
Full-fledged Algebraic XPath Processing in Natix

Matthias Brantner Sven Helmer Carl-Christian Kanne Guido Moerkotte
Universität Mannheim
Mannheim, Germany

msb|helmer|cc|moer@pi3.informatik.uni-mannheim.de

Paper ID: 681

Abstract

We present the first complete translation of XPath into an
algebra, paving the way for a comprehensive, state-of-the-
art XPath (and later on, XQuery) compiler based on alge-
braic optimization techniques. Our translation includes all
XPath features such as nested expressions, position-based
predicates and node-set functions.

The translated algebraic expressions can be executed us-
ing the proven, scalable, iterator-based approach, as we
demonstrate in form of a corresponding physical algebra in
our native XML DBMS Natix. A first glance at performance
results shows that even without further optimization of the
expressions, we provide a competitive evaluation technique
for XPath queries.

1. Introduction

The efficient processing of XML data hinges on fast eval-
uation techniques for XPath expressions, because XPath is
an essential part of widely used XML processing languages
like XSLT and XQuery. We present the first complete trans-
lation of XPath into an algebra.

Such a translation of XPath expressions into algebraic
expressions (1) renders possible algebraic optimization ap-
proaches as found in most modern query optimizers, and
(2) facilitates the application of iterator-based, pipelining
query execution engines that scale well to large data vol-
umes and have proven their performance e.g. in relational
systems. For the same reasons, algebra-based XQuery eval-
uation is attractive, requiring algebra-based XPath evalua-
tion as an essential ingredient.

The main contributions of our paper are:

• We introduce an algebra capable of expressing any
XPath query

• We show exactly how all XPath constructs can be
translated into algebraic expressions

These contributions are not intended to be purely theo-
retical exercises. To show their usefulness in implementing
XPath evaluators, we also discuss our compiler and alge-
bra implementation, and give some performance results.

The current approaches for evaluating XPath (e.g. [2, 4,
6, 7, 10, 12, 17, 19, 20, 21]) can be divided into several
different categories. First of all, we have (main-memory-
based) interpreters [17, 20]. Although most of them sup-
port the full XPath standard, they have high memory re-
quirements and do not scale to large documents very well.
Second, many papers were published investigating the effi-
cient evaluation of individual location steps [2, 12, 21]. For
some location steps very efficient operators have been de-
veloped, but a complete framework for supporting the full
XPath standard seems to be still missing, e.g. there is no
support for nested expressions or position-based predicates.
Third, we have approaches relying on relational databases
[6, 10]. Here, the XML data is transformed and stored in re-
lations. Queries containing XPath expressions are translated
into SQL and processed using the (possibly extended) en-
gine of the underlying database system. Finally, there is an-
other algebra-based approach for evaluation of queries over
XML data [14], which does not cover all of XPath.

In our approach we translate XPath 1.0 expressions1 into
a logical algebra working on ordered tuple sequences. The
main task here is avoiding unnecessary work by eliminat-
ing duplicates in intermediate results or memoizing already
computed results (such as location steps or predicates) if
duplicate elimination is not possible. This is very impor-
tant, as the presence of duplicates may lead to an exponen-
tial run time [7, 8]. Another important point we cover is the
efficient evaluation of predicates in XPath. We pay partic-
ular attention to position-based predicates using position()
or last().

For query execution, we use the physical algebra of our
native XML database system Natix [5], which implements
the operators of the logical algebra in an iterator-based fash-
ion [9]. We do not need to construct a complete main mem-

1 We will only write XPath in the following, always meaning XPath 1.0
except when explicitly stating otherwise.

ory representation of an XML document in order to evalu-
ate XPath expressions. Our approach directly accesses the
physical storage layout of the XML documents on disk.
Finally, our XPath evaluator is implemented in a modular
way, allowing the integration of several different optimiza-
tion techniques.

The remainder of this paper is organized as follows: In
Sec. 2, we summarize the XPath semantics and introduce
our logical algebra. Sec. 3 describes the canonical trans-
lation of XPath expressions into our algebra, and Sec. 4
shows how to avoid exponential run-time of the queries.
Space constraints prohibit to incorporate XPath specific al-
gebraic optimization techniques in this paper. However, in
Sec. 6 preliminary performance results show that even with-
out further optimization, our approach compares favorably
to main-memory based evaluators, and scales better to large
document sizes. Sec. 7 summarizes our contributions and
outlines future work.

2. Translation Input and Output

This section explains domain and range of our transla-
tion function: We give a brief summary of XPath expres-
sion semantics, and introduce our logical algebra.

2.1. XPath Semantics

The primary syntactic construct in XPath is an expres-
sion. When evaluating an expression, the resulting object
has one of the following four basic types: a node set (an un-
ordered collection of nodes without duplicates), a boolean
value (’true’ or ’false’), a number (a floating-point number),
or a string (a sequence of characters). The evaluation of an
expression considers a context, which consists of the fol-
lowing: a node (also called the context node), a pair of non-
negative integers (the context position and context size), a
set of variable bindings (a mapping from variable names to
values), a function library, and a set of namespace declara-
tions.

Please note that in XPath 1.0, the node sets themselves
are unordered. However, there exists the notion of docu-
ment order, totally ordering all nodes of a document. Docu-
ment order is relevant in the evaluation of location steps, but
not in the representation of node sets. Hence, we do not al-
ways return result sequences in document order. For XPath
2.0 (and integration into XQuery), if ordered results are re-
quired, additional sorting is sometimes [13] necessary.

2.2. Logical Algebra

Before going into the details of the translation we have
to define the target algebra and some associated notions.

2.2.1. Universe The universe of our algebra is the union
of the domains of the atomic XPath types (string,
number, boolean) and the set of ordered sequences of
tuples. A tuple is a mapping from a set of attributes to val-
ues. We allow nested tuples, i.e. the value of an attribute
may be a sequence of tuples. In addition to sequences, at-
tribute values may be document nodes or values of the
atomic XPath types.

