MultiCrawler: A Pipelined Architecture for
Crawling and Indexing Semantic Web Data

Andreas Harth, Jiirgen Umbrich, and Stefan Decker

National University of Ireland, Galway
Digital Enterprise Research Institute
firstname.lastname@deri.org

Abstract. The goal of the work presented in this paper is to obtain large
amounts of semistructured data from the web. Harvesting semistructured
data is a prerequisite to enabling large-scale query answering over web
sources. We contrast our approach to conventional web crawlers, and de-
scribe and evaluate a five-step pipelined architecture to crawl and index
data from both the traditional and the Semantic Web.

1 Introduction

The enormous success of Google and similar search engines for the HTML web
has demonstrated the value of both crawling and indexing HTML documents.

However, recently more and more information in structured formats such as
XHTML, microformats, DC, RSS, Podcast, Atom, WSDL, FOAF, RDF/A etc.
has become available — and we expect this trend to continue. In conjunction
with Semantic Web based RDF data, these data formats are poorly handled by
current search engines: for instance, query answering based on keywords does
not allow to exploit the semantics inherent to structured content. Consequently,
current well developed and understood web crawling and indexing techniques
are not directly applicable, since they focus almost exclusively on text indexing.

In other words, to be able to answer queries which exploit the semantics
of Semantic Web sources, different crawling and indexing techniques compared
to conventional search engines are necessary. The differences between conven-
tional crawling/indexing approaches and crawling/indexing heterogeneous se-
mantic data sources can be summarized as follows:

1. URI extraction. HTML crawlers extract links from HTML pages in order
to find additional sources to crawl. This mechanism usually does not work
as straightforwardly for structured sources, since very often there exists no
direct concept of a hyperlink. Therefore different methods for extracting
URIs must be found.

2. Indexing. Conventional text indexes for the HTML web are well understood.
However, these text indexes perform poorly at capturing the structure and
semantics of heterogeneous sources, e.g., a FOAF file or an RSS source. A
different way for indexing and integrating the various data formats is needed.

These two key differences illustrate the need for new approaches compared
to traditional web crawling. A pipelined document indexing infrastructure has
already been defined and analyzed (see [8]). However, the same approach is not
applicable for Semantic Web data due to the variety of stages and different time
and space behavior.

The main contributions of this paper are:

— Following the general approach of [8] we define a pipelined approach for the
Semantic Web with respect to structured data crawling and indexing. The
pipeline can be adapted to arbitrary content.

— We define a general URI extraction method from structured sources that
helps to find more sources for indexing.

— We describe a general representation format for heterogeneous data on the
web which allows indexing and answering of expressive queries.

— We describe an implementation of our pipelined architecture and determine
the optimal configuration of the entire pipeline to maximize parallel process-
ing and crawling.

— We evaluate the pipeline by conducting experiments on a cluster.

The remainder of this paper is organized as follows: In Section 2 we give
an overview of the architecture. Section 3 describes the processing pipeline in
detail, including complexity analysis and experimental results derived from each
individual phase. In Section 4, we analyze the results, discuss tradeoffs for dis-
tributing the pipeline to multiple machines and running multiple pipelines in
parallel. Section 5 covers related work and Section 6 concludes the paper.

2 Crawler and Indexer Architecture

When designing a crawler and indexer architecture a number of requirements
need to be taken into account:

— Performance and scalability. The architecture needs to be as performance
oriented as possible in order to handle data on a web-scale and keep up
with the increase in structured data sources. The system should scale up by
adding new hardware — without a fundamental redesign.

— Utilizing data from different formats and disparate sources. The system has
to syntactically transform and index data from different web sources to arrive
at an integrated dataset.

Text indexing software pipelines have been investigated by [8] as a means
to optimize and decouple the crawling and indexing process. The pipelined ar-
chitecture in [8] has lead to considerable performance improvements. We have
adopted the pipelined architecture and defined a software pipeline for Seman-
tic Web data crawling and indexing. The idea behind a software pipeline is to
improve performance by executing different steps concurrently.

fetch detect transform index extract

Fig. 1. Five phases for crawling and indexing Semantic Web data.

