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Abstract

XML has reached a widespread diffusion as a language for representing nearly any kind of
data source, from relational databases to digital movies. Due to the growing interest toward
XML, many tools for storing, processing, and querying XML data have appeared in the last
two years.

Three main problems affect XML query processing: path expression evaluation, nested
queries resolution, and preservation of document order. These issues, which are related to
the hierarchical structure of XML and to the features of current XML query languages,
require compile-time as well as run-time solutions; a precondition for the development of
such solutions is the presence of a well-founded query algebra that allows one to preserve
common relational and object-oriented optimization techniques, and that forms an unifying
framework for new techniques.

This paper describes a query algebra for XML data. The main purpose of this alge-
bra, which forms the basis for the Xtasy database management system, is to combine good
optimization properties with a good expressive power, which allows it to model significant
fragments of current XML query languages; in particular, explicit support is given to efficient
path expressions evaluation, nested queries resolution, and order preservation.

1 Introduction

XML has reached a widespread diffusion as language for representing nearly any kind of data
source, from relational databases to digital movies (e.g., the upcoming MPEG-7 format [Mar01]).
While the usual application for XML is data exchange, there exist many application fields where
direct manipulation of XML is needed (e.g., management of medical data [med]). Therefore,
many tools for storing, processing, and querying XML data have appeared in the last two years:
some of these tools are based on existing database management systems [MFK+00], while others
[KM00, Tam] are designed from scratch for XML data.
Three key problems affect query processing over XML data:

1. evaluation of path expressions;
∗Research partially supported by the MURST DataX Project and by Microsoft Research
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2. evaluation and resolution of nested queries;

3. ordering preservation.

These problems are related both to the tree structure of XML and to the features offered by
current XML query languages (e.g., XQuery [CCF+01]).

Path expressions Path expression evaluation requires to traverse a tree according to a given
path specification. This specification usually gives only a partial description of the path, by
using wildcards and recursive operators (e.g., ∗ in GPE [QRSU95] and // in XPath [CD99]).
There exist many approaches to path expression optimization. The most popular (and maybe
the most effective) ones are the use of path indexes or full-text indexes [FM00] [CCMS98], and
path expression minimization [DT01b, DT01a, CGLV01]. The former approach is based on the
massive use of path indexes or full-text indexes, hence trying to solve this optimization problem
at the physical level only; the latter approach, instead, is based on the fusion of the path
expression automaton with schema information. Both kinds of approaches exploits structural
information about XML data.

Another interesting approach tries to expand path expressions at compile-time [MW98], by
replacing recursive operators with real paths being present in the data; substitution information
is taken from a DataGuide [GW97], a graph containing each path being present in the database.
As a matter of fact, this technique can be considered as a special case of path expression
minimization.

Nested queries Current XML query languages, in particular Quilt [CRF00] and XQuery
[CCF+01], impose no restriction on query nesting: indeed, they generalize the ”free nesting
philosophy” of OQL [ASL89], and allow one to put a query or a complex expression (returning
a well-formed document) wherever a well-formed XML document is expected. This feature
allows one to easily formulate complex queries, e.g., queries containing esoteric joins, or queries
changing the structure of data. As a consequence, nested queries resolution has become more and
more important, at least to transform annoying dependency joins into more tractable ordinary
joins.

Ordering Unlike relational data models, XML is an ordered data format. Many application
fields (e.g., database publishing and semistructured database management) do not require the
preservation of order among elements, hence query processing goes as usual. Still, there are
some significant applications, such the managing of digital movies, which explicitly require the
preservation of document ordering. Further, some query languages, such as XQuery, strongly
support ordered joins, i.e., A � B �= B � A, as well as the ability to impose arbitrary odering
on query results (e.g., sort clause). Hence, ordering preservation in XML queries requires to
combine these requirements (sometimes conflicting).

There exist algebras which do not preserve ordering at all, as well as algebras whose operators
are inherently ordered, i.e., each algebra operator preserves order among elements [BMR99].
This second approach, while very influential in the document community and in some W3C
committee, has one significant drawback: the loss of join commutativity, and of the ability to
arbitrarily change joins order.