2.2.2. Conventions Before defining the main algebra op-
erators below, we now introduce the notations used in their
definition and in the description of the translation process:

The set of attributes defined for a tuple t is written as
A(t). All the tuples t ∈ e of a sequence-valued expres-
sion e have the same attributes A(t), which are also denoted
A(e). The set of free variables of an expression e is defined
as F(e).

Single tuples are constructed by using the standard [·]
brackets. The concatenation of tuples and functions is de-
noted by ◦.

The projection of a tuple on a set of attributes A is de-
noted by |A. For brevity reasons, we identify a tuple con-
taining a single attribute with the value of that attribute.

For an expression e possibly containing free variables,
and a tuple t, we denote by e(t) the result of evaluating e
where bindings of free variables are taken from attribute
bindings provided by t. Of course this requires F(e) ⊆
A(t). In general, accesses to identifiers are resolved by
looking up the corresponding mapping in the tuple; if no
mapping can be found, the tuples of the surrounding alge-
bra expressions are checked successively. Ultimately, the
free variables of the complete expressions must be bound
by a top-level map supplied as execution context for the ex-
pressions. This top-level map also must provide bindings
for the XPath $ variables and the context node for the exe-
cution.

For sequences e we use α(e) to denote the first element
of a sequence. We identify single element sequences and el-
ements. The function τ retrieves the tail of a sequence and⊕
concatenates two sequences. We denote the empty sequence
by ε. As a first application, we construct from a sequence of
non-tuple values e a sequence of tuples denoted by e[a]. It is
empty if e is empty. Otherwise e[a] = [a : α(e)] ⊕ τ(e)[a].

By id we denote the identity function.

2.2.3. Operators The main operators of our algebra
are sequence-valued, similar to traditional database alge-
bra operators. An overview of the formal definitions of
the sequence-valued operators is given in Fig. 1. More de-
tailed comments about the operators and their usage
is embedded in the description of our translation pro-
cess in the remainder of the paper.

Except if explicitly stated otherwise, unary operators
produce ε if their input is ε, and binary operators produce

Selection selects qualifying tuples according to predicate p:

σ σp(e) :=

α(e) ⊕ σp(τ (e)) if p(α(e))
σp(τ (e)) else

Projection projects on attributes in A (duplicate elimination version called ΠD
A ,

duplicate elimination without projection denoted by ΠD,
attribute renaming version denoted by Πa′:a):

Π ΠA(e) := α(e)|A ⊕ ΠA(τ (e))
Πa′:a(e) := α(e)|a ◦ [a′ : a] ⊕ ΠA(τ (e))

Map extends each tuple ti in e1 with attribute a with value of e2(ti):
χ χa:e2(e1) := α(e1)|Attr(e1)\{a} ◦ [a : e2(α(e1))] ⊕ χa:e2(τ (e1))

Cross product connects all tuples in e1 to all in e2:
× e1 × e2 := (α(e1)×e2) ⊕ (τ (e1) × e2)

D-join joins each tuple ti in e1 to all tuples in e2, which depend on ti:
<>,

�
−→ e1 <e2 >:= α(e1)×e2(e1) ⊕ τ (e1) <e2 >

Product connects single tuple t1 to each tuple in e2:

× t1×e2 := (t1 ◦ α(e2)) ⊕ (t1×τ (e2))

Semi-join p checks for tuple existence in e2 to decide on including tuple in e1:�
e1 � p e2 :=

α(e1) ⊕ (τ (e1) � p e2) if ∃x ∈ e2 p(α(e1) ◦ x)
τ (e1) � p e2 else

Anti-join p checks for tuple non-existence in e2 to decide on including tuple in e1:

. e1 .p e2 :=

α(e1) ⊕ (τ (e1) .p e2) if 6 ∃x ∈ e2 p(α(e1) ◦ x)
(τ (e1) .p e2) else

Unnesting unnests a sequence-valued nested attribute:
µ µg(e) := (α(e)|{g} × α(e).g) ⊕ µg(τ (e))

Unnest-Map abbreviated notation for a map operator followed by an unnest operator:

Υ Υa:e2(e1) := µg(χg:e2[a](e1))

Binary Grouping Adds to e1 an attribute based on aggregation of e2 G(x) := f(σx|A1
θA2

(e2)):

Γ e1Γg;A1θA2;f e2 := α(e1) ◦ [g : G(α(e1))] ⊕ (τ (e1)Γg;A1θA2;f e2)

Aggregation Aggregates input sequence into a singleton sequence with a single attribute a:� �
a;f (e) := {[a : f(e)]}

Sorting Sorts input sequence based on attribute a:

Sort Sorta(e) := Sorta(σa<α(e).a(τ (e))) ⊕ α(e) ⊕ Sorta(σa≥α(e).a(τ (e)))

Singleton Scan Returns singleton sequence consisting of the empty tuple:
2 2 := {[]}

Figure 1. Sequence-valued operators of the target algebra

ε if their left input is ε. The d-join has two notations, one
to be used in visualizations of query trees (�−→) which des-
ignates the dependent side using an arrow, and one for tex-
tual expressions where its dependent side is parenthesized
(<>).

In addition, our target algebra provides counterparts for
functions (e.g. contains) and operators (e.g. +, ∗, /, =)
defined on the XPath basic types, including explicit and
implicit conversions. For those functions that have node-
sets as inputs (e.g. count), their algebra counterpart has
sequence-valued input. Note that for some XPath functions
and operators, special translation rules are given in Sec. 3
(in particular node-set comparison, see Sec. 3.6). These
functions or operators have no direct equivalent in our al-
gebra.

3. Translation into Algebra

In a first translation step we decide for each expression a
mapping onto algebraic operators. In a second step we en-
hance the translation to avoid exponential complexity of the
evaluation process. The description of our translation pro-
cess follows loosely the XPath grammar as found in the
W3C recommendation [3].

When translating XPath into our algebra we denote the
translation of an expression e by T [e]. The result of our
translation function is an algebraic expression which may
or may not be sequence-valued.