Our crawling algorithm is an adaption of the standard breadth-first search
algorithm. Najork and Wiener [10] argue that breadth-first crawling yields high-
quality pages early on in the crawling process.

The process of crawling and indexing Semantic Web data can be logically split
into 5 phases, as illustrated in Figure 1. We refer to these phases as fetch, detect,
transform, index, and extract. During the fetch phase, the information is fetched
from the web. The detect phase detects the type of the content, eg. RDF, WSDL,
GIF etc. The transform phase is a key difference compared to conventional text
indexing and translates the data into the common data format. The index phase
builds an index, which is used during the extract phase to query for URIs to
more information sources.

We provide a rationale for some of the different phases in more detail.

Detect A challenge in dealing with multiple data formats is to be able to
accurately detect the content type and format of documents. Most of the data
formats can be detected by using the file extension or the content-type returned
with the header part of an HT'TP request. In the case of XML files, the MIME
type and the file extension give indication for XML content, but do not give any
information about whether the content is well-formed, or which schema is used.
Sometimes this information is important, therefore the content itself has to be
investigated.

Transform Since we are aiming at a general indexing and querying infras-
tructure we need mechanisms to extract information from the files and transform
them to a structured representation. Ideally, we would like to use a declarative
transformation language so that users can define transformations without the
need to write code in a procedural language. However, the system should be also
able to use procedural language code to extract data from binary data or natural
language text, ultimately arriving at a representation of the metadata.

To describe transformations in a declarative way, we decided to use XSL
Transformations (XSLT)!. With XSLT we are able to translate arbitrary XML
content to RDF. Even though XSLT is Turing complete [5] and therefore might
be too expressive, using XSLT has the benefit of permitting the reuse of already
available stylesheets. Besides, it is possible to integrate GRDDL?, a recent effort
which aims at standardizing the mechanism of using XSLT to extract information
from web pages.

Index An index over the data can be used to extract links and finally perform
searches and answer queries. The index should enable keyword-based searches
because that is a good method to explore a dataset with unknown structure.

! nttp://www.w3.org/TR/xslt
2 http://www.w3.org/TeamSubmission/grddl/

Equally important we require an index on the graph structure for the ability to
pose structured queries.

Extract For extracting URIs, we decided to use an RDF query against the
final cleaned and structured dataset. We perform URI extraction at the end of
the pipeline, since at that stage the indexes over a uniform representation of the
data have been built already and we are able to extract URIs cheaply. Depending
on the crawling strategy (only crawl one site, perform shallow crawling and only
take external links into account, etc), we can adapt queries to extract URIs. We
need to extract links also from HTML pages, otherwise we will not discover the
URI of structured pages, since files with structured data are currently not well
interlinked. URIs to structured sources appear mainly in a href links within
HTML documents.

To be able to scale, we need to parallelize and distribute the system. Fetching
the data takes much less time than processing. Thus, we want to perform steps
in parallel, which means we have to use multiple threads that fetch data and
multiple threads that process data etc. Communication between the steps is done
via queues. If we want to scale up the process even further, we replace threads
with multiple computers, queues with remote/persistent queues, and pipes with
network data transfer. As a result, we are able to speed-up the entire process even
more. Besides, in the distributed setup it is easy to identify bottlenecks — and
resolve them by adding new machines to a phase. Another benefit of a distributed
architecture is that it facilitates the integration of external components (i.e., web
services) into the process.

Our goal is to analyze the complexity of the single tasks and to find the right
balance in server ratios to keep the average utilization of the servers as high as
possible. In the next section we describe each processing step, investigate the
complexity and present experimental measurements.