Our contribution This paper shows a query algebra for XML data. This algebra, which
forms the basis for the Xtasy database management system [CMS01], has been defined as an
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extension of object-oriented and semistructured query algebras [LMS+93, CM93, CCS98, BT99];
it retains common relational and OO optimization properties (e.g., joins commutativity and
associativity), and gives explicit support to efficient path expression evaluation, nested queries
resolution, and order preservation. In particular, the algebra provides general rewriting rules for
transforming dependency joins into ordinary joins, as well as a general approach for preserving
order in XQuery queries.

The paper is structured as follows. Section 2 describes the Xtasy data model; next, Section
3 describes the algebra operators. Then, Sections 4 and 5 introduce some algebraic equivalences
and discuss the expressive power of the proposed algebra. Next, Section 6 contains a review of
related works. Finally, in Section 7 we draw our conclusions.

2 Data Model and Term Language

The proposed algebra employs a simplified version of the W3C XML Query Data Model [FR00].
A data model instance is an unordered collection of persistence roots; roots can describe both
external data sources and local sources, each source being a (possibly virtual) well-formed XML
document. Therefore, persistence roots can represent concrete XML documents, stored into the
local database, as well as XML views over relational databases. A unique identifier is associated
to each persistence root.

Each document, in turn, is represented as an unordered forest of node-labeled trees, the
global ordering being preserved by a special-purpose function pos: internal nodes are labeled
with constants (tags and attribute names), and leaves with atomic values.

Example 2.1 Consider the XML fragment shown below:

<book class = "OpSys">
<author> Stuart Madnick </author>
<author> John Donovan </author>
<title> Operating Systems </title>
<year> 1974 </year>

</book>

<book class = "Database">
<author> Serge Abiteboul </author>
<author> Peter Buneman </author>
<author> Dan Suciu </author>
<title> Data on the web: from relation to ... </title>
<year> 2000 </year>
<publisher> ... </publisher>

</book>

This fragment can be represented by the forest depicted in Figure 1.

XML documents can also be represented as terms conforming to the following grammar
(quite close to the term grammar of [HP00]):

(1) t ::= t1, . . . , tn | label[t] | @label[vB] | vB

(2) label ::= as defined by XML specifications
(3) vB ∈ Integer ∪ String ∪ Boolean ∪ . . .

3



1974Stuart
Madnick

OpSys

titleyearauthor@class author

John Don-
ovan

Operating
Systems

book

2000Serge
Abiteboul

Database

titleyearauthor@class author

Peter
Buneman

Data on the
Web: ...

book

...

db1

Figure 1: A data model instance

Example 2.2 The fragment shown in the previous example can be described by the following
term:

book[
@class["OpSys"],
author["Stuart Madnick"],
author["John Donovan"],
title["Operating Systems"],
year["1974"]

],
book[

@class["Database"],
author["Serge Abiteboul"],
author["Peter Buneman"],
auhtor["Dan Suciu"],
title["Data on the web: from relation to ..."],
year["2000"],
publisher["..."]

]

In the data model only elements and attributes are represented, hence discarding processing
instructions, comments, etc. Moreover, no special treatment is given to ID-type and IDREF-type
attributes, as well as to linking mechanisms such as XLink.

Two auxiliary functions are defined on XML nodes: label and pos. label(t) returns the label
of the node t, while pos(t) returns an integer denoting the position of t into the global ordering
of its surrounding document.

3 Algebra Operators

Xtasy algebra is an extension of common object-oriented and semistructured query algebras
to XML. The starting point of the algebra is the YAT query algebra, described in [CCS98]
and in more detail in [Sim99]; from that the Xtasy algebra borrows the idea of relational-
like intermediate structures, hence extending to XML common relational and OO optimization
strategies, as well as the presence of border operators, which insulate other algebraic operators
from the technicalities of XML. The algebra provides two border operators, namely path and
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Figure 2: An intermediate structure

return, which respectively build up intermediate structures from XML documents and publish
these structures into XML; these operators are quite different from those of YAT, since they
allow direct evaluation of recursive XPath patterns, and cannot handle complex grouping and
sorting operations as YAT bind and tree; these operations, instead, are performed by other
algebraic operators, namely GroupBy and Sort.

