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ABSTRACT
An XML twig query, represented as a labeled tree, is es-
sentially a complex selection predicate on both structure
and content of an XML document. Twig query matching
has been identified as a core operation in querying tree-
structured XML data. A number of algorithms have been
proposed recently to process a twig query holistically. Those
algorithms, however, only deal with twig queries without
OR-predicates. A straightforward approach that first de-
composes a twig query with OR-predicates into multiple
twig queries without OR-predicates and then combines their
results is obviously not optimal in most cases. In this pa-
per, we study novel holistic-processing algorithms for twig
queries with OR-predicates without decomposition. In par-
ticular, we present a merge-based algorithm for sorted XML
data and an index-based algorithm for indexed XML data.
We show that holistic processing is much more efficient than
the decomposition approach. Furthermore, we show that
using indexes can significantly improve the performance for
matching twig queries with OR-predicates, especially when
the queries have large inputs but relatively small outputs.

1. INTRODUCTION
Matching twig queries is a core operation in XQuery pro-

cessing. A few algorithms have recently been proposed for
matching such labeled twigs. Among them, the holistic twig
join algorithms [3, 11] have demonstrated superior perfor-
mance due to their effectiveness in dampening irrelevant in-
termediate results and their capability to leverage indexes
to minimize irrelevant data access.

Surprisingly, we found that almost all the existing work
on twig query matching only considered twig queries whose
sibling edges are connected by AND logic, such as
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Q1 = /dblp/paper[title=‘XML’ and

year=2003]//author

which asks for the authors of papers with title ‘XML’ and
published in year 2003 1. Queries in real applications, how-
ever, may contain logical-OR operators, such as

Q2 = /dblp/paper[title=‘XML’ or

year=2003]//author

which selects the authors who have papers either with title
‘XML’ or published in year 2003. In general, logical-AND
and logical-OR operators can be arbitrarily specified in an
XQuery expression. For example, the following query

Q3 = /dblp/paper[title=‘XML’ or

(year=2003 and conf=‘SIGMOD’)]//author

selects the authors who have papers either with title ‘XML’
or published in SIGMOD 2003.

We call such general twig queries as AND/OR-twig queries
and denote twig queries without logical-OR operators as
AND-twig queries.

To handle a twig query with logical-OR operators, näıvely,
we can decompose it into multiple AND-twigs, process each
AND-twig with some existing algorithm and then combine all
the results. For example, we can evaluate query Q2 as two
separate AND-twigs:

/dblp/paper[title=‘XML’]//author

/dblp/paper[year=2003]//author

Although existing twig join algorithms are applied, such a
decomposition-based approach has a serious disadvantage:
we may scan same data multiple times, incurring more I/O
and CPU cost. For example, to evaluate the two resultant
AND-twigs for Q2, typically, we need to access the data cor-
responding to dblp, paper and author elements twice. The
decomposition process is analogous to transforming an arbi-
trary logical expression into a logical expression in disjunc-
tive normal form. In the worst case, the number of resultant
AND-twigs from decomposition is exponential to the size of
the twig query. While some optimization techniques may be
applied, it is inevitable that certain data have to be scanned
multiple times.

Motivated by the recent success in efficient holistic pro-
cessing of AND-twigs, we present in this paper the techniques

1Here, we assume that the output only contains results for
the last tag in the main path, for ease of exposition. Our
algorithms to be presented can output twig instances.



developed to process AND/OR-twigs holistically without de-
composing them into AND-twigs. The contributions of the
work reported here can be summarized as follows:

• We develop a basic framework for holistic processing
of AND/OR-twigs based on the concept of OR-block.
With OR-blocks, an AND/OR-twig can be viewed as an
AND-twig containing element nodes and OR-blocks. As
a result, efficient holistic algorithms for AND-twigs can
be leveraged.

• Novel algorithms are developed to efficiently evaluate
OR-blocks, hence AND/OR-twig queries for XML data
that are either sorted or indexed. Both the analytical
and experimental results demonstrate the effectiveness
and efficiency of our techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 gives some preliminary knowledge on twig query pro-
cessing. The concept of OR-block and its role in holistic
AND/OR-twig query processing are described in Section 3.
Section 4 and Section 5 present, respectively, the merge-
based and the index-based algorithms for matching AND/OR-
twigs holistically. Section 6 presents the performance study.
Some related work is presented in Section 7. Finally, Sec-
tion 8 concludes the paper.

2. PRELIMINARIES

2.1 Data Model
We model XML documents as ordered trees. Figure 1

shows an example XML data tree. Each tree node is as-
signed a region code (start, end, level) based on its position
in the data tree [21, 18, 4, 10]. Each text phrase is enclosed
in a rectangle and assigned a region code that has the same
start and end values.
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Figure 1: An example XML data tree with region
codes

The region encoding supports efficient evaluation of struc-
tural relationships (i.e., ancestor-descendant or parent-child
relationship) between element nodes. Formally, element u is
an ancestor of element v if and only if u.start < v.start <

u.end. For parent-child relationship, we also test whether
u.level = v.level − 1. Based on the property of region en-
coding, we have Corollary 1:

Corollary 1. Given two elements ei and ej , if ei.end <

ej .start, then ei is neither an ancestor of element ej nor an
ancestor of any element ex such that ex.start > ej .start.

2.2 Tree Representation for AND/OR-Twigs
We represent an AND/OR-twig query as a tree with three

types of nodes: location step query node (QNode), logical-
AND node (ANode) and logical-OR node (ONode):

• QNode: A location step query node in the tree stands
for one location step in the original twig query. A
QNode has the content /tag or //tag, where ‘/’ denotes
a child location step axis, ‘//’ denotes a descendant lo-
cation step axis, and ‘tag ’ is a placeholder for the node
test (i.e., the corresponding label in the twig query).

• ANode: A logical-AND node always takes the text ‘and’
in the query tree. It connects two or more child sub-
trees with AND logic.

• ONode: A logical-OR node always takes the text ‘or’ in
the query tree. It connects two or more child subtrees
with OR logic.

The first three trees in Figure 2 are the tree representa-
tions for queries Q1, Q2 and Q3 respectively. Each tree node
is identified as ni. An ANode or an ONode is enclosed with a
rectangle.
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Figure 2: (a), (b) and (c) are the query trees for
queries Q1, Q2 and Q3 respectively. (d) is the sim-
plified query tree of (a).

We call a QNode as an ancestor-descendant QNode if its
location step axis is ’//’ or as a parent-child QNode if its
location step axis is ’/’. In Figure 2(a), n6 is an ancestor-
descendant QNode (i.e., an ancestor-descendant relationship
between n2 and n6 is specified) and n4 is a parent-child
QNode (i.e., a parent-child relationship between n2 and n4 is
specified).