3 Processing Pipeline

In this section, we describe each step in the processing pipeline in detail. The
processing pipeline is composed of five different modules, each of which is capa-
ble of running the task in a multi-threaded fashion. First, the fetching module
downloads the content and header information of a web page. Second, the de-
tecting module determines the file type of the web page. Third, based on the
file type, the transformation module converts the original content into RDF.
Fourth, the indexing module constructs an index over the RDF data to enable
URI extraction. Fifth, the extracting module poses a query over the index to
extract URIs and feeds the resulting URIs back into the pipeline.

To be able to pass parameters between different phases, the system needs
to store information associated with the URIs. We put the metadata associated
with a URI as RDF triples in a metadata store which runs on a separate machine.

Each phase has an associated queue which contains URIs of pages to be
processed. Each phase takes a URI from the queue, retrieves the content from

a previous phase if necessary, processes the content, stores the content on disk,
and puts the URI into the queue corresponding to the next step in the pipeline.
Content is passed to successive steps via an Apache HTTP server.

In the following sections, we include complexity analysis and experimental
results for each step. We carried out the experiments using a random sample
of 100k URIs obtained from the Open Directory Project®. We performed all
experiments on nodes with a single Opteron 2.2 GHz CPU, 4 GB of main memory
and two SATA 160GB disks. The machines were interconnected via a 1GBbp
network adapter on a switched Ethernet network.

3.1 Fetching Data

The functionality of the fetching module includes obtaining a new URI from
the queue, checking for a robots.txt file to adhere to the Robots Exclusion
Protocol?, and fetching and storing header information and content.

After obtaining the next URI from the queue, we retrieve the robots.txt
information for the host either from the metadata store or directly from the
host. Then we determine if the fetcher is allowed to crawl the page or not. If
the URI passes the check, we look at the content length provided by the header
information. To avoid downloading very large files we compare the content-length
from the header-field with a given file size threshold.

If the URI passes all these checks, we connect to the web server and download
the content of the page. Then we store or update the header information on the
metadata store. Finally, we send the URI to the next module in the pipeline and
return to the beginning, to poll the next URI from the queue.

To provide an estimate of the complexity of the step, let N be the size of
the documents fetched, including header information. The fetch step needs to
transfer N bytes from the Internet, which takes linear time in the size of the
content, O(N).

We verified the complexity analysis experimentally. We chose randomly 100k
URIs from ODP’s collection of over 5M sites. Figure 2 shows the experimental
results for the crawling component resulting in 78038 downloaded pages (1.4
GBytes of data). The fetching component achieved an average download rate of
around 600 KBytes/sec.

3.2 Detecting File Types

The detecting module tries to determine the exact content type of the data,
which is used in the transformation phase to execute the right transformation
module. The type detection is based on the information we are able to derive
from the URI, the header fields and the content of the page itself.

In the first step of the file type detection process we try to detect the content
type based on the file extension of the URI. The second step retrieves the content-
type header field from the metadata store and compares the header field to a list

3 http://dmoz.org/
4 http://www.robotstxt.org/wc/exclusion.html

Fetching pages per seconds
3000 T T

machine 1/200 threads' +

2500 -

2000

1500

seconds

1000 -

500 |-

L L L L L L L L L
10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
pages

0
0

Fig. 2. Experimental results derived from crawling 100k randomly selected URIs.

of content types. Table 1 lists all supported content types and the information
the system needs to detect them. If one of these checks successfully detects a
type, we can stop the process and store the type on the metadata repository. In
case of XML content, we perform another check to figure out the schema of this
XML file. In this case we must parse the content itself.

|TypeID [RFCIMIME media type

|File extension|Root element

HTML |2854|text/html html htm [html
XHMTL|3236 |application/xhtml+xml |.xhtml xhtml:html
XML |3023|text/xml application/xml|.xml -

RSS2.0 |- application/rss+xml .TSS rSs

Atom |4287|application/atom+xml |.atom atom:feed
RDF 3870 |application /rdf+xml xdf rdf :RDF

Table 1. File types the system is currently able to handle.