In order to ensure the closure of the algebra, intermediate structures are themselves repre-
sented as node-labeled trees conforming to the algebra data model; this kind of representation
also allows one to apply useful optimization properties to border operators. In addition to path
and return, the Xtasy algebra provides quite common operators such as Selection, Projection,
TupJoin, Join, DJoin, Map, Sort, TupSort, and GroupBy.

There exist both set-based and list-based versions of the algebraic operators: list-based op-
erators should ease the management of the forthcoming XPath 2.0 path language [MSF01]. For
the sake of brevity, in the following sections only set-based algebraic operators will be presented.

3.1 Preliminaries

3.1.1 Env structure

As already stated, algebraic operators manipulate relational-like structures. These structures,
called Env, are very similar to YAT Tab structures [CDSS98] [Sim99], and contain the variable
bindings collected during query evaluation. As in [CM93] and YAT, Env structures allow one
to define algebraic operators that manipulate sets of tuples, instead of trees; hence, common
optimization and execution strategies (which are based on tuples rather than trees) can be easily
adapted to XML without the need to redefine all that stuff.

An Env structure is an unordered collection of tuples, each tuple describing a set of variable
bindings. Since the Xtasy algebra provides both set-oriented and list-oriented operators, there
exist two corresponding flavors of Env structures; moreover, two operators (set and list) are
provided for converting sets to lists and vice versa.

As shown in Figure 2, Env structures are modelled as rooted trees; each tuple element
describes a binding tuple, where labeli are variable names and tji the corresponding values. The
env structure depicted above can also be represented by the following term:

env ≡ env[tuple[label1[t11], . . . , labeln[t1n]], . . . , tuple[label1[tk1], . . . , labeln[tkn]]]
In the following sections, set-based Env structured will be denoted as1:

e ≡ {[label1 : t11, . . . , labeln : t1n], . . . , [label1 : tm1, . . . , labeln : tmn]}
1This notation is borrowed from YAT.

5



3.2 Border Operators

Xtasy query algebra provides two border operators: path and return; they are used for insulating
other operators, such as Join and DJoin, from the nested structure of XML, and they play a
key role in the whole algebra.

3.2.1 path

The main task of the path operator is to extract information from persistence roots, and to
build variable bindings. The way information is extracted is described by an input filter ; a filter
is a tree, describing the paths to follow into the database (and the way to traverse these paths),
the variables to bind and the binding style, as well as the way to combine results coming from
different paths. Input filters are described by the following grammar:

(1) F ::= F1, . . . , Fn | F1 ∨ . . .∨ Fn | (op, var, binder)label[F ] | ∅
(2) op ∈ {/, //, , ∀/, ∀//}
(3) var ∈ label ∪ { }
(4) binder ∈ { , in, =}

A simple filter (op, var, binder)label[F ] tells the path operator a) to traverse the current
context by using the navigational operator op, b) to select those elements or attributes having
label label, c) to perform the binding expessed by var and binder, and d) to continue the
evaluation by using the nested filter F .

The path operator takes as input a single data model instance and an input filter, and it
returns an Env structure containing the variable bindings described in the filter. The following
example shows a simple input filter and its application to a sample document.

Example 3.1 Consider the following fragment of XQuery query:

for $b in book,
$a in $b//author,

This clause traverses the path book//author into the sample document, binding each book
and author element to b and a, respectively. This clause can be translated into the following
path operation (also shown in Figure 3):

path( ,$b,in)book[(//,$a,in)author[∅]](db1)

Input filters provide a simple but rich path language, containing common path operators,
such as / and //, and their universally quantified version (∀/ and ∀//). No direct support,
instead, is given to the resolution of ID/IDREF attributes, e.g., a/b/@c=>/d is represented
by using joins. Moreover, input filters provide two binding styles (in and =), which directly
correspond to Quilt and XQuery binders.