3.1. Location Paths

The most important construct in XPath is a location path.
Location paths are applied to context nodes and produce as
a result a node set (Sec. 2.1).

We have to distinguish between absolute and relative lo-
cation paths. An absolute path starts at the root element of
an XML document. A relative path can start at an arbitrary
context node. After that, both location paths are handled in
the same manner.

The starting context node for a location path is provided
by the variable cn. Note that for top-level location paths, cn
is free and must be bound by the execution context; this is
the mechanism for the execution engine to provide the ini-
tial context node.

3.1.1. Canonical Translation A path expression
π = π1/s2/ . . . /sn−1/sn consists of a number of lo-
cations steps (denoted by si). For the moment, we as-
sume that π starts with a partial expression π1, consist-
ing of the first location step of π, possibly prefixed by an
initial /. We take a closer look at π1 when distinguish-
ing absolute from relative paths below. The individual
steps are evaluated sequentially, i.e., the output of a lo-
cation step si serves as the context for the following step
si+1.

We translate a path expression into a chain of depen-
dency joins (d-joins). In a d-join the free variables in the ex-
pression on the right hand side are bound with values sup-
plied from a tuple generated by the expression on the left
hand side. We use this mechanism of a d-join to hand over
the context from one location step to the next, one node at
a time. The independent (left) subexpression of the d-join
enumerates the context nodes from the previous step. The
dependent subexpression of the d-join has the current step’s
context node as a free variable. Hence, each evaluation of
the dependent subexpression corresponds to one result con-
text of the location step.

We call a translation into d-joins the canonical transla-
tion of π:

T [π] := ΠD(χcn:cn
(T [π1] <T [s1]><T [s2]> . . . <T [sn]>))

We always want the cn attribute in a tuple sequence to
contain the node attribute that was last added to the tuple.
This makes it easy to treat all sequence-valued algebraic ex-
pressions uniformly. That is why we also add a map opera-
tor mapping the result nodes of the last step to cn. The pre-
cise origin of the cn attribute is explained below when we
elaborate on location steps.

We also have to add a projection operator that eliminates
duplicates, as by definition the result of an XPath expression
may not contain any duplicates (see also 2.1). The duplicate

ΠD

χcn:cn

�−→
T (π1) �−→

T (s1) �−→
T (s2) . . .

�−→
T (sn−1) T (sn)

Figure 2. canonical translation

elimination only operates on the relevant context node at-
tribute cn of the tuple, without projecting away the remain-
ing attributes.

A graphical representation of the translated expression is
shown in Fig. 2.

3.1.2. Absolute and relative paths The initial context of
a location path depends on whether it is an absolute or rel-
ative path, i.e. whether π1 is prefixed by a slash or not. The
translation takes this into account by parameterizing a map
operator differently. The map operator supplies the input
context node c0 for the first location step s1:

T [π] := ΠD(χcn:cn
(χc0:c(2) <T [s1]> . . . <T [sn]>))

with c = root(cn) for an absolute path and c = cn for
a relative path. cn must be bound to the context in which to
evaluate π.

3.1.3. Unions The union of path expressions
(π1|π2| . . . |πn) is translated into a series of concate-
nation operators followed by a duplicate elimination:

T [π1|π2| . . . |πn] := ΠD(T [π1] ⊕ T [π2] ⊕ . . . ⊕ T [πn])

Note that the translation of the πi already binds cn to the
produced context node, so no extra map or projection is re-
quired.

3.2. Location Steps

A location step consists of three parts: an axis (which
specifies the relationship between the result set of nodes
and the context node), a node test (which specifies the node
type and name of the selected nodes), and an arbitrary num-
ber of predicates (which use additional expressions to fur-
ther refine the set of selected nodes). We will look at pred-
icates in more detail in the following section, here we ad-

dress axes and node tests. So for the moment a step si is de-
fined by an axis ai and a node test ti.

We translate the evaluation of a location step into an
unnest map operator, which generates for each input node
(represented by a tuple) a sequence of nodes (also repre-
sented by tuples) that are reachable from the input node by
the specified axis, and satisfy the node test. We explain in
Sec. 5.2 how evaluation of the subscript is performed, here
it is sufficient to note that the result sequence is in the proper
order for the specified axis. The result nodes of step si are
assigned to the attribute ci.

T [ai :: ti] := Υci:ci−1/ai::ti
(2)

For two neighboring location steps, e.g. in the location
path a1 :: t1/a2 :: t2, it can be seen quite nicely that the
result of the location step a1 :: t1, which is stored in the
attribute c1, is used during the evaluation of location step
a2 :: t2:

ΠD(χcn:c2(χc0:cn(2) <Υc1:c0/a1::t1(2)><Υc2:c1/a2::t2(2)>))

3.3. Predicates

A location step si may contain an arbitrary number h of
predicates pk and has the general form ai :: ti[p1] . . . [ph].
The pattern for translating a location step ai :: ti[p1] . . . [ph]
with predicates is

Φ[ph] ◦ · · · ◦ Φ[p1] ◦ Υci:ci−1/ai::ti
(2)

where Φ is an auxiliary translation function for predi-
cates, returning a filtering functor which operates on alge-
braic expressions. We now elaborate on Φ:

An individual predicate pk is represented as the conjunc-
tion of several clauses lkj , i.e., pk =

∧mk

j=1 lkj . Depend-
ing on whether the conjuncts contain nested location paths,
or function calls to the position-based functions position(),
and last(), we have to translate them differently.

3.3.1. Simple clauses Clauses with no positional predi-
cates or nested paths are easiest to translate. Translating a
predicate pk = lk1 ∧ · · · ∧ lkmk

that does not include po-
sitional clauses simply results in a translation into selection
operators:

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1]

After the semantic analysis all clauses are broken down
into function calls: lkj = f1 ◦ · · · ◦ fr. For example, or,
not, and comparisons are all evaluated by function calls.
All implicit conversions have also been added as function
calls. We cover the translation of these calls in Sec. 3.6.