If we detect XML content, we try to find out the special type of the XML
content, that is, we retrieve the content data from the file system and parse it
with a SAX XML parser. We try to extract namespaces and root element of the
XML file and compare the values to the known content types. If all checks fail,
we assume an unknown or unsupported content type. Finally, we store the type
on the metadata store and forward the URI to the next pipeline module.

During the complexity analysis, we do not consider the simplest case where
we can detect the file type based on file extension or header information. Let
N be the size of the XML document which content type we want to detect.
Parsing the XML content utilizing SAX to retrieve the root element has a time
complexity of O(N).

Figure 3 shows the experimental results for the file type detection phase.

Detecting pages per seconds
180 T T

machin 2/200 threads +

seconds
+

80 | +

60 - +

a0+ +

20 +

L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000
pages

Fig. 3. Experimental results for detecting file types.

3.3 Transforming to RDF

For transforming the content into the common data format RDF, the system
applies different transformation modules depending on the type of the content.
The transformation phase can be split into two steps: (i) conversion from non-
XML data, such as HTML, into XML by using user specified transformation
tools and (ii) transformation of XML data to RDF via XSLTs and xsltproc®.
For a given URI we retrieve the content type, which has been added in the
detect phase, from the metadata store. Depending on the result of the query, we
execute different transformation modules on the content. Naturally, if the data
format is already RDF, we can skip the transforming step.

To transform non-XML data, we can call out to external services which
convert the data directly into XML or RDF. At the moment our support for non-
XML data consists only of cleaning up HTML using the tool Tidy® running as a
cgi-bin on a HTTP server, but various external services for extracting metadata
from e.g. image or video files can be easily plugged in.

To transform XML data, we use xsltproc with an XSLT from the file system,
depending on the type identifier of the page. We use an XSLT that transforms
RSS 2.0 and Atom to RDF7. We also developed an XSLT® which transforms
XHTML pages into an RDF representation based on RDFS, DC, and FOAF
vocabularies. In this stylesheet we extract from a HTML document the following
information: title, email addresses, images, and relative and absolute links and
their anchor labels.

After the URI passes successfully all transformation steps, we pass it to next
step of the pipeline.

5 http://xmlsoft.org/XSLT/

6 http://tidy.sourceforge.net/

" http://www.guha.com/rss2rdf/

8 http://sw.deri.org/2006/05/transform/xhtml 2rdf . xsl

The worst case scenario when performing the transforming step is in dealing
with HTML documents, because we must first pass the content to Tidy and then
perform the XSLT transformation. Imagine a document of size N and a XSLT
stylesheet of size M. We assume Tidy takes time linear to the size of the content
O(N). The worst-case complexity for XPATH has shown to be O(N* x M?) [5],
however, for a large fragment called Core XPath the complexity is O(N*M). Our
XHTML XSLT uses only simple Core XPath queries, therefore the worst-case
complexity for the step is O(N*M).

Figure 4 shows the experimental results for the transformation component
utilizing the xhtml2rdf .xsl and rss2rdf .xsl stylesheets. Using 200 threads as
in all other tests, the transformation performance decreased rapidly after around
13k pages because the machine was assigned with too many transformation tasks
and had to swap. Therefore we plotted only the first 60 minutes of running
time. We repeated the tests with only 50 threads to not overload the machine.
In the end, the transformation step yields 907Mbytes of XHTML resulting in
385Mbytes RDF/XML.

Transforming pages per seconds

10000 T T T
machine 3/200 threads ~ +
machine 3/50 threads ~ x_
9000

8000 -
7000 -
6000 -

5000 -

seconds

4000

3000 -

2000

1000

0

L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000
pages

Fig. 4. Experimental transformation performance using 50 and 200 threads.