The following example shows the grouping binder =.

Example 3.2 Consider the following XQuery clause:

for $b in book,
let $a_list := $b//author,
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b, in book

//

a, in author

path

db1

path((_,b,in)book[(//,a,in)author[φ]])(db1)

a) b)

Figure 3: A simple path operation

This clause traverses the path book//author; each book element is bound to $b, and, for
each book element, the whole set of author sub-elements is bound to $a list. This clause can be
expressed by using the following path operation:

path( ,$b,in)book[(//,$a list,=)author[∅]](db1)

As shown by the filter grammar, multiple input filters can be combined to form more complex
filters. Xtasy algebra allows filters to be combined in a conjunctive way, or in a disjunctive way.
In the first case, the Env structures built by simple filters are joined together, hence imposing
a product semantics; in the second case, partial results are combined by using an outer union
operation. Therefore, disjunctive filters can be used to map XPath union paths into input
filters (e.g., book/(author|publisher), as well as more sophisticated queries; the use of outer union
ensures that the resulting Env has a uniform structure, i.e., all binding tuples have the same
fields.

The following examples show the use of disjunctive filters.

Example 3.3 Consider the following XQuery clause:

for $b in book,
$p in $b/(author|publisher),

This clause binds the $p variable to publishers and authors of each book. It can be expressed
by using the following path operation:

path( ,$b,in)book[(/,$p,in)author[∅]∨(/,$p,in)publisher[∅]](db1)

Due to the presence of disjunction, a precedence order among combinators has to be estab-
lished; since union paths are not usually used at the beginning of a path, it seems natural to
give precedence to disjunction, i.e., f1 ∨ f2, f3 ∨ f4 is evaluated as (f1 ∨ f2), (f3 ∨ f4).

It should be noted that disjunctive filters may be used to express unsafe queries, as well as
to map queries of potentially unsafe languages (e.g., [CG01]).

As already stated, path expression evaluation is crucial in XML query processing. In order
to support the use of various kinds of indexes, decompositions of path operations into simpler
ones are needed. The Xtasy algebra offers two kind of decompositions: vertical decompositions,
which break up a linear path expression into smaller components, and horizontal decompositions,
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Figure 5: Vertical decomposition of path

which break disjunctive or conjunctive filters into their components. These decompositions allow
the query optimizer to choose the best evaluation strategy for each filter.

The following example shows how filters can be decomposed. For a complete definition of
the decomposition laws see Section 4.

Example 3.4 Consider the following XQuery clause:

FOR $b in library/book,
$p in $b/(author|publisher),
$t in $b/title,
$y in $b/year,

This clause retrieves the sub-elements of each book element, binding them to a corresponding
variable. This clause can be mapped into a path operation using the filter shown in Figure 4.

Assume now that a path index on library/book is available. To exploit the presence of this
index, the previous path operation should be decomposed into a path operation with filter
( , , in)library[(/, $b, in)book[∅]] and a new path operation, which further explores the subtrees
bound to $b. This decomposition is shown in Figure 5.
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3.2.2 return

While the path operator extracts information from existing XML documents, the return opera-
tor uses the variable bindings of an Env to produce new XML documents. return takes as input
an Env structure and an output filter, i.e., a skeleton of the XML document being produced,
and it returns a data model instance (i.e., a well-formed XML document) conforming to the
filter. This instance is built up by filling the XML skeleton with variable values taken from the
Env structure: this substitution is performed once per each tuple contained in the Env, hence
producing one skeleton instance per tuple.

Output filters satisfy the following grammar:

(1)OF ::= OF1, . . . , OFn | label[OF ] | @label[val] | val

(2)val ::= vB | var

An output filter may be an element constructor (label[OF ]), which produces an element
tagged label and whose content is given by OF , an attribute constructor (@label[val]), which
builds an attribute containing the value val, or a combination of output filters (OF1, . . . , OFn).