2.2.1 Query Tree Simplification
A query tree may contain redundant nodes. For example,

we can simplify the query tree (a) in Figure 2 to (d), which is
semantically the same as (a) but has one tree node less. We
define two simplification rules that are of particular interest
to this work: (1) If an ANode or an ONode n has a child node
ni of the same type, we can remove ni and link the child
nodes of ni to n; and (2) If a QNode n has a child ANode ni,
we can remove ni and link the child nodes of ni to n. The
simplification from Figure 2(a) to Figure 2(d) is based on
rule (2). From now on, we assume that all query trees are
simplified with these two rules.

It is worth noticing that there are other rules for simplify-
ing twig queries. We refer the interested reader to the work
by Amer-Yahia et al on minimization of twig queries [2].

2.2.2 Operations on Query Tree Nodes
Given a query tree Q, we will use q (and its variants such

as qi and q′) to denote a QNode in Q or the subtree rooted
at q when there is no ambiguity, and use n (and its variants
such as ni and n′) to refer to a node of any type in Q.

We define some operations on query tree nodes. children(n)
returns all child nodes of n and parent(n) returns the parent
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Figure 3: An example query tree

node of n. Given the query tree in Figure 3, children(n1)
returns {n2, n11} and parent(n12) is n11. Qchildren(n)
stands for the set of QNodes in subtree n that are reachable
from n without traversing other QNodes, and Qparent(n) re-
turns the nearest ancestor QNode of n. For the query tree in
Figure 3, Qchildren(n1) is {n2, n12, n14, n15}, Qchildren(n4)
is {n6, n7} and Qparent(n12) is n1.

3. MATCHING AND/OR-Twigs
We will use the following convention in this section: each

QNode qi (or ni) is associated with an element node ei (by
changing ‘q’ or ‘n’ to ‘e’) such that tag(ei) = tag(qi). In
addition to the convention, we define a function, namely
edgeTest which is ubiquitously used throughout the text:

Definition 1. [edgeTest(q) or edgeTest(e′, e)]
Let q be a QNode in an AND/OR-twig and q′ be Qparent(q)—
recall that, by convention e and e′ are the associated ele-
ments of q and q′ respectively. Boolean function edgeTest(q)
or edgeTest(e′, e) evaluates true if element e′ is an ancestor
(respectively, the parent) of element e if q is an ancestor-
descendant (respectively, a parent-child) QNode.

Section 3.1, together with Section 3.2, gives a precise def-
inition of a match for an AND/OR-twig query, based on the
concept of OR-block. In preparation for presenting our al-
gorithms, we further study the properties of an OR-block in
Section 3.3.

3.1 AND/OR-Twig Matching
Before we give a formal definition of a match for an AND/OR-

twig query, we identify a unique construct in an AND/OR-twig,
OR-predicate:

Definition 2. [OR-predicate] Given a query tree Q, an
OR-predicate is a subtree in Q such that the root of the
subtree is an ONode n and parent(n) is a QNode.

The query tree in Figure 3 has three OR-predicates, rooted
at n5, n8 and n11. In particular, OR-predicate n5 contains
OR-predicate n8.

Given the query in Figure 3, according to its semantics,
we would say that element e1 has a match for subtree n1 if
the following three conditions are met: (1) e1 satisfies OR-
predicate n11 (see, Section 3.2); (2) edgeTest(n2) is true;
and (3) e2 has a match for subtree n2. A match for an
AND/OR-twig can be formally expressed as follows:

Definition 3. [A Match for an AND/OR-twig query]
Let Q be a query tree with N nodes n1, n2, · · · , nN , where

n1 is the root QNode. By convention, ei is the associated
element of ni if ni is a QNode. We say element e1 has a
match for the query tree n1 if the following holds for each
child subtree nki

of n1: if nki
is an ONode, then e1 satisfies

OR-predicate nki
(see, Section 3.2); otherwise (i.e., nki

is a
QNode), edgeTest(nki

) is true and, element eki
has a match

for subtree nki
if nki

is not a leaf node.

3.2 OR-predicate Evaluation
The challenge to OR-predicate evaluation is that, for an

OR-predicate to be true, not all its components are required
to be true. For the query tree in Figure 3, element e1 sat-
isfies OR-predicate n11 if either edgeTest(n12) is true or
both edgeTest(n14) and edgeTest(n15) are true. In a nut-
shell, to evaluate an OR-predicate, we consider the logical
combination of the edgeTest(qi) values for all QNodes qi in
the OR-predicate.

We introduce a new concept, namely OR-block, which is
important to understanding OR-predicate evaluation.

Definition 4. [OR-block] Given a query tree Q, an OR-
block is a tree t embedded in Q such that the root of t is an
ONode n, parent(n) is a QNode and the leaf nodes of t are
Qchildren(n).

In Figure 3, there are three OR-blocks rooted at n5, n8

and n11. QNodes n6 and n7 are the leaf nodes of OR-block
n5. OR-block n8 also has two leaf nodes, n9 and n10. OR-
block n11 has three leaf nodes (i.e., n12, n14 and n15) and one
internal node n13. Different from OR-predicates, OR-blocks
in a query tree are disjoint.

If we regard an OR-block as a composite tree node, an
AND/OR-twig can be represented as a query tree with only
QNodes and OR-blocks. Figure 4 shows such a representation
of the query tree in Figure 3.
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Figure 4: A representation of the query tree in Fig-
ure 3 by QNodes and OR-blocks

Each OR-block in Figure 4 consists of two parts. The
lower part lists all the QNodes that belong to the OR-block
and the upper part is an expression P that records the logical
combination of QNodes in the OR-block.

OR-predicate evaluation becomes intuitive with the OR-
block concept. Consider OR-predicate n11 in Figure 4, where
P (n11) is “n12 or (n14 and n15)”. It is easily verifiable that
element e1 satisfies OR-predicate n11 (and OR-block n11 as
well) if P (n11) is true after we substitute edgeTest(ni) for
each QNode ni in P (n11).

We need to take more care of OR-predicates that contain
more than one OR-block. For example, OR-predicate n5



has two OR-blocks. Suppose that edgeTest(n6) is false

and edgeTest(n7) is true. For e4 to satisfy OR-predicate
n5, e7 should also satisfy OR-block n8. In brief, to evaluate
an OR-predicate n, it is insufficient to simply substitute
edgeTest(ni) for each QNode ni in P (n): we should take
into account whether element ei has a match for subtree
ni if ni is not a leaf node. Definition 5 on OR-predicate
evaluation complements Definition 3.

Definition 5. [OR-predicate Evaluation] Let ONode n

be the root of an OR-predicate connected to QNode q, whose
associated element is e. We say element e satisfies OR-
predicate n if P (n) is true by replacing each QNode ni in
P (n) with a boolean function as follows: if ni is a leaf node,
replace ni with edgeTest(ni); otherwise, replace ni with the
boolean value (edgeTest(ni) and ei has a match for subtree
ni).

3.3 The Logical-max QNode in an OR-block
We proceed to describe an interesting concept: the logical-

max QNode in an OR-block. This concept generalizes Corol-

lary 1 and considers how to judge that a given element will
never satisfy an OR-block. It plays an important role in the
AND/OR-twig join algorithms that we are going to present in
Section 4 and Section 5.