3.4 Building Indexes

We summarize the index organization and building process here. For a more
detailed description of the index organization we refer the interested reader to a
previous paper [6]. Please observe that we operate on an extension of the RDF
data model which includes the notion of context to store the provenance of RDF
triples. Tracking provenance is achieved by adding a fourth field and therefore
using quadruples.

The goal of the index structure is to support efficient evaluation of select-
project-join queries. The selection operation enables the retrieval of quads, given
any combination of subject, predicate, object, and context. To be able to perform

the quad retrieval with just one index lookup, the index organization uses a com-
plete index on quads which covers all 16 possible access patterns on quadruples.
Conceptually, we have (key, value) pairs stored in a B+ tree, which allows to
perform lookups — especially prefix and range lookups — on keys. We also use an
inverted index on string literals to allow to search the index via keyword-based
searches.

The index structure contains two sets of indexes: the Lexicon covers the string
representation of the graph, and the Quad Indez covers the quads. The Lexicon
maps values of resources and literals to objects identifiers (OIDs) using two B+
tree indexes for node/OID mapping. In addition we employ an inverted index
for string literals. The quad index covers the triples of the graph plus context.
We use concatenated keys on all combinations of subject, predicate, object, and
context and therefore are able to retrieve any combination with a single index
lookup without performing joins.

When the indexer receives a quad for indexing, it first performs lookups for
each element of the quad in the Lexicon to either retrieve its OID or assign a
new OID. New OIDs are assigned monotonically for each new quad element. In
case the element is a string literal, we include the string literal in the inverted
index. Next, the keys for the quad are constructed based on the OIDs of the
individual elements of a quad. Given our index organization with concatenated
keys and prefix lookups, we only need six indexes to cover all 16 quad patterns
[6]. In total, given our index organization, there are 6 keys for insertion into the
6 indexes.

The two indexes mapping from quad element values and back are imple-
mented in Berkeley DB JE?. Additionally, we store string literals in Apache
Lucene!® for textual search. The quad indexes are maintained in Berkeley DB
as well, with one index acting as the primary index and five secondary indexes,
to implement a complete index on quadruples.

Since index construction is technically involved, we will describe the time
complexity in more detail. Let N be the size of the input in RDF/NTRIPLES,
Ny, the number of Lexicon entries, Nx the number of words per Lexicon entry,
M7, the order of the Lexicon B trees, Ny the number of quadruples and Mt the
order of the B+ tree with respect to the quads. First, the system performs OID
lookups/assignments in the Lexicon which is largely determined by the input
size of the data O(N x4 %2 xlogy, N1,), next creates a text index in Lucene over
the newly added string literals which takes O(Ny * Nk) time, and finally adds
the quads into the respective B+ trees O(N * 6 x logpz,. NT).

Figure 5 shows the experimental results for constructing the index on the
26906 pages that were transformed without errors resulting in 76.3MBytes of
data in RDF/NTRIPLES format (and a total of 571915 triples).

% http://www.sleepycat.com/products/bdbje.html
10 http://lucene.apache.org/

Indexing pages per seconds
900 r r r

machine 4/200 threads +

seconds

+

+

L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000
pages

Fig. 5. Performance for indexing the syntactically integrated dataset.

3.5 Extracting URIs

To feed the processing pipeline with new URIs we have to extract URIs from
the indexed content, which is done in the extracting module. The process can
be divided into two steps. The first step is to extract URIs from the data and
the second step is to filter the URIs to make sure only URIs matching specified
criteria get processed.

To extract new URIs we execute a query on the index for typical link predi-
cates such as rdfs:seeAlso and rss:1link. We are able to perform conjunctive
queries, which are evaluated by translating a N3QL'! query expression to a
relational algebra expression to an executable query plan.

If an extracted URI is to be added to the queue, we pass this URI through
the installed filter. In this filter we can restrict which URI should be sent to
the fetching module. If we want to crawl only a domain or a set of domains, we
can filter the addition of URIs using regular expressions. These expressions are
stored in memory. It is also possible to add new expressions during the runtime
to the filter.