The following example shows the use of the return operator.

Example 3.5 Consider the following XQuery query:

FOR $b in book/
$t in in $b/title,
$author in $b/author

RETURN
<entry>

$t
$author

</entry>

This query returns the title and the authors of each book. This query can be represented by
the following algebraic expression (also shown in Figure 6):

returnentry[$t,$author](
path( ,$b,in)book[(/,$author,in)author[∅],(/,$t,in)title[∅]](db1))

3.3 Basic Operators

Xtasy algebra basic operators manipulate Env structures only, and perform quite common op-
erations. They resemble very closely their relational or object-oriented counterparts; this allows
the query optimizer to employ usual algebraic optimization strategies. This class contains Map,
TupJoin, Join, DJoin, Selection, Projection, GroupBy, Sort, as well as Union, Intersection,
Difference, OuterUnion, and their list-based counterparts. In the following the most impor-
tant operators will be presented.
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Figure 6: A query containing return

Selection Selection takes as input an Env and a boolean predicate, and it returns a new env

structure where binding tuples not satisfying the predicate are missing. The predicate language
of the Xtasy algebra is quite rich, and it offers existential as well as universal quantification
over variables. These quantifications are required for easily translating universally quantified
XQuery queries. The following example shows the use of the Selection operator.

Example 3.6 Consider the following XQuery query:

FOR $b in book,
$t in $b/title

WHERE EVERY $a in $b/author SATISFIES $a != "Vassilis Christophides"
RETURN <entry> $t </entry>

This query returns the title of each book not written by Vassilis Christophides. This query
can be represented by the following algebraic expression:

returnentry[$t](
σ∀$α∈$a:$alpha �=”VassilisChristophides”(

path( ,$b,in)book[(/,$t,in)title[∅],(/,$a,=)author[∅]](db1)))

The selection predicate compares the content of each author element with “Vassilis Christophides”,
and it returns true if and only if each author element content is not equal to “Vassilis Christophides”.
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Figure 7: A query containing TupJoin

TupJoin TupJoin takes as input two Env structures e1 and e2, and a boolean predicate
P ; it evaluates the predicate P over each pair of tuples (t1, t2) ∈ e1 × e2, and it returns an
Env containing the concatenation of the tuples satisfying P . TupJoin is primarily used for
connecting path operations over distinct data sources. The following example shows the use of
TupJoin.

Example 3.7 Consider the following query fragment:

FOR $b in book,
$a in $b/author,
$b1 in document("amazoncatalog.xml")/book,
$t in $b1/title

This query accesses two data sources, an internal one (db1) and an external one (catalog.xml).
This fragment can be represented by the algebraic expression shown below (see also Figure 7).

(path( ,$b,in)book[(/,$a,in)author[∅]](db1)) �true (path( ,$b1,in)book[(/,$t,in)title[∅]](extdb))

Unlike XQuery joins, Xtasy algebra joins are unordered. This means that e1 �P e2 ≡
e2 �P e1. Therefore, a correct translation of the previous fragment requires a Sort operation,
as it will be shown in the next paragraphs.

Join Unlike TupJoin, which has a fixed tuple combination function, the Join operator takes
as input a predicate, two Env structures, and a combination function f . f is used to combine
tuples in the resulting Env structure. As a consequence, Join is a higher order operator. The
Join operator has been inserted to enhance the flexibility of the algebra, and to provide room
for future extensions.
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DJoin Unlike the TupJoin operator, which joins together two independent Env structures,
the DJoin performs a join between two Env e1 and e2, where the evaluation of e2 may depend
on e1. This operator comes from object-oriented query algebras, and it is used to translate for
and let clauses of XQuery and, in particular, to combine an inner netsed block with the outer
one.

The only way to evaluate a DJoin is to perform a nested loop among operands, hence one
major goal of the optimization process is to transform, whenever possible, DJoins into more
tractable joins.

The following example shows the use of DJoin during query translation.