3.3.2. Nested paths If any of the lkj contain nested paths,
their correct translation requires the cn variable to be bound
to their starting context node. Hence, if translating predi-
cates with nested paths, we need to rebind the cn variable
to the current context node:

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1] · · · ◦ χcn:ci

If a nested path is not used inside an aggregate function,
the translation will add a conversion to boolean in form of
our internal exists() aggregate function (Sec. 3.6).

3.3.3. Clauses with position() If at least one of the
clauses in pk contains position() (but none of them con-
tains last()), we have to count the number of context nodes
that are produced. We do this with the help of a map oper-
ator that labels the tuples of the resulting nodes with their
appropriate position within the current context (introduc-
ing a new attribute cp):

Φ[lk1∧· · ·∧lkmk
] := σT [lkmk

]◦· · ·◦σT [lk1]◦χcp:counter(pk)++

Calls to position() are then translated into attribute ac-
cesses to cp:

T [position()] := cp

3.3.4. Clauses with last() The most difficult case are
clauses that contain last(). Here we have to compute the
context size to be able to evaluate the clause. We do this
with the help of our new Tmpcs operator that first material-
izes the context and then adds a context size attribute cs to
all the tuples belonging to the current context. In the canon-
ical translation, the context is exactly the result of the cur-
rent location step’s dependent subexpression. Hence, on a
logical level Tmpcs is just shorthand for2

Tmpcs(e) :=
�

cs;count(e)×e

This leads to the translation of a predicate relying on full
positional information as

Φ[lk1 ∧ · · · ∧ lkmk
] := σT [lkmk

] ◦ · · · ◦ σT [lk1]

◦Tmpcs ◦ χcp:counter(pk)++

with
T [last()] := cs

3.4. Filter Expressions

XPath allows to filter any expression with type node-set
using predicates. As with location path predicates, we use
a different translation in the case where there are position-
based clauses or not.

2 We explain in Sec. 5.2 how to implement Tmpcs efficiently.

3.4.1. Without position-based predicates If the predi-
cates pi in the filter expression e[p1] . . . [ph] do not contain
position() or last(), we have as translation:

T [e[p1] . . . [ph]] := Φ[ph] ◦ · · · ◦ Φ[p1] ◦ T [e]

Note that the sequence-valued e already has cn bound to the
correct node, so we do not need to add a map operator as in
Sec. 3.3.2.

3.4.2. With position-based predicates Position-based
predicates in filter expressions are evaluated with re-
spect to the child axis, i.e. in document order. In location
step predicates, the input sequence (the context) always re-
sults from a single location step and hence is properly
ordered. In filter expressions, the input sequence may con-
tain an arbitrary node sequence. To make the count-
ing mechanisms from Sec. 3.3 work for filter expressions,
we must guarantee that the input sequence is in docu-
ment order. Hence, we introduce a sort operator which
establishes document order before evaluating the predi-
cates3. So, if there is any predicate pk in the filter expression
e[p1] . . . [ph] containing position() or last(), its transla-
tion is

T [e[p1] . . . [ph]] := Φ[ph] ◦ · · · ◦ Φ[p1] ◦ Sortcn(T [e])

3.5. Path Expressions

Path Expressions are a more general form of relative lo-
cation paths. They comprise a node-set expression e and a
relative location path π. All the nodes in the node set are
used as context nodes for the location path, and a union of
the results is returned.

Our translation of path expressions uses a d-join to feed
all nodes from e as context nodes to the relative location
path:

T [e/π] := ΠD(Πcn:c′(T [e] <Πc′:cn(T [π])>))

The duplicate elimination operator is required since the
evaluation of π for several context nodes may introduce du-
plicates, just as in location paths.

Note that the tuple sequence from e has an attribute cn
containing the nodes it provides. The two projection oper-
ators renaming cn make sure that the cn produced by the
translated expressions is the one from π and not the one
from e.

3 The input sequence may already be in document order, for example be-
cause it resulted from a location path that returned a sorted result[13].
We defer determination of interesting orders in XPath and the result-
ing optimization of sort operations, as we are primarily concerned with
a complete translation, and not yet an optimized one.

3.6. Function Calls

We distinguish between simple function calls, node-set-
based function calls and node-set-valued function calls.
Simple function calls are characterized by the fact that they
neither get node-sets as parameters nor return node-sets,
while node-set-based function calls have node-sets as pa-
rameters and return simple values. Node-set-valued func-
tion calls may return node-sets.

3.6.1. Simple Functions Examples for simple func-
tions in XPath are functions to deal with strings, num-
bers, or Boolean values (e.g. string-length, floor,
ceiling, true, false, etc.). They are mostly used as
subscripts of algebraic operators. Translating simple func-
tions is quite straightforward (f is translated into its algebra
counterpart):

T [f(e1, . . . , en)] := f(T [e1], . . . , T [en])

3.6.2. Node-set-based functions We classify the node-
set-based function calls further into aggregate functions and
comparison operators between two node-sets. If f is an ag-
gregate function (XPath’s sum or count), then we translate
it into the corresponding aggregate operator

�
f of our al-

gebra.
�

f aggregates the tuples of the input node-set apply-
ing the function f and returns a tuple containing the answer.
Let e be a node-set value, then4

T [f(e)] :=
�

a;f (T [e])

For the comparison operators on node-sets it is impor-
tant to know that we have an existential semantics. That
means, if we can find two elements (one in each node-set)
that satisfy the condition, the comparison operator returns
true. To implement this, we have additional internal aggre-
gation functions exists(), max() and min(). exists() is
boolean-valued and returns false for empty sequences and
true otherwise. maxa() and mina() return the maximum
or minimum of an attribute a in a tuple sequence, where for
node attributes, each node content is converted to a num-
ber.

For (in)equality, we have

T [e1 = e2] :=
�

x;exists(T [e1] � T [e2])

T [e1 6= e2] :=
�

x;exists(T [e1] . T [e2])

For θ ∈ {<,≤} (recall that the nodes produced by
sequence-valued e2 are assigned to attribute cn):

T [e1θe2] :=
�

x;exists(σθ,

�
maxcn(T [e2])

T [e1])

4 Our aggregation operator
�

formally has sequence-valued input
and output. However, here we use it according to our conventions
(Sec. 2.2.2) as an atomic value. We explain in Sec. 5.2 how this con-
version is actually implemented.