We make a few assumptions in the following discussions.
All QNodes in the query Q are ancestor-descendant QNodes
(see, Section 2.2). Each QNode qi ∈ Q is associated with
an element node list Tqi

. Element nodes in Tqi
are encoded

with region codes and sorted by the start field in ascending
order. Element ei ∈ Tqi

is currently associated with qi and
we are only allowed to move forward in Tqi

.
Consider a QNode q in a query tree Q and an OR-block n

connected to q. Suppose that OR-block n contains k QNodes
q1, q2, · · · , qk and among these k QNodes, the element node
emin of qmin has the smallest start value. It is obviously the
case (by Corollary 1) that if e.end < emin.start, then e

does not satisfy OR-block n and will not satisfy OR-block
n no matter how Tqi

is forwarded.
We are interested in finding the largest possible thresh-

old value v (≥ emin.start) such that if e.end < v then e

does not satisfy OR-block n and will not satisfy OR-block
n no matter how Tqi

is forwarded. The main application of
such a threshold value v is that it enables effective element
skipping in our algorithms to be presented in the next sec-
tions. The ORBlockMax(n) algorithm shown in Algorithm 1
returns a QNode qmax in OR-block n such that emax.start is
the threshold value v desired.

Algorithm 1 ORBlockMax(n)

1: if n is a QNode then

2: return n;
3: else

4: for each ni ∈ children(n) do

5: qi = ORBlockMax(ni);
6: end for

7: if n is an ANode then

8: return arg maxqi
{ei.start}, for qi initialized at line 5;

9: else

10: return arg minqi
{ei.start}, for qi initialized at line 5;

In Algorithm 1, function arg maxxi
{f(xi)} returns a vari-

able xm, among all variables xi in consideration, such that
f(xm) is no smaller than any f(xi). Function arg minxi

{f(xi)}

returns a variable xm such that f(xm) is no greater than any
f(xi). Ties are broken arbitrarily.

The intuitive explanation of ORBlockMax is that, for QNodes
connected by AND logic, we pick the QNode with the maxi-
mum start value, while for QNodes connected by OR logic,
we pick the QNode with the minimum start value. Take the
query tree in Figure 3 as an example. Suppose that the el-
ement start value for ni is i, then ORBlockMax(n5) returns
n6 while ORBlockMax(n11) returns n12.

Theorem 1. Let q be a QNode in a query tree and n be
an OR-block connected to q. Assume that each QNode qi in
OR-block n is associated with a forward-only element node
list Tqi

. Element nodes in Tqi
are assigned region codes and

sorted by the start field in ascending order. Element e cor-
responds to q and ei ∈ Tqi

corresponds to qi. Let qmax =
ORBlockMax(n). If e.end < emax.start, then element e does
not satisfy OR-block n and will never satisfy OR-block n

after any Tqi
is forwarded.

Proof. Our proof consists of two parts. In part 1, we
prove the correctness of Theorem 1 when the logical ex-
pression P (n) for OR-block n is in disjunctive normal form
(DNF). In part 2, we show that, when P (n) is not in DNF,
OR-block n can be transformed into a new OR-block n′

with the same set of leaf QNodes as OR-block n such that
(1) P (n′) is in DNF; (2) P (n′) is equivalent to P (n); and
(3) ORBlockMax(n′) is the same as ORBlockMax(n).

Part 1: Since P (n) is in DNF, let us assume that P (n)
has k disjuncts and each disjunct Di (1 ≤ i ≤ k) is a con-

junction of ti QNodes. Formally, P (n) =
∨k

i=1 Di, where

each Di =
∧ti

j=1 qij . An example OR-block n whose P (n) is
in DNF is illustrated in Figure 5.
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Figure 5: An example OR-block n (connected to q)
such that P (n) is in disjunctive normal form (DNF)

How ORBlockMax(n) works for the query tree in Figure 5
becomes clear: it calls ORBlockMax for each ANode subtree
ni and among all the k returned QNodes, the QNode with
the minimum start value is returned. Suppose that qxy =
ORBlockMax(n), which means that each disjunct Di has a
QNode qxiyi

such that exiyi
.start ≥ exy.start. By the given

condition e.end < exy.start in Theorem 1, we have e.end <

exiyi
.start, which implies that edgeTest(qxiyi

) is false and
will keep to be false when qxiyi

is forwarded. For ele-
ment e to satisfy OR-block n, there must exist at least one
ANode subtree nx such that for each QNode qxj (1 ≤ j ≤ tx),
edgeTest(qxj) is true. This contradicts the given condition.
In conclusion, Theorem 1 is proved when P (n) is in DNF.

Part 2: We are left to prove that we can transform
an arbitrarily shaped OR-block n into an equivalent, nor-
malized OR-block n′ as shown in Figure 5 while keeping
ORBlockMax(n′) the same as ORBlockMax(n).
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Figure 6: In a split operation, we always pick an
ONode that is two levels below the root of OR-block
n′—such an ONode must exist if P (n′) is not in DNF.
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Figure 7: The transformation from an arbitrary OR-
block n into an equivalent OR-block n′ such that
P (n′) is in disjunctive normal form (DNF)

Let OR-block n′ initially be OR-block n. The transfor-
mation from OR-block n into OR-block n′ is a repeated ap-
plication of the following three steps until P (n′) is in DNF.

1. Split: First, get an ONode ns such that ns is two
levels below root n′ as shown in Figure 6. Such an
ONode must exist according to the simplification rules
described in Section 2.2.1. Assume that ns has l child
nodes ns1

, ns2
, · · · , nsl

. Second, make l copies of n′,
denoted as n′

1, n
′

2, · · · , n
′

l, and replace subtree ns in n′

i

(1 ≤ i ≤ l) with subtree nsi
. The left part of Figure 7

illustrates one split step.

2. Union: Combine the resultant OR-blocks n′

i at their
roots. The right part of Figure 7 shows a union pro-
cess.

3. Simplify: Apply the simplification rules to n′.

With the described transformation process, it is sufficient
to prove that, ORBlockMax(n′) keeps unchanged before and
after each three-step process.

Consider the parameters shown in Figure 6. Let qsi
be

ORBlockMax(nsi
). According to the definition of ORBlockMax,

we know that, ORBlockMax(n′) is min(max(minl
i=1 qsi

, qy), qx)
initially. After the three-step process, ORBlockMax(n′) be-
comes minl

i=1 min(max(qsi
, qy), qx). These two min-max for-

mulae can be shown to be equivalent.
Based on part 1 and part 2, Theorem 1 is proved.

4. A MERGE-BASED ALGORITHM
In this section, we present GTwigMerge, an algorithm for

finding all matches (see, Definition 3) of an AND/OR-twig
query against an XML document. It is worth noticing that,
although GTwigMerge shares similarity with the TSGeneric

algorithm in the previous work [11], it makes important ex-
tensions to handle AND/OR-twigs.