Example 3.8 Consider the following query:

FOR $b in book,
$t in $b/title

WHERE EVERY $a in $b/author SATISFIES $a != "Vassilis Christophides"
AND $b/publisher IN Q

RETURN <entry> $t </entry>

This query returns the title of each book not written by Vassilis Christophides, whose pub-
lisher is contained into the result of a nested query Q. This query can be translated into the
following algebraic expression:

returnentry[$t](
σ∀α∈$a:α �=”VassilisChristophides”∧$p⊆$ var(

(path( ,$b,in)book[(/,$t,in)title[∅],(/,$a,=)author[∅],(/,$p,=)publisher[∅]](db1)) < path( ,$ var,=) [∅](Q) >)))

Sort The Sort operator is used for both translating the SORTBY clause of XQuery (and
similar clauses of other languages) and preserving document order. Sort takes as input an
Env structure e and an ordering predicate P , and it returns e sorted according to P . Ordering
predicates are binary predicates defined on binding tuples, and used to impose the desired order.
The following example shows the use of Sort for translating SORTBY clauses.

Example 3.9 Consider the following query:

FOR $b in book
RETURN $b
SORTBY (title)

This query just returns the list of all books sorted by title. To translate this query, we need
to define an appropriate predicate, as the following: Pred(u, v) ≡ u.$t < v.$t, where $t is bound
to book titles. Thus, this query can be represented by the following algebraic expression:

return$b(
Sortu.$t<v.$t(

path( ,$b,in)book[( $t,in)title[∅]](db1)))
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For preserving order among elements a specialized version of Sort is used (called TupSort).
TupSort takes as input a list of variables ($x1, . . . , $xn), and an Env e; it returns e sorted
according to the following ordering predicate:

<Tup ($x1, . . . , $xn)(u, v) = (pos(u.$x1) < pos(v.$x1))∨
(pos(u.$x1) = pos(v.$x1) ∧ pos(u.$x2) < pos(v.$x2)) ∨ . . .∨
(pos(u.$x1) = pos(v.$x1) ∧ . . . ∧ pos(u.$xn−1) = pos(v.$xn−1)∧
pos(u.$xn) < pos(v.$xn))

This predicate allows the algebra to mimic the disappointing behavior of XQuery joins, whose
semantics depends on the order in which variables are bound. The following example shows how
TupSort can be used to preserve the order among XML elements.

Example 3.10 Consider the following query:

FOR $b in book,
$t in $b/title,
$a in $b/author

RETURN
<entry>

$t
$a

</entry>

XQuery semantics [FFM+01] prescribes that joins should be executed in an ordered fashion.
Hence, a correct translation of this query should contain the TupSort operation TupSort($b,$t,$a)(. . . ),
which sorts tuples in the Env structure according to the order specified in the query.

4 Optimization Properties

Three classes of algebraic equivalences can be applied to the Xtasy query algebra. The first
class contains classical equivalences inherited from relational and OO algebras (e.g., push-down
of Selection operations and commutativity of joins); the second class consists of path decompo-
sition rules, which allows the query optimizer to break complex input filters into simpler ones;
the third class, finally, contains equivalences used for unnesting nested queries. In the next
sections, the following notation will be used:

• Att(e) is the set of labels of an Env structure e;

• FV (exp) is the set of free variables occurring in an algebraic expression exp;

• $x denotes a variable

4.1 Classical equivalences

Given the close resemblance of Xtasy algebraic operators to relational and OO operators,
the Xtasy algebra supports a wide range of classical equivalences. In particular, Selection,
Projection, Map, TupJoin, and even return are linear, so common reordinability laws can be
easily applied to these operators.
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Here follows a brief (and quite incomplete) list of supported algebraic equivalences.