Finally, for θ ∈ {>,≥}:

T [e1θe2] :=
�

x;exists(σθ,

�
mincn(T [e2])

T [e1])

3.6.3. Node-set-valued functions The only node-set-
valued function in XPath 1.0 is id(). We translate id() by
first converting the input into a sequence of IDs. Then, the
individual IDs are dereferenced using a dereference func-
tion which converts a single ID string into a node5. The re-
sult is a sequence-valued expression with the result nodes
assigned to cn.

The input conversion depends on whether the input is of
type node set or not.

For a node set input e, we just convert the nodes to
strings:

T [id(e)] := χcn:deref(string(c′))(Πc′:cn(T [e]))

In the case of an e which is not of type node-set, we con-
vert e to a string and use unnest map with a tokenizing func-
tion to return the sequence of embedded string tokens:

T [id(e)] := χcn:deref(t)(Υt:tokenize(string(T [e]))(2))

3.7. Constants and Variables

Constants and variables are very easy to translate into
our algebra. For the translation of a constant c we have
T [c] = c. That means, the expression is left as is and no
algebraic operator is necessary to process it. The same ap-
plies to XPath $ variables, as they are bound to values be-
fore evaluating expressions.

4. Improved Translation

After presenting the canonical translation into the alge-
bra, we now go into some details on how to improve the
translation step. In particular, Gottlob et al. have shown how
XPath expressions can be evaluated in polynomial time in
the worst case [8]. In this section we reveal how this can be
done in an algebra-based approach.

4.1. Pushing Duplicate Elimination

We divide up all location steps into two differ-
ent groups: one that potentially produces duplicates
(ppd) and one that does not (¬ppd). Axes that be-
long to ppd are: following, following-sibling,
preceding, preceding-sibling, parent,
ancestor, ancestor-or-self, descendant,

5 We do not elaborate on the implementation of deref() here, as it de-
pends too much on the details of the storage environment.

and descendant-or-self. Instead of such a sim-
ple axis-wise treatment, we could incorporate the work
by Hidders et al. for determining if a sequence of loca-
tion steps will produce duplicates or not [13]. We skip
this due to space constraints, because it does not af-
fect asymptotical complexity, and is straightforward to
implement.

The canonical translation eliminates duplicates only in a
final step to preserve the duplicate-free semantics of XPath
location paths. However, duplicates may be generated af-
ter every single step. The single final duplicate elimination
means that the effect of producing duplicates in several in-
termediate steps will multiply, as we generate duplicates of
duplicates.

Hence, we introduce additional duplicate eliminations
after ppd axes. This reduces the input size of the follow-
ing steps. Also, the duplicate elimination works on smaller
data sets. For the translation of a location path π0/a :: t
with a step s comprised of axis a and nodetest t this means:

T [π0/a :: t] :=

ΠD(T [π0] <Υc:c0/a::t(2)>) if ppd(s)
T [π0] <Υc:c0/a::t(2)> else

4.2. Location Paths

When improving on the translation of location paths we
have to distinguish between outer and inner paths. An in-
ner path appears within a predicate, an outer path does not.
We discern between these two cases, because we can trans-
late outer paths in a more efficient way deviating from the
canonical d-join translation. For inner location paths we run
the risk of having to evaluate expressions multiple times for
the same context node. We avoid this by memoizing already
evaluated paths.

4.2.1. Outer Paths For outer location paths we concate-
nate the evaluation of the steps, avoiding the overhead of a
d-join operator. We replace the singleton scan in the depen-
dent branch with the left subexpression of the d-join. The
context nodes get handed directly from step to step.

For an outer path π/s we get the following stacked trans-
lation:

T [π/s] :=

{
ΠD(T [s](T [π])) if ppd(s)
T [s](T [π]) else

The linear structure of the stacked translation is shown
in Fig. 3, for the path /a1 :: t1/a2 :: t2/a3 :: t3.

4.2.2. Inner Paths When looking at inner location paths,
we have to distinguish between relative and absolute inner
paths. A relative inner path gets its context from the corre-
sponding step of the outer path, an absolute inner path sets

ΠD

χcn:c3

Υc3:c2/a3::t3

ΠD

Υc2:c1/a2::t2

Υc1:c0/a1::t1

χc0:root(cn)

2

Figure 3. improved stacked translation for
/a1 :: t1/a2 :: t2/a3 :: t3 with ppd(a2 :: t2)

its own context. The translation of the actual inner path then
takes place during the translation of the predicate (see also
Section 3.3.2).

Absolute inner paths can be translated like outer paths,
while we have to avoid unnecessary work in relative inner
paths as follows.

In the XPath expression

π[count(./descendant :: c/following :: ∗) = 1000]

when evaluating the predicate for the context nodes pro-
duced by π, we may reach the same c elements over and
over again, computing and counting the nodes produced by
the following axis multiple times.

For the location path π0[π1/s] the inner path is trans-
lated as T [π1] < T [s] >. We want to avoid computing the
right hand side of the d-join when getting handed a context
node from the left hand side for which s was already evalu-
ated before.

In order to avoid this, we apply a memoization strategy
using a MemoX operator (�). In contrast to the memoiz-
ing function call operator from [11], the MemoX operator
is a sequence-valued unary operator typically used in the de-
pendent subexpression of a d-join. It is subscripted with a
set of variables which are free in its producer expression.

Every time the MemoX operator is evaluated, it checks
if the variables have already been bound with these specific
values in a prior evaluation. If not, the MemoX operator
evaluates the subexpression, and stores the result in an asso-
ciative data structure with the given variable values as key.
Finally it also returns the result to its consumer. If the same
variable values have already been used in an earlier eval-
uation of the MemoX operator, it just looks up the previ-
ously computed result and returns it without engaging the
producer operator.