The main functionality for the link extraction phase is the processing of
(conjunctive) queries utilizing the index. Let Ny, the number of Lexicon entries,
M7y, the order of the Lexicon B+ trees, Nt the number of quadruples, Mt the
order of the B tree with the quads, M the number of conjuncts in the query, and
R the result size. We first sort the conjuncts starting with the conjunct which
contains the least number of variables taking O(MlogM) time, then detect the
join conditions (similar to union-find) O(MlgM/2), translate the elements of the
quads to OIDs which can be done in O(4% M xlogas, N1,), perform the selections
on the index and index nested loops joins, O(logas, N), and finally translate
the resulting OIDs to element values, which takes O(R * loga, N1.).

Figure 6 shows the experimental results for the extraction component. We
discuss the results of all phases in the next section.

Y http://www.w3.org/DesignIssues/N3QL. html

Extracting pages per seconds
300 T T

T
machine 5/200 threads ~ + +
4

seconds
e
@
S}
.

100 | +

50 | +

0

L L L L L L L
0 10000 20000 30000 40000 50000 60000 70000 80000
pages

Fig. 6. Experimental link extraction performance.

4 Analysis and Tradeoffs

In the following we analyze the performance results for the five phases of the
pipeline process and discuss two questions: i) how to distribute the individual
phases to remove potential bottlenecks and fully utilize the processing power
of each machine and ii) how to run multiple pipelines in parallel to achieve a
throughput of the total system which can be calculated by: number of pipelines
* pipeline throughput.

Currently, the transform phase represents the bottleneck in the pipeline and
can only process a fraction of the pages delivered by the fetch and detect phase.
The random sample of URIs are biased towards HTML data, which means that
during the transform phase almost every page has to be processed. If we are able
to reduce the amount of HTML and XML sources and increase the amount of
RDF sources, the transform phase has to process less pages and as a result the
throughput (in terms of time per page) increases. However, given the fact that
the majority of content on the web is in HI'ML format, we have to distribute
the transform component to achieve acceptable performance.

Assuming an architecture as described in this paper, we can distribute phases
by just adding more machines. Pages are assigned to nodes using a hash func-
tion. In initial experiments we observed that we can scale up the fetch step by
a constant factor if we add more fetcher machines and all fetcher nodes take
URIs concurrently from the queue. The case is a bit different for the transform
step; here, we employ one thread pool with individual threads which retrieve
a URI from the previous step in the pipeline and invoke Tidy and XSLT op-
erations on cgi-bins running on a web server. In other words, while the other
phases employ a pull model, inside the transform component tasks are pushed
to external processors. We chose the push model because the ability to include
external transformation services was a requirement.

Figure 7 shows the performance results where all steps and external proces-
sors run on one node, where one node was used for the steps and two nodes

for external processors (142), and the case where four external processors (1+4)
were used. Why was the scale-up not constant in the number of machines added?
The reason is that the hash function assigns the pages equally to the external
processors. In case a single page takes a very long time to process, the external
processor node cannot keep up with the assigned operations and at some point
in time needs to swap, which leads to a decrease in performance.

Transforming pages per second
10000 r r r

1 node/50 threads +
3 nodes/100 threads X _g
9000 | 5 nodes/200 threads " -

8000 -
7000 -
6000 -

5000 -

seconds

4000

3000

2000

1000

0 10000 20000 30000 40600 50500 60500 70800 80000
pages

Fig. 7. Performance measurement for the transform phase with 1, 3 (1+2), and 5 (1+4)

transform nodes.

Apart from the issues described for the transform steps, we claim all other
steps can be scaled by a constant factor (number of machines added) using a
hash function to distribute URIs to nodes since URIs in those phases can be
processed independently. Table 2 shows the throughput in pages per second for
each phase, and a ratio that determines which fraction of the stream (assuming
that the fastest component determines the throughput) one node can process.

| Phase |Servers | Pages/sec | Ratio. |
fetch 1 38 0.082
detect 1 460 1.0

transform 1 5 0.011
transform| 1+2 13 0.028
transform| 144 21 0.045
index 1 92 0.2

extract 1 260 0.565

Table 2. The number of servers and the achieved performance. Ratio is calculated
based on the fasted phase (1 = 460 pages/sec).