We will first introduce some data structures and nota-
tions, in addition to those described in Section 2.2.2, to be
used by the GTwigMerge algorithm.

4.1 Data Structures and Notations
Function isLeaf(n) evaluates true if a node n is a leaf

node and isRoot(n) returns true if node n is a root node.
Function subtreeQNodes(q) returns all QNodes in subtree q

(inclusive). Qsibling(q) denotes the set of QNodes qi such
that qi 6= q and Qparent(qi) = Qparent(q). For Figure 3,
Qsibling(n2) = {n12, n14, n15}.

We assume each QNode q is associated with a list Tq of
element nodes, which are encoded with (start, end, level)
and sorted in ascending order of the start field. Typically,
element node lists are retrieved through a tag index, which
returns a list of element nodes for a given tag. If q has
value predicates, element nodes are generally retrieved from
a B-tree index. For example, a composite B-tree index on
(text, start) can process value selections efficiently.

The GTwigMerge algorithm keeps two data structures dur-
ing execution: a cursor Cq and a stack Sq for each QNode q.

The cursor Cq points to the current element in Tq. When
we refer to Section 3, Cq also acts as the associated el-
ement of q, unless explicitly specified. Function end(Cq)
tests whether Cq is at the end of Tq. We can access the at-
tribute values of Cq by Cq→start, Cq→end and Cq→level.
The cursor can be forwarded to the next element in Tq with
Cq→advance(). Initially, Cq points to the head of Tq.

Stack Sq may cache some elements before Cq such that
each element is a descendant of the element below it. Each
element node in Sq keeps a pointer to its nearest ancestor
(i.e., the one with the largest level value) in SQparent(q). With
the pointer, cached elements in stacks represent the partial
results that might be extended to full results. Stack Sq is
initially empty.

4.2 The GTwigMerge Algorithm
The main algorithm for GTwigMerge is shown in Algo-

rithm 2 and the procedure GetQNode is shown in Algorithm 3.

Algorithm 2 The Main Algorithm of GTwigMerge

1: while not end(root) do

2: q = GetQNode(root); {Algorithm 3}
3: if not isRoot(q) then

4: cleanStack(SQparent(q), Cq);

5: cleanStack(Sq , Cq);
6: if isRoot(q) or (not empty(SQparent(q))) then

7: if not isLeaf(q) then

8: push(Sq , Cq , isRoot(q)?−1 : top(SQparent(q)));

9: if q is inside OR-predicate(s) then

10: Reevaluate OR-predicates; {Section 4.2.3 }
11: else if q has no QNode children then

12: outputPathSolutions(Cq);
13: Cq→advance();
14: end while

15: mergePathSolutions();

PROCEDURE cleanStack(Sp, Cq)

pop all elements ei from Sp such that ei.end < Cq→start;

FUNCTION end(q)

∀qi ∈ subtreeQNodes(q): isLeaf(qi) ∧ end(Cqi
);

PROCEDURE push(Sp, Cq , ptr)

push the pair (Cq , ptr) onto stack Sp;



Algorithm 3 GetQNode(q)

1: if isLeaf(q) then

2: return q;
3: for each qi ∈ Qchildren(q) do

4: q′ = GetQNode(qi);
5: if q′ 6= qi then

6: return q′;
7: end for

8: qmax = getMaxQChild(q);
9: while Cq→end < Cqmax→start do

10: Cq→advance();
11: end while

12: qmin = arg minqi
{Cqi

→start}, qi ∈ Qchildren(q);

13: if hasExtension(q) and Cq→start < Cqmin
→start then

14: return q;
15: else

16: return qmin;

FUNCTION getMaxQChild(q)

1: for each ni ∈ children(q) do

2: if ni is a QNode then

3: qi = ni;
4: else

5: qi = ORBlockMax(ni); {Algorithm 1}
6: end for

7: return arg maxqi
{Cqi

→start}, for qi initialized at lines 3, 5;

FUNCTION hasExtension(q)

1: return true if Cq has a match (see, Definition 3) by regarding
all QNodes in the subtree q as ancestor-descendant QNodes (see,
Section 2.2); otherwise, return false.

GTwigMerge operates in two phases. In the first phase,
it repeatedly calls the GetQNode algorithm with the query
root as the parameter to get the next QNode for processing
and outputs path solutions. In the second phase, the indi-
vidual path solutions are merged to compute the matching
instances for the AND/OR-twig query.

In Section 4.2.1, we explain the GetQNode(q) algorithm.
Section 4.2.2 describes the main algorithm in more detail.
Techniques for handling OR-predicates containing parent-
child QNodes are presented in Section 4.2.3.

4.2.1 The GetQNode Algorithm
GetQNode(q) is a procedure called in Algorithm 2. It re-

turns a QNode qx with three properties: (1) qx has an ex-
tension (see, Algorithm 3) and Cqx→start < Cqi

→start

for all qi ∈ Qchildren(qx), if any; (2) If qx 6= q, then
Cqx→start < Cqj

→start, for all qj ∈ Qsibling(qx), if any;
and (3) If qx 6= q, then Cqx→start < CQparent(qx)→start.
These properties guarantee the correctness of the main al-
gorithm in processing Cqx .

At lines 3-7 in Algorithm 3, we invoke GetQNode for each
qi ∈ Qchildren(q). If any returned node q′ is not equal
to qi, we can return q′ outright (line 6). Otherwise, since
each child QNode qi has an extension, we will try to locate
an extension for q by skipping over elements in Tq (line 10)
based on qmax, which is returned by getMaxQChild(q). By
Theorem 1, the skipped elements do not contribute to new
output results.

It is incorrect to use q′

max = arg maxqi
{Cqi
→start} to

skip element nodes in Tq at line 10. Consider an AND/OR-
twig query //a[.//b or .//c]//d and its element node lists
shown in Figure 8, where the regions of element nodes are
represented as intervals. Suppose the cursors for the four
QNodes are (a1, b1, c3, d1). Here, q′max is n4 (i.e., Cq′

max
=

c3). If we use c3 to skip elements in Tn1
, we will reach a7.

But both a5 and a6 have matches if Cn3
is forwarded to b3.

Example 1. Consider Figure 8. Suppose the four cursor
elements are initially at (a1, b1, c1, d1). At the first call of
GetQNode(n1), Cn1

is forwarded—by element d1 of n5 re-
turned by getMaxQChild(n1)—to element a5, which is the
first element in Tn1

whose end is not smaller than d1 (re-
call, lines 9-11 in Algorithm 3), and n3 is returned. Before
the next call of GetQNode(n1), the cursors are (a5, b2, c1, d1).
The next three calls of GetQNode(n1) return n3 once and n4

twice to consume b2, c1 and c2. After that, the cursors are
at (a5, b3, c3, d1). The next call of GetQNode(n1) will return
n1, which has an extension because both b3 and d1 are de-
scendants of a5 (i.e., Cn1

).

a1

d1

a2 a4

c3

a7

a6

a5

d4

b2
b3 b4

c1

b1

c2

n1: //a

n3: //b

n4: //c

n2: or

n5: //d d2

a3

d3

Figure 8: An example query tree and the element
node lists associated with its QNodes

4.2.2 The Main Algorithm of GTwigMerge
Algorithm 2 shows the main algorithm for GTwigMerge. It

repeatedly calls GetQNode(root) to get the next QNode q to
process, as described next.