In the case of the translation of inner paths, the producer
operator is the next location step and the free variable is the
current context node from the previous location step. So the
translation of the inner path s/π1 actually looks like:

T [s/π1] :=

8

>

>

>

>

<

>

>

>

>

:

T [s] <T [π1]> if¬ppd(s) and¬ppd(π1)
ΠD(T [s] < � cn(T [π1])>) if ppd(s) and ¬ppd(π1)
ΠD(T [s] <T [π1]>) if ¬ppd(s) and ppd(π1)
ΠD(T [s] < � cn(T [π1])>) if ppd(s) and ppd(π1)
T [s] if π1 is empty

4.3. Predicate Evaluation

4.3.1. Predicates and Stacked Translation In the canon-
ical translation all tuples produced on the right hand side
of the d-join for a given tuple on the left hand side belong
to the same context. So all contexts are clearly separated
from each other by separate evaluations of dependent d-join
subexpressions. This makes it easy to determine context po-
sition and context size by counting the tuples in one com-
plete evaluation of a dependent subexpression.

In the stacked translation, all tuples belonging to a loca-
tion step are part of the same tuple stream flowing through
the pipeline of operators. The different contexts are sep-
arated by the input context nodes; a new context begins
whenever the input context node ci1 changes. This requires
a slightly different handling of predicate evaluation.

Whenever a ci−1 value different from the last processed
tuple is detected, the map performing the position count
must reset its counter.

We also have to be careful when evaluating predicates of
outer locations paths containing last. As we have already
mentioned in Section 4.2.1, outer location paths are evalu-
ated in a stack-based fashion. The Tmpcs operator now has
to be able to recognize the boundaries of the contexts. For
this task we define a Tmpcs

c operator parameterized with the
context node attribute c:

Tmpcs
c (e) := eΓcs;c=c′;countΠc′:c(e)

This operator performs the same task as Tmpcs, but does
not aggregate the whole input sequence, but only those tu-
ples that were generated for the same context node c.

When evaluating predicates, the new operator is used in
the same way as the Tmpcs operator in Sec. 3.3, but is pa-
rameterized with the input context node as Tmpcs

ci−1
.

Fig. 4 shows the graphical representation of a T [] result
for a more complex XPath expression.

4.3.2. Avoiding Evaluation of Expensive Predicates We
classify the clauses lkj of a predicate pk into the sets

ΠD

Υc2:c1/a3::t3

σcp=cs

Tmpcs
c1

χcp:counter(p2)++

σ

χcn:c1

Υc2:c1/a2::t2

Υc1:c0/a1::t1

χc0:root(cn)

2

�
exists

�
−→

χc0:cn

2

�−→
Υc4:c0/a4::t4

2

Υc5:c4/a5::t5

2

Figure 4. /a1 :: t1/a2 :: t2[a4 :: t4/a5 ::
t5][position() = last()]/a3 :: t3

cheap(pk) := {lkj | lkj is cheap to evaluate}
exp(pk) := {lkj | lkj is expensive to evaluate}
pos(pk) := {lkj | lkj contains position(),

but no last()}
last(pk) := {lkj | lkj contains last()}

For classification into cheap() and exp(), a simple cost
model is used which considers the number of instructions
that are necessary to evaluate a clause. For the translation of
a predicate pk = lk1 . . . lkmk

, this means

Φ[pk] := σmat
exp(pk) ◦

only for last
︷ ︸︸ ︷

σcheap(pk)∩last(pk) ◦ Tmpcs ◦

σcheap(pk)\last(pk) ◦ χcp:counter(pk)++
︸ ︷︷ ︸

only for pos

Each expensive expression e in a clause lkj that is a
member of exp(pk) is replaced by a variable v. We compute
the value of v with the help of χmat operators, which mem-
oizes function evaluation results similar to the approach by
Hellerstein and Naughton [11]. In the translation above,
σmat

exp(pk) is an abbreviation for this sequence of χmap op-
erators and the final selection.

In the above translation, Tmpcs has to be replaced by
Tmpcs

c if the predicate occurs in a stacked translation.

5. Implementation

5.1. Compiler

The translation was implemented as an XPath compiler
module written in C++, taking XPath expressions as strings
and generating an execution plan for the NQE (see below).
The compilation process comprises six steps, listed here
with some of the tasks they perform: (1) Parsing (generating
an abstract syntax tree (AST)) (2) Normalization (classifies
and sorts predicates as explained in Sec. 3.3 and 4.3) (3) Se-
mantic analysis (4) Rewrite (constant folding) (5) Transla-
tion into algebra (6) Code generation (generate NQE exe-
cution plan). The query is handed from step to step using a
single data structure, starting out as an AST which is anno-
tated and modified until it has become an algebraic expres-
sion. The resulting expression is traversed by step (6), which
returns an execution plan in the NQE syntax. A detail worth
noting is that our translation includes a lot of map and pro-
jection operations, particularly to guarantee that the context
node attribute is always called cn. The compiler does not
emit actual copy operations in these cases. Instead, an at-
tribute manager which is part of the compiler ensures that
code emitted for aliased attribute accesses uses the proper
memory locations directly.

5.2. Physical Algebra

The Natix system’s Query Execution Engine (NQE) im-
plements the logical algebra from Sec. 2.2 in C++. Below,
we focus on implementation aspects relevant for XPath.
More details can be found in [5] and [12].

5.2.1. Iterators All the sequence-valued operators in our
logical algebra (Fig. 1) have an corresponding implementa-
tion as iterator [9] in the physical algebra. Whenever pos-
sible, they avoid to copy and/or materialize intermediate re-
sults, passing them by reference and/or in a pipelining fash-
ion.

5.2.2. Natix Virtual Machine The remaining (i.e. non-
sequence valued) operators of our logical algebra are im-
plemented using assembler-like programs interpreted by the
Natix Virtual Machine (NVM). XPath basic type functions
and operators are evaluated using single NVM commands
or small command sequences.

