ICDE ’09), 2009.

[35] Y. Sismanis, S. Das, R. Gemulla, P. Haas, K. Beyer, and J.
McPherson, “Ricardo: Integrating R and Hadoop,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD), 2010.

[36] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds,
“SPARQL Basic Graph Pattern Optimization Using Selectivity
Estimation,” WWW ’08: Proc. 17th Int’l Conf. World Wide Web, 2008.

[37] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M.
Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-Store: A Column-Oriented DBMS,”
VLDB ’05: Proc. 31st Int’l Conf. Very Large Data Bases, pp. 553-564,
2005.

[38] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen, “Scalable
Distributed Reasoning Using MapReduce,” Proc. Int’l Semantic
Web Conf., 2009.

[39] J. Wang, S. Wu, H. Gao, J. Li, and B.C. Ooi, “Indexing Multi-
Dimensional Data in a Cloud System,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD), 2010.

[40] J. Weaver and J.A. Hendler, “Parallel Materialization of the Finite
RDFS Closure for Hundreds of Millions of Triples,” Proc. Eighth
Int’l Semantic Web Conf., 2009.

[41] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: Sextuple
Indexing for Semantic Web Data Management,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 1008-1019, 2008.

[42] Y. Xu, P. Kostamaa, and L. Gao, “Integrating Hadoop and Parallel
DBMs,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD), 2010.

Mohammad Farhan Husain is working as a
software development engineer at Amazon.com.
He joined the PhD program in the Department of
Computer Science at the University of Texas at
Dallas in Fall, 2006. His thesis topic was storage
and retrieval of large semantic web graphs in an
efficient and scalable manner using cloud com-
puting tools. He graduated in May, 2011.

James McGlothlin received the BSc degree
from Vanderbilt University and has extensive
industry experience with Dell and IBM. He
received the master’s degree in 2010 with a
4.0 GPA and expects to receive the PhD degree
in 2011. He is working toward the doctoral
degree in computer science at the University of
Texas at Dallas (UTD). He is the inventor on
six software patents. During his tenure with
UTD, he has published seven conference

papers and one journal paper, all in the fields of semantic web
repositories, RDF graph storage, and cloud computing.

Mohammad Mehedy Masud graduated from
Bangladesh University of Engineering and Tech-
nology with BS and MS degrees in computer
science and engineering in 2001 and 2004,
respectively. He received the PhD degree from
University of Texas at Dallas (UTD) in December
2009. He is a postdoctoral research associate at
the UTD. His research interests are in data
stream mining, machine learning, and intrusion
detection using data mining. His recent research

focuses on developing data mining techniques to classify data streams.
He has published more than 20 research papers in journals including
IEEE Transactions on Knowledge and Data Engineering, and peer-
reviewed conferences including ICDM, ECML/PKDD, and PAKDD. He is
also the lead author of the book titled Data Mining Tools for Malware
Detection, and the principal inventor of US Patent Application titled
“Systems and Methods for Detecting a Novel Data Class.”

Latifur R. Khan received the BSc degree in
computer science and engineering from Bangla-
desh University of Engineering and Technology,
Dhaka, Bangladesh, in November 1993. He
received the MS and PhD degrees in computer
science from the University of Southern Califor-
nia in December 1996 and August 2000,
respectively. He is currently an associate pro-
fessor in the Computer Science Department at
the University of Texas at Dallas (UTD), where

he has been teaching and conducting research since September 2000.
His research work is supported by grants from NASA, the Air Force
Office of Scientific Research (AFOSR), US National Science Foundation
(NSF), the Nokia Research Center, Raytheon, CISCO, Tektronix. In
addition, he is the director of the state-of-the-art DBL@UTD, UTD Data
Mining/Database Laboratory, which is the primary center of research
related to data mining, semantic web, and image/video annotation at
University of Texas-Dallas. His research areas cover data mining,
multimedia information management, semantic web, and database
systems with the primary focus on first three research disciplines. He
has served as a committee member in numerous prestigious confer-
ences, symposiums, and workshops. He has published more than
150 papers in prestigious journals and conferences.

Bhavani Thuraisingham is the Louis A. Bee-
cherl, Jr. I distinguished professor in the Erik
Jonsson School of Engineering and Computer
Science (CS) at the University of Texas at Dallas
(UTD) since September 2010. She joined UTD
in October 2004 as a professor of computer
science and the director of the Cyber Security
Research Center (CSRC). She is the recipient of
the IEEE CS 1997 Technical Achievement
Award, the 2010 Research Leadership Award

presented by the IEEE ITS and IEEE SMC, and the 2010 ACM SIGSAC
Outstanding Contributions Award. She has more than 30 years
experience in the commercial industry (Control Data, Honeywell),
MITRE, US National Science Foundation (NSF) and Academia, and
has led several research projects. Her work has resulted in more than
100 journal articles, more than 200 conference papers, three US
patents, and 10 books. She is an elected fellow of the IEEE, the AAAS,
and the British Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUSAIN ET AL.: HEURISTICS-BASED QUERY PROCESSING FOR LARGE RDF GRAPHS USING CLOUD COMPUTING 1327