First of all, we pop elements from the QNode parent stack
SQparent(q) and stack Sq (lines 4-5). The popped elements do
not contribute to new outputs according to Corollary 1
and the three properties of QNode q returned by GetQNode(root).

We continue to process Cq if q is either a root node or
Cq has ancestor elements in the parent stack SQparent(q),
which means there is a potential for it to contribute to fi-
nal matches. The code at lines 9-12 is unique compared
to the previous algorithms for AND-twigs because we need
to refine the definition for an output twig instance of
an AND/OR-twig query. In the previous algorithms, an out-
put twig instance contains elements from all QNodes in the
query. It becomes problematic if we adopt the same out-
put model because a match of an AND/OR-twig query may
be contributed by only some of the QNodes in the query.
Here, we adopt a simple yet intuitive output model: Each
output twig instance for an AND/OR-twig query comprises of
elements from QNodes that are not inside any OR-predicate
and OR-predicates only serve as filters. The QNodes for out-
put are called output nodes.

We will explain the work done at line 10 in Section 4.2.3.
For now, simply regard line 10 as a black-box.

If q is a leaf output node, all path solutions for element
Cq are output (line 12). A QNode is a leaf output node if
it is an output node and has no QNode children. For ex-
ample, QNodes n3 and n4 in Figure 3 are leaf output nodes,
and they correspond to root-to-leaf paths {n3←n2←n1} and
{n4←n2←n1} respectively.

Two points are worth noticing on outputting path solu-
tions. First, if there are parent-child QNodes in a path solu-
tion, we should discard the path solution if the correspond-
ing edges do not satisfy parent-child relationship. Second,
path solutions for each root-to-leaf path should be sorted in



root-to-leaf order as required by a merge process that fol-
lows. Since path solutions for current Cq could be larger
than those for some later Cq in root-to-leaf order, we need
to block the output when necessary. We refer the interested
reader to the previous work [3, 11] for more detail.

After all possible path solutions are generated, they are
merged to compute the output twig instances of the AND/OR-
twig query (line 15). Merging multiple lists of sorted path
solutions is a simple practice of a multi-way merge join.

4.2.3 OR-predicates with Parent-child QNodes
Suppose that, in Algorithm 2, GetQNode(root) returns a

QNode q with k OR-predicates n1, n2, · · · , nk. If all QNodes in
the k subtrees are ancestor-descendant QNodes, then Cq sat-
isfies all these OR-predicates by definition because q has an
extension. On the other hand, if some subtree nx contains
parent-child QNodes, Cq might not satisfy OR-predicate nx.
It is even possible that this particular element Cq could not
satisfy OR-predicate nx at all. This causes a potential prob-
lem if q is an output node, because Cq may participate in
path solutions.

The following observation is important to solving the iden-
tified problem above: for any element ei in a stack, all
possible extensions in which element ei participates must
have been returned by GetQNode(root) and examined in Al-
gorithm 2 before ei is popped. Based on the observation, for
each output node qj with OR-predicates, we can keep eval-
uating OR-predicates for each element ei in Sqj

and know
whether ei satisfies all OR-predicates (in some extension ex-
amined) when it is popped. The evaluation results, in the
form of (qj , ei), can be reported to the merge routine for
validating path solutions involving qj .

The Data Structure
We introduce the data structure required to evaluate OR-
predicates for stack elements.

Given a QNode q inside an OR-predicate, each element
ei in Sq keeps a hash table Hei

that maps a QNode to a
boolean value as follows. For each qj ∈ Qchildren(q), if
there exists some element e′j ∈ Tqj

such that e′j has a match
and edgeTest(ei, e

′

j) is true, then Hei
[qj ] is set to true.

Note that, e′j may have already been processed and no longer
stay in stack Sqj

.
In addition, for an output node q with OR-predicates, we

also keep a hash table Hei
for each element ei ∈ Sq except

that we are only interested in hash entries Hei
[qj ] where

qj ∈ Qchildren(q) and qj is inside an OR-predicate. For
example, for QNode n1 in Figure 3, hash tables for elements
in Sn1

will have entries for n12, n14 and n15 but not for n2,
which is an output node itself.

With the hash table structure, it is straightforward to
evaluate OR-predicates based on Definition 5. Take Figure 3
as an example. Suppose we are going to pop an element
ex from Sn1

. To evaluate whether there has ever been an
extension in which element ex satisfies OR-predicate n11, we
only need to replace the QNodes in P (n11) with their hash
values in Hex (i.e., Hex [n12], Hex [n14] and Hex [n15]).

Maintenance of Hash Tables
When an element is pushed onto a stack (line 8, Algo-
rithm 2), its hash table is initialized to be empty. An empty
hash table returns false for any QNode. All other mainte-
nance of hash tables is carried out at line 10 as described

below.
If q is not a leaf QNode, nothing needs to be done. Other-

wise, we update the hash tables of the elements in the stacks
along the path from q up to the first output node encoun-
tered. Example 2 shows an update process for a simple case
where there is only one element in each stack. It is easy to
generalize it to the case when stacks have multiple elements.

Example 2. Consider Figure 3. Suppose GetQNode(root)
in Algorithm 2 returns n9. Also suppose that stack Sn7

contains element e7 and stack Sn4
contains element e4 such

that both edgeTest(e7, Cn9
) and edgeTest(e4, e7) are true.

Assume that all element hash tables are empty. The update
involves the following steps: (1) Set He7

[n9] to true; (2)
Since e7 now shows to have a match and edgeTest(e4, e7) is
true, we set He4

[n7] to true as well; and (3) Report (n4, e4)
because e4 has been proved to satisfy its only OR-predicate
n5.

We conclude Section 4.2 with the following theorem, which
asserts the correctness of the GTwigMerge algorithm:

Theorem 2. Given an AND/OR-twig query Q against an
XML database D, the GTwigMerge algorithm correctly re-
turns all the output twig instances for Q on D.

4.3 Cost Analysis of GTwigMerge
We now analyze the worst-case I/O cost for the GTwigMerge

algorithm. In the interest of space, we omit the analysis on
the worst-case CPU cost.