To be able to scale up the system even further, we can just employ more
pipelines and achieve a total throughput which can be calculated by multiplying
the number of pipelines with the throughput achieved on one pipeline. The limit
is then only determined by how many resources (Internet bandwidth and number
of machines) are available.

5 Related Work

There are two types of related work to our framework: the first consist of large
scale web crawling and indexing systems, and the second are systems extracting
information from semistructured sources.

Crawler frameworks such as UbiCrawler [2] or Mercator [7] are focused on
the performance of the crawling step only. Google [3] handles HTML and some
link structure. We focus less on crawling but on detecting Semantic Web data,
the transformation of XHTML and XML to RDF and the indexing.

A few efforts have been undertaken to extract structured content from web
pages, but these efforts differ considerably in scale. Fetch Technologies’ wrapper
generation framework'? and Lixto [1] are examples of commercially available in-
formation extraction tools. Lixto defines a full-fledged visual editor for creating
transformation programs in their own transformation language, whereas we use
XSLT as transformation language and focus on large-scale processing of data.
Fetch (similarly [9]) combine wrapper generation and a virtual integration ap-
proach, whereas we use a data warehousing approach and therefore need scalable
index structures.

SemTag (Semantic Annotations with TAP) [4] perform mostly text analysis
on documents, albeit on a very large scale. In contrast, we extract structured
information from documents and XML sources, and combine the information
with RDF files available on the web.

6 Conclusion

We have presented a distributed system for syntactically integrating a large
amount of web content. The steps involved are crawling the web pages, trans-
forming the content into a directed labelled graph, constructing an index over
the resulting graph, and extracting URIs that are fed back into the pipeline. We
have shown both theoretical complexity and experimental performance of the
five-step pipeline. We are currently working on performing a long-term continu-
ous crawl and testing the system on larger datasets.

Acknowledgements

We thank Hak Lae Kim for discussing various requirements related to RSS crawl-
ing and Brian Davis for commenting on an earlier draft of this paper. This work

2 http://wuw.fetch.com/

is supported by Science Foundation Ireland (SFI) under the DERI-Lion project
(SFI/02/CE1/1131). We gratefully acknowledge an SFI Equipment Supplement
Award.

References

1.

10.

R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of 27th International Conference on Very Large Data
Bases, pages 119-128, September 2001.

. P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler: a Scalable Fully

Distributed Web Crawler. Software: Practice and Experience, 34(8):711-726, 2004.
S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks, 30(1-7):107-117, 1998.

S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Ra-
jagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag and Seeker: Boot-
strapping the Semantic Web via Automated Semantic Annotation. In Proceedings
of the Twelfth International World Wide Web Conference, pages 178-186, May
2003.

G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The Complexity of XPath Query
Evaluation and XML Typing. Journal of the ACM, 52(2):284-335, 2005.

A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In Proceedings of the 8rd Latin American Web Congress, pages 71-80. IEEE,
2005.

A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World
Wide Web, 2(4):219-229, 1999.

S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a Distributed
Full-Text Index for the Web. In Proceedings of the 10th International World Wide
Web Conference, pages 396—406, 2001.

M. Michalowski, J. L. Ambite, S. Thakkar, R. Tuchinda, C. A. Knoblock, and
S. Minton. Retrieving and Semantically Integrating Heterogeneous Data from the
Web. IEEE Intelligent Systems, 19(3):72-79, 2004.

M. Najork and J. L. Wiener. Breadth-First Crawling Yields High-Quality Pages.
In Proceedings of the Tenth International World Wide Web Conference, pages 114~
118, May 2001.