Location step navigation and node tests are performed
via NVM commands that directly access the persistent rep-
resentation of the documents in the Natix page buffer, thus
avoiding an expensive representation change into a sepa-
rate main memory format. In the buffer, the XML docu-
ments are stored in recoverable, updatable form which does
not require a fixed DTD. There are also NVM command
for access to text node contents. However, we transcode the

stored, space-saving string encoding to UTF-16, which is
the encoding using for strings in NVM.

5.2.3. Nested Iterators NVM programs are primar-
ily used to evaluate non-sequence-valued subscripts
of iterators, and the NVM commands operate on tu-
ples. Sometimes subscripts also need to evaluate XPath
functions that have sequences as input, and to con-
vert the sequence-valued result of the

�
operator into an

atomic value.
The NVM provides commands that can access results of

nested iterators.

5.2.4. Context Size Operators In Sec. 3.3 and Sec. 4.3,
we introduced special operators Tmpcs and Tmpcs

c which
determine the context size and concatenate it to all output
tuples. The logical definition of these operators requires the
input sequence twice, once for determining the number of
tuples, and once to return the actual result annotated by the
size.

The actual implementation does not evaluate the input
context twice. Instead, each context is evaluated once and
materialized. Note that the input tuples already contain cp,
the position counter. The cp value of the final tuple equals
the context size cs, which is remembered. In a second step,
the materialized sequence is reread, adding cs to each tu-
ple as it is returned.

Tmpcs and Tmpcs
c only differ in how they determine the

input context to materialize. Tmpcs counts the complete in-
put sequence, while Tmpcs

c only materializes those input
tuples generated for the same input context node. The ma-
terialization stops when the input context node attribute c
changes (compare Sec. 4.3).

Actually, there is just one implementation Tmpcs
c which

covers Tmpcs as a special case.

5.2.5. Smart Aggregation The aggregation functions
used by

�
are also implemented as small NVM pro-

grams. The interface between the
�

operator and these
programs allows to signal a premature end of the ag-
gregation. For example, when evaluating an exists()
function, it is not necessary to evaluate the complete ar-
gument sequence. If one tuple is found, the remaining
input sequence may be ignored, and the

�
operator may re-

turn true.

6. Evaluation

Our ultimate goal in providing a complete algebraic
translation is performance. While we do not discuss ad-
vanced optimization techniques on the algebraic level in this
paper due to constraints, another performance-related as-
pect of the algebraic approach is the fact that queries can
be executed in a scalable way through an iterator-based ap-
proach.

no. path
1 /child::xdoc/desc::*/anc::*/desc::*/@id
2 /child::xdoc/desc::*/pre-sib::*/fol::*/@id
3 /child::xdoc/desc::*/anc::*/anc::*/@id
4 /child::xdoc/child::*/par::*/desc::*/@id

Figure 5. Queries against generated documents

To verify that this goal has been met, we compared our
implementation against some purely main-memory based
XPath interpreters. We chose those freely available inter-
preters which support the complete XPath specification, in-
cluding all axes, namely xsltproc [17] and Xalan [20].

We are aware that the following is not a comprehensive
performance evaluation, and leaves open a lot of questions.
The measurements below are intended to give a proof-of-
concept of our approach, and we gathered them only to
make sure that we are on the right track.

6.1. Environment

The environment used to perform the experiments con-
sisted of a PC with an Intel Pentium 4 CPU at 2.80GHz
and 1 GB of RAM, running Linux 2.6.4. The Natix C++ li-
brary and the test executable were compiled with gcc 3.3 at
O2 optimization level.

6.2. Results

Below, we list the time needed to compile and execute
a query. To make them comparable across the different
evaluators, the times do not include the time to parse/load
the document. The measurements are averaged over several
runs.

6.2.1. Generated Documents The documents on which
the queries in Fig. 5 are executed were generated. They dif-
fer in the number of elements, fanout and document depth.
The document generator follows a breadth first algorithm
and fills every depth of the document with the given fanout
until the maximum number of elements or depth is reached.
The root element of every document has the name xdoc.
Every element contains an attribute id which is consecu-
tively numbered.

The concrete documents between 2000-8000 elements
were generated with a fanout of six and a depth of four.
The documents between 10000-80000 were generated with
a fanout of ten and a depth of five.

The queries were obtained by systematically generating
all XPath location paths of length 3 with a node test check-
ing for any element node in each step. There are several typ-
ical patterns in the results, and we selected sample queries
as examples for these patterns.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000 70000 80000

T
im

e
(s

)

Element Nodes

xsltproc
Xalan
Natix

Figure 6. results for path number 1

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e
(s

)

Element Nodes

xsltproc
Xalan
Natix

Figure 7. results for path number 2

Fig. 6–Fig. 9 show the selected results. Without going
into detail, we observe (1) that we can keep up with the
performance of the main-memory based interpreters, (2)
the high memory requirements sometimes cause the main-
memory interpreters to fail for large documents (this is the
reasons the curves sometimes stop before reaching the end
of the x-axis), and (3) the constants in the asymptotic be-
havior of the algebraic approach are promisingly small.

In some queries like the one in Fig. 9, one or both main-
memory evaluators outperform Natix by a constant factor.
Profiling NQE has provided us with hints on how to lower
this constant factor.

6.2.2. DBLP data Fig. 10 shows execution times for
queries executed on DBLP data collected in one big XML
document [16]. This document has a size of 216mb.
xsltprocwas not able to load the document, probably

due to memory requirements.
As above, the results are promising, as we can compete

with a main-memory based evaluation. For some queries
(those below the horizontal line in the center) we are slower.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000 60000 70000 80000

T
im

e
(s

)

Element Nodes

xsltproc
Xalan
Natix

Figure 8. results for path number 3

 0

 1

 2

 3

 4

 5

 6

 7

 0 10000 20000 30000 40000 50000 60000 70000 80000

T
im

e
(s

)

Element Nodes

xsltproc
Xalan
Natix

Figure 9. results for path number 4

Again, profiling points to engineering details in NQE as a
reason, which we plan to correct in the future.