The I/O cost of GTwigMerge consists of two parts: the
I/O cost for accessing element node lists and the I/O cost
for outputting and joining path solutions. Since we always
advance the cursors and never backtrack, it is obvious that
accessing elements requires only linear worst-case I/O cost.
If all QNodes are ancestor-descendant QNodes, then every in-
dividual path solution takes part in at least one final output.
Thus, the I/O cost for outputting and joining path solutions
is linear to the total size of output twig instances. Hence,
we have the following theorem:

Theorem 3. Given an AND/OR-twig query Q containing
only ancestor-descendant QNodes and an XML document D,
GTwigMerge has worst-case I/O cost linear to |input|+|output|
and worst-case CPU cost linear to |Q| · |input| + |output|,
where |Q| is the size of the query, |input| is the total size of
the element node lists associated with QNodes, |output| is the
output size.

Twigs with Parent-child QNodes
Algorithm GTwigMerge still works correctly when AND/OR-
twig queries contain parent-child QNodes. However, the opti-
mality in terms of worst-case I/O and CPU cost is no longer
guaranteed.

There are two reasons for the sub-optimality. First, if
some output nodes are parent-child QNodes, a path solution
(with element nodes from parent-child QNodes) may turn
out not to join with any other path solutions to form an
output twig instance. Thus, irrelevant I/O access is caused.
This point is elaborated in the previous work [11]. Second,
if some OR-predicates in an AND/OR-twig contain parent-
child QNodes, a path solution may contain an element node
that eventually turns out not to satisfy all its OR-predicates.
Such path solutions are another source of irrelevant I/O and
CPU cost.



5. AN INDEX-BASED ALGORITHM
Although GTwigMerge only requires one scan of input ele-

ment node lists, such linear cost might be practically unsat-
isfiable for selective queries, where a large part of the input
data does not contribute to final outputs. It is most desir-
able to avoid accessing the data without matches. In this
section, we present an algorithm that processes AND/OR-twigs
using available indexes. For our algorithm to be indepen-
dent from a specific index implementation, we assume that
two new cursor methods are provided to access element node
lists through indexes:

1. Cq→fwdToAncestorOf(Cp) forwards Cq to the first an-
cestor of Cp. If no such ancestor exists, Cq is set to
the first element e such that e.start > Cp→start.

2. Cq→fwdBeyond(Cp) forwards Cq to the first element e

such that e.start > Cp→start.

5.1 The GTwigIndex Algorithm
The GTwigIndex algorithm shares the same main algo-

rithm (i.e., Algorithm 2) with GTwigMerge except that it re-
places the merge-based algorithm GetQNode with an index-
based one, namely GetQNodeIdx which extends GetQNode

and exploits available indexes on element node lists through
the two additional cursor methods: fwdToAncestorOf and
fwdBeyond.

The GetQNodeIdx algorithm addresses the limitations of
the previous work, which also considers skipping elements
with indexes but only works for AND-twigs.

5.1.1 The GetQNodeIdx Algorithm
Algorithm 4 shows the GetQNodeIdx algorithm. It takes

different actions depending on whether Sq is empty or not.

Algorithm 4 GetQNodeIdx(q)

1: if isLeaf(q) then

2: return q;
3: if not empty(Sq) then

4: for each qi ∈ Qchildren(q) do

5: q′ = GetQNodeIdx(qi);
6: if q′ 6= qi then

7: return q′;
8: end for

9: qmax = getMaxQChild(q); {Defined in Algorithm 3}
10: Cq→fwdToAncestorOf(Cqmax );
11: else

12: LocateExtension(q); {Algorithm 5}
13: qmin = arg minqi

{Cqi
→start}, qi ∈ Qchildren(q);

14: if hasExtension(q) and Cq→start < Cqmin
→start then

15: return q;
16: else

17: return qmin;

If Sq is not empty, the process is similar to that in GetQNode

except that we use fwdToAncestorOf to skip elements (line 10).
There is another opportunity for skipping elements: if Sq

is empty, we can directly locate an extension for q (line 12).
The rationale is that, when stack Sq is empty, for any qj ∈
subtreeQNodes(q) to contribute a new path solution, it must
participate in an extension involving some element node in
Tq. Next, we explain the LocateExtension algorithm in de-
tail, with the emphasis on techniques to meet new challenges
presented by AND/OR-twigs.

5.1.2 The LocateExtension Algorithm
The purpose of LocateExtension(q) is to locate an exten-

sion for a given QNode q, particularly, using indexes.
For a QNode q in an AND-twig query, we can do the following

to locate its extension: (1) Pick an edge (qi = parent(qj), qj)
in subtree q, such that Cqi

is not an ancestor of Cqj
; (2) For-

ward Cqi
and Cqj

appropriately until Cqi
is an ancestor of

Cqj
; and (3) Repeat (1) until no such edge can be found.

When it comes to AND/OR-twig queries, matching each
QNode edge (qi = Qparent(qj), qj) in isolation may lose cor-
rect results if qj lies inside an OR-block connected to qi.
The reason is that element nodes ei ∈ Tqi

that do not have
matches with any element in Tqj

may match with element
nodes in Tqx , where qx is some other QNode in the OR-block.
Given Figure 8, suppose we need to locate an extension for
QNode n1 and the cursors are (a2, b1, c1, d1). If we pick the
QNode edge (n1, n4) to process, we will eventually move their
cursors to (a7, c3). As a result, a5 and a6 are erroneously
skipped.

In other words, an OR-block is an atomic processing unit
whose components cannot be matched separately. We give
the definition for a broken edge, which can be matched in
isolation:

Definition 6. [Broken Edge] Given an edge (q, n) in a
query tree Q, where q is a QNode and n ∈ children(q), we
say that the edge (q, n) is broken if it satisfies one of the
following: (1) n is a QNode and Cq is not an ancestor of Cn;
and (2) n is an ONode and Cq does not satisfy OR-block n.

Algorithm 5 shows the details of LocateExtension. It
keeps matching broken edges until q has an extension. Each
time, we pick the broken edge with the highest priority for
processing. In the following, we discuss how to fix a broken
edge and how to calculate the priority of a broken edge.

Algorithm 5 LocateExtension(q)

1: while not hasExtension(q) and not end(q) do

2: Let BrokenEdges be all broken edges in subtree q;
3: for each (pi, ni) ∈ BrokenEdges do

4: priorityi = calculated priority of edge (pi, ni);
5: end for

6: (qx, nx) = arg max(pi,ni)
{priorityi};

7: if nx is a QNode then

8: fixEdge(qx, nx);
9: else

10: fixBlock(qx, nx);
11: end while

PROCEDURE fixBlock(q, n)

1: while q does not satisfy OR-block n do

2: qmax = ORBlockMax(n); {Algorithm 1}
3: Cq→fwdToAncestorOf(qmax);
4: if not end(Cq) then

5: qmin = arg minqi
{Cqi

→start}, qi ∈ Qchildren(n);

6: Cqmin
→fwdBeyond(Cq);

7: end while

PROCEDURE fixEdge(q, n)

1: while (q, n) is broken and not (end(Cq) or end(Cn)) do

2: if Cq→start < Cn→start then

3: Cq→fwdToAncestorOf(Cn);
4: else

5: Cn→fwdBeyond(Cq);
6: end while



Fixing a Broken Edge
In a broken edge (q, n), the node n could be either a QNode or
an ONode (i.e., the root of an OR-block). There are two pro-
cedures (i.e., fixEdge and fixBlock) defined in Algorithm 5
to deal with these two types of broken edges respectively.

Consider the fixEdge(q, n) procedure. It skips ancestor
element nodes and descendant element nodes alternately un-
til Cq is an ancestor of Cn or either of the two element node
lists (Tq and Tn) is exhausted.

The procedure fixBlock(q, n) tries to make q satisfy OR-
block n by forwarding the cursors of q and qi ∈ OR-block n

appropriately in each while loop: (1) An appropriate QNode

qmax is picked and used to skip element nodes in Tq (lines 2-
3); and (2) Cq is used to skip elements in Cqmin

(lines 5-6).

Priority of a Broken Edge
In the LocateExtension algorithm, we pick the broken edge
that has the highest priority. In the perfect case, we should
have a priority calculation function such that the overall
cost for running the LocateExtension algorithm is mini-
mal. This is essentially a query optimization problem. Re-
alistically, it is very difficult to find such an optimal priority
assignment function. We consider using statistics for com-
puting the priority of a broken edge.

The maximum distance (MD) heuristic in the previous
work [11] assigns the priority to a broken edge (qi, qj) ac-
cording to the estimated average distance AvgDistqi/qj

be-
tween pairs of matches for edge (qi, qj) and picks the edge
with the largest AvgDist value. The basic idea is that we
should choose a broken edge whose next match is the far-
thest from the current cursors so that we can hopefully skip
the most number of elements when matching other broken
edges. This is essentially a local optimization solution but
it has been shown to be quite robust.

The MD heuristic is applicable for our LocateExtension

algorithm except when a broken edge involves an OR-block.
We adopt the idea of logical-max QNode for OR-blocks and
extend the MD heuristic to handle a broken edge involving
an OR-block:

Definition 7. [Priority of an OR-block Broken Edge]
Given a QNode q and an OR-block n connected to q. As-
sume that OR-block n contains k QNodes q1, q2, · · · , qk. Let
AvgDistq/qi

be the estimated average distance between pairs
of matches for the QNode edge (q, qi). Then, AvgDistq/n is
defined as the value of AvgDistq/qmax , where qmax is the
QNode returned by ORBlockMax(n) if we use the AvgDistq/qi

value instead of ei.start in the ORBlockMax algorithm (lines 8
and 10).

5.2 Cost Analysis of GTwigIndex
The worst-case I/O cost for GTwigIndex depends on how

the cursor methods are implemented for the indexed element
node lists. However, since each cursor method always drives
the cursor forward, assuming a reasonable implementation,
we can draw the conclusion that GTwigIndex is as efficient as
GTwigMerge in terms of worst-case I/O and CPU cost (see,
Theorem 3).

On the other hand, our experimental study will show that
GTwigIndex outperforms GTwigMerge with its sub-linearity
performance characteristics, particularly for highly selective
twig queries.

6. PERFORMANCE EVALUATION
This section presents experimental results on the perfor-

mance of the algorithms we proposed, in comparison with
the existing state-of-the-art algorithms.

6.1 Experimental Setup

6.1.1 Data Preparation
We used synthetic data for our experiments to control

the structure and join characteristics of the XML data. The
DTD is shown in Figure 9. We used the IBM XML data gen-
erator in Java to generate the structural part of the XML
data (i.e., without text values) with default parameters [1].
The generated XML document roughly takes 100MB and
contains about 2 million element nodes. We assigned a ran-
dom number between 1 and 1000 to each text element node
as its value.
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Figure 9: The DTD of the synthetic XML data

6.1.2 Query Generation
We generated a set of complex AND/OR-twig queries based

on the DTD. To generate an AND/OR-twig query, we applied
a random walk starting from the root a of the DTD tree as
follows. Whenever we are at some node q of the DTD tree,
we randomly pick up some children of q. If only one child
is picked, it becomes the child QNode of q. If there are two
child nodes picked, they could be either directly connected
to q or linked to q through an ONode. When there are three
child nodes picked, we randomly choose one from all possible
ways to connect these nodes to q.

In our experiments, we used queries whose query trees
contain one, two or three ONodes and classified them into
three query sets QS1, QS2 and QS3 such that queries in
QSi contain i ONode(s).

It is obvious that, if every element node participates in a
match, there is no opportunity for index-based algorithms
to skip elements. Therefore, we applied selection value pred-
icates on text nodes in the queries tested. Value predicates
on queries were assigned in two different ways. In one way,
all value predicates in a query have the same selectivity,
which is defined as the percentage of element nodes satisfy-
ing a value predicate. The value predicates assigned in this
way could have a selectivity of 0.1%, 0.5%, 1% or 5%. In
the other way, each value predicate in a query has a selectiv-
ity randomly picked from 0.1%, 1%, 5% and 10%. Table 1
shows the average number of output twig instances for a
query in each query set with different value predicates.

Table 1: Average Number of Output Twig Instances
0.1% 0.5% 1% 5% vary

QS1 23 121 250 1590 1135
QS2 42 216 440 2567 1891
QS3 160 796 1583 7607 3438
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Figure 10: Disk I/O performance comparison between the decomposition-based and holistic algorithms for
the three query sets with same-selectivity value predicates: X-axis shows the selectivity and Y-axis shows
the ratio on disk I/Os performed by the two specified algorithms in each sub figure.

6.1.3 Evaluation Metrics
We will use the following three metrics to compare the per-

formance of different algorithms tested in our experiments.

• number of elements scanned. This metric indicates the
total number of elements scanned during a join. It
reflects the ability of an algorithm to skip elements.

• number of disk I/Os. This metric keeps the total num-
ber of disk pages accessed during a join.

• CPU time. The CPU time of an algorithm is obtained
by averaging the running times of several consecutive
runs with hot buffers.

6.1.4 The Testbed
We implemented a prototype system using C++. The

system includes a storage manager, an LRU buffer manager
for measuring disk I/Os, and index modules used by join
algorithms. The twig join algorithms tested in our experi-
ments were implemented on top of the test system. All the
experiments were conducted on a Pentium 1.0GHz PC with
512M RAM and a 80G IBM hard disk running Windows
XP. We used the file system as the storage.

6.2 Decomposition-based vs. Holistic
The first set of experiments investigates the performance

advantage of the new holistic algorithms for AND/OR-twigs
over the näıve decomposition-based approach. By decompo-
sition, we mean that each AND/OR-twig is decomposed into
a set of AND-twigs and we use existing twig join algorithms
to evaluate these AND-twigs. Most queries in QS1, QS2 and
QS3 are decomposed into 2, 4 and 6 AND-twigs respectively.

Specifically, we compare GTwigMerge with the decomposition-
based approach that uses the merge-based algorithm TwigStack

[3] and compare GTwigIndex with the decomposition-based
approach that uses the index-based algorithm XRTwig [11].