7. Conclusion and Future Work

In this paper, we explained how to translate XPath
queries into algebraic expressions.

The proposed translation method covers the complete set
of XPath features including all axes, position-based predi-
cates, nested paths, filter expressions, general path expres-
sions and node-set functions. We are not aware of any
other algebraic approach to XPath evaluation covering all
of these.

Apart from providing an effective translation as a first
step, we were also concerned with efficiency. In a second
step, we extended our simple approach, achieving polyno-
mial worst-case complexity. To this end, we incorporated
the memoization techniques pioneered by Gottlob et al. [7]
in the context of XPath interpreters.

time[s]
path Xalan Natix
/dblp/article/title 6.50 3.97
/dblp/*/title 17.73 8.10
/dblp/article[position() = 3]/title 24.51 1.51
/dblp/article[position() < 100]/title 25.22 1.55
/dblp/article[position() = last()]/title 23.99 2.22
/dblp/article[position()=last()-10]/title 24.32 2.31
/dblp/article/title

| /dblp/inproceedings/title 157.98 14.23
/dblp/article[count(author)=4]/@key 0.9 2.91
/dblp/article[year=’1991’]/@key

| /dblp/inproceedings[year=’1991’]/@key 3.90 8.69
/dblp/*[author=’Guido Moerkotte’]/@key 4.2 9.78
/dblp/inproceedings

[@key=’conf/er/LockemannM91’]/title 3.22 4.28
/dblp/inproceedings

[author=’Guido Moerkotte’]
[position()=last()]/title 4.59 6.71

Figure 10. Queries against DBLP

We have not yet unleashed the full power of a cost-based
algebraic optimizer. Before doing so, we wanted to verify
that the nitty-gritty details that tend to come up in practice
can be solved, and that our approach can hold its ground
performance-wise.

Hence, we implemented an XPath compiler based on the
concepts outlined in this paper. A complementary iterator-
based physical algebra was used to evaluate the generated
algebraic query plans. First measurements demonstrate that
our approach is viable.

Having established that an algebraic approach to XPath
is reasonable, we can now turn to the next challenges.
While there already are papers about XPath-specific alge-
braic rewriting techniques [12, 18], much remains to be
done. Areas that come to mind are cost functions, schema-
based rewritings [1, 15], equivalences, using properties of
the intermediate results to avoid duplicate elimination and
sorting [13], and an increase of the search space, e.g. by
using magic sets and indexes. In addition, the upcoming
XPath 2.0 semantics are different from 1.0, and our com-
piler and algebra need support for more complex types. Fur-
ther in the future, XQuery with its complex result construc-
tion and nesting capabilities is also a target of the authors’
algebraic ambitions.

References

[1] Klemens Bohm, Karl Aberer, M. Tamer Ozsu, and Kathrin
Gayer. Query optimization for structured documents based
on knowledge on the document type definition. In Advances
in Digital Libraries, pages 196–205, 1998.

[2] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holis-
tic twig joins: optimal XML pattern matching. In ACM SIG-
MOD, 2002.

[3] James Clark and Steve DeRose. XML path language (XPath)
version 1.0. Technical report, World Wide Web Consortium
(W3C) Recommendation, 1999.

[4] Mary F. Fernandez, Jérôme Siméon, Byron Choi, Amélie
Marian, and Gargi Sur. Implementing Xquery 1.0: The Galax
experience. In VLDB, 2003.

[5] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido
Moerkotte, Julia Neumann, Robert Schiele, and Till West-
mann. Anatomy of a Native XML base management system.
VLDB Journal, 2003.

[6] Daniela Florescu and Donald Kossmann. Storing and query-
ing xml data using an rdmbs. IEEE Data Engineering Bul-
letin, 22(3):27–34, 1999.

[7] G. Gottlob, C. Koch, and R. Pichler. Xpath query evaluation:
Improving time and space efficiency. In ICDE, 2003.

[8] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Ef-
ficient algorithms for processing XPath queries. In VLDB,
2002.

[9] Goetz Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73–170, 1993.

[10] Torsten Grust. Accelerating XPath location steps. In SIG-
MOD Conference, 2002.

[11] Joseph M. Hellerstein and Jeffrey F. Naughton. Query exe-
cution techniques for caching expensive methods. In ACM
SIGMOD, 1996.

[12] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized trans-
lation of XPath expressions into algebraic expressions pa-
rameterized by programs containing navigational primitives.
In WISE, 2002.

[13] Jan Hidders and Philippe Michiels. Avoiding unnecessary
ordering operations in xpath. In DBLP, pages 54–74, 2003.

[14] H. Jagadish, L. Lakshmanan, D. Srivastava, and K. Thomp-
son. Tax: A tree algebra for xml. In Proceedings of DBPL’01,
2001.

[15] April Kwong and Michael Gertz. Schema-based optimiza-
tion of xpath expressions. Technical report, University of
California Davis, 2002.

[16] Michael Ley. Dblp xml records. http://dblp.uni-trier.de/xml/.
[17] libxslt 1.1.2—the xslt c library for gnome.

http://xmlsoft.org/XSLT/.
[18] Dan Olteanu, Holger Meuss, Tim Furche, and Francois Bry.

XPath: Looking forward. In EDBT Workshop on XML Data
Management, 2002.

[19] Stelios Paparizos, Shurug Al-Khalifa, Adriane Chapman,
H. V. Jagadish, Laks V. S. Lakshmanan, Andrew Nierman,
Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana,
Yuqing Wu, and Cong Yu. TIMBER: a native system for
querying XML. In ACM SIGMOD, 2003.

[20] Apache XML Project. Xalan C++ version 1.6.
http://xml.apache.org/xalan-c/index.html, 2003.

[21] Shurug Al-Khalifa Shurug, H. V. Jagadish, Jignesh M. Patel,
Yuqing Wu, Nick Koudas, and Divesh Srivastava. Structural
joins: A primitive for efficient xml query pattern matching.
In ICDE, 2003.