Figure 10 shows the experimental results on disk I/O per-
formance. Since the results in other metrics are qualitatively
similar, we omit them in the interest of space.

An immediate observation from the figure is that holistic
processing is much more efficient than the decomposition-
based approach. In particular, the decomposition-based ap-

proach could perform 100% more disk I/Os than those re-
quired by the holistic algorithms (Figure 10(c) and 10(f), se-
lectivity = 5%). We expect an even greater ratio for AND/OR-
twigs with more ONodes.

Note that the performance advantage of GTwigMerge over
TwigStack is almost independent of the selectivity of value
predicates. In contrast, the relative performance of XRTwig

improves when the selectivity gets smaller (i.e., the value
predicates become more selective). This observation reveals
that skipping elements through indexes is most effective
when there are no ONodes in twig queries. Nevertheless,
the benefit of more efficient skipping is compromised by the
large number of AND-twigs resulted from decomposition and
GTwigIndex is still the winner even when the value predicate
is very selective.

6.3 GTwigMerge vs. GTwigIndex
This part of experiments compares the performance be-

tween GTwigMerge and GTwigIndex. We are particularly in-
terested in the effectiveness of GTwigIndex in skipping ele-
ments through indexes. We will study the experimental re-
sults for both cases when the value predicates in each query
have either the same selectivity or varying selectivities.

6.3.1 Same-selectivity Value Predicates
Figure 11 shows the experimental results when all value

predicates in a query have the same selectivity. An over-
all impression from the results is that GTwigIndex is able
to take advantage of indexes to skip elements so that sub-
linearity performance can be achieved.

It can be observed from the figure that the performance
of GTwigIndex improves uniformly when the value predi-
cates become more and more selective while GTwigMerge

performs similarly no matter how the selectivity changes
(GTwigMerge achieves small performance gain when the se-
lectivity goes down not because of element skipping but be-
cause of the early stop of the algorithm when an element
node list is exhausted). For the case when the selectivity
is 0.1%, GTwigMerge accessed a few hundred times more el-
ements and performed up to 7 times more disk I/Os than
did GTwigIndex. Note that the number of elements scanned
is not necessarily proportional to the number of disk I/Os
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Figure 11: Performance comparison between GTwigMerge and GTwigIndex for the three query sets with same-
selectivity value predicates: X-axis shows the selectivity and Y-axis shows the metrics compared between the
two algorithms.

performed: an element access will not cause a disk read if
the corresponding disk page is already in the buffer.

From Figure 11 (a, d and g) about ratios on elements
scanned, it is noticeable that the total number of ONodes in
queries could have a negative impact on the effectiveness of
GTwigIndex in skipping elements. This is reasonable because
more ONodes in a query generally mean that the query is less
selective.

6.3.2 Varying-selectivity Value Predicates
Figure 12 shows the results for the case when the value

predicates in each query have varying selectivities. The re-
sults indicate that GTwigIndex is able to take advantage of
selective nodes even when there are less selective value pred-
icates in queries.

6.4 Summary
According to the experimental results, we draw the follow-

ing two conclusions. First, the holistic join algorithms pro-
posed in this paper should be used to evaluate AND/OR-twig
queries because they have obvious performance advantage
over the decomposition-based approaches. Second, using in-
dexes to skip elements during a join keeps to be an important
source of speedup even in the presence of OR-predicates in
twig queries, especially when there are selective value pred-
icates in the queries.

7. RELATED WORK
With the increasing popularity of XML, query processing

and optimization for XML databases has attracted a lot of
research interest. The work on Lore [17, 14, 15], Timber [9]
and Natix [6] has considered various aspects of managing
such data. In particular, twig query matching is identified
as a core operation in querying tree-structured XML data.

Therefore, there is a rich set of literatures on matching twig
queries efficiently. Below, we describe these literatures with
the notice that all the existing work deals with AND-twigs.

A structural join finds all element node pairs from two ele-
ment node lists Ta and Td such that each node pair satisfies
the given structural relationship. Existing algorithms in-
clude MPMGJN [21], EE/EA-Join [13], Stack-Tree-Desc/Anc
[18], B+ [4] and XR-stack [10]. The first three algorithms
are merge-based. In particular, the Stack-Tree-Desc/Anc al-
gorithm employs a stack to cache some ancestor nodes in Ta

and achieves the best overall performance among the three.
B+ and XR-stack leverage special index structures on the
data and are shown to achieve sub-linear performance for
selective queries.

Different from the holistic twig join algorithms, some ex-
isting work [20, 8] adopts a traditional cost-based approach:
first, the twig query is decomposed into binary edges; sec-
ond, an execution order for evaluating these edges is chosen
so that the total cost is minimal. In particular, [8] intro-
duces an unnest operation for evaluating a structural join.
The possible disadvantage of these cost-based approaches
is that irrelevant intermediate result sizes could get very
large, even when the input and final output are manageable
in their sizes.

Wang et al recently proposed the a dynamic index method
called Vist for matching twig queries [19]. Vist transforms
XML data and queries into structure-encoded sequences. To
match a query is to find all occurrences of the query sequence
in the indexed data sequences. However, Vist only supports
a limited class of twig queries. For example, if two nodes
under a branch have the same tag in a twig query, Vist needs
to disassemble the query, match sub queries separately and
then join the results.

There has been much research on constructing efficient
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Figure 12: Performance comparison between GTwigMerge and GTwigIndex for three query sets with varying-
selectivity value predicates: X-axis shows the query sets and Y-axis shows the metrics compared between
the two algorithms.

structure indexes for matching path expressions. Dataguide
[7] and 1-Index [16] can be used to answer simple path
queries without branches. The Index Fabric [5] indexes all
values by their root-to-leaf paths in a disk-based Patricia
trie and can support path queries (with value predicates)
efficiently. The above three indexes do not support twig
queries effectively. Kaushik et al showed that the F&B in-
dex covers branching path expressions [12]. But F&B index
does not support queries with value predicates gracefully be-
cause if we take values into consideration, the F&B index
could be too large to be practically useful.

8. CONCLUSIONS
Twig query matching has been identified as a core op-

eration in querying tree-structured XML data. In this pa-
per, we proposed holistic join algorithms for processing twig
queries that contain OR-predicates (i.e., AND/OR-twigs). Al-
though the idea of holistic twig join processing is not new,
applying it for AND/OR-twigs is nontrivial. To address the
challenges presented by AND/OR-twigs, we identified the con-
cept of OR-blocks and studied properties of OR-blocks. With
OR-block, an AND/OR-twig can be viewed as an AND-twig
with elements and OR-blocks. As a result, existing holistic-
processing techniques for AND-twigs can be extended grace-
fully to handle AND/OR-twigs. Experimental studies showed
that our new holistic join algorithms are much more effec-
tive in handling AND/OR-twigs compared to the existing al-
gorithms. In particular, the index-based algorithm has the
best overall performance.
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