σP1∧P2(e) ≡ σP1(σP2(e))) (4.1)

σP1(σP2(e)) ≡ σP2(σP1(e)) (4.2)

σP1((e1) �P2 (e2)) ≡ (e1) �P1∧P2 (e2) (4.3)

(e1) �P1∧P2 (e2) ≡ (σP1(e1)) �P2 (e2) if P1 applies to e1 only (4.4)

(e1) �Pred (e2) ≡ (e2) �Pred (e1) (4.5)

4.2 path decompositions

path is the most important operator in the algebra; therefore, its evaluation affects the efficiency
of the whole query processing. An efficient evaluation of a path operation depends on the ability
of the query processor to simplify the path expression, and to exploit the presence of access
support structures; in particular, the use of appropriate indexes can dramatically speed up the
evaluation. Thus, the ability to decompose a complex filter, which may consist of deep paths
and require iteration on large collections (for the purpose of binding), into smaller ones, whose
paths can be mapped into existing indexes, is crucial.

The Xtasy algebra provides three decomposition laws for path operations: the first works on
the nested structure of a filter, while the remaining ones work on the horizontal structure of a
filter.

Proposition 4.1 Vertical decomposition of path operations

path(op,var,binder)label[F ](t)

≡

path( , ,in)env[(/, ,in)tuple[(/, ,in)var[(/,var,binder) [F ]]]](path(op,var,binder)label[∅](t))

The following example shows how this decomposition law can be exploited during query
optimization.

Example 4.2

Proposition 4.3 Horizontal decomposition of conjuncted input filters

pathf1,... ,fm(t)

≡

(pathf1,... ,fi−1(t)) �true (pathfi,... ,fm(t))

Proposition 4.4 Horizontal decomposition of disjuncted input filters

pathf1∨...∨fm(t)

≡

(pathf1∨...∨fi−1(t))OuterUnion(pathfi∨...∨fm(t))

The following example shows the use of horizontal decomposition laws.

Example 4.5
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4.3 Nested queries equivalences

This Section presents some equivalence rules that can be used to transform dependency joins into
TupJoin operations. These rules are not intended to be exhaustive, nor to be the most efficient
transformations; they just transform DJoins induced by nested queries into more tractable
joins.

A typical query has the following structure:

returnof (
SortP1(

σP2(
pathf (db))))

The output filter of , the selection predicate P2, as well as the input filter f can define
dependencies with an outer query.

Selection dependency The predicate P2 has the form Pred($X, $Z, $Y ), where $X are ex-
ternal variables, and $Y and $Z local variables. In order to remove this dependency (and the
related DJoin operation), we need to decompose Pred($X, $Z, $Y ) into PredGlob($X, $Z) ∧
Pred($Y, $Z), i.e., to separate local variables from global ones, and to transform the return

filter.

Proposition 4.6 Sigma Dependency

e1 < (pathf (returnof (σPred($X,$Z,$Y )(pathf1(db))))) >

≡

e1 �PredGlob($X,$Z) (pathf ′ (returnfo′ (σPredLoc($Y,$Z)(pathf1(db)))))
where

• fo
′
= of, z1[$z1], . . . , zk[$zk]

• f
′
= f, ( , , in)env[(/, , in)tuple[(/, , in)z1[(/, z1, =) [∅], . . . ,(/, , in)zk[(/, zk, =) [∅]]]]]

if FV (of) ∩ Att(e1) = ∅, FV (f1) ∩ Att(e1) = ∅, $X ⊆ Att(e1), $z1, . . . , $zk /∈ Att(e1),
$Y /∈ Att(e1)

By applying this transformation the dependency is brought out of the inner query.

Example 4.7

return dependency In this form of dependency the output filter of contains some external
variables $X ; these variables can be just projected, or deeply nested into a complex skeleton.
In any case, the output filter of($X) cannot be decomposed into a local part and a global one;
therefore, a different strategy must be adopted. Unlike GOM and OQL, return dependencies
can still be simplified; the main idea is to copy the left part of the DJoin into the nested
query, hence transforming it into a constant query, and to combine results by using an equality
predicate. This is feasible since the translation scheme of Xtasy algebra is different from that of
GOM.
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Proposition 4.8 return dependency

e1 < (pathf (returnof($X)(σPred()(pathf1(db))))) >

≡

e1 �$X=$X pathf,bind(returnof ′ (π($X)(e1) �true (σPred(pathf1(db))))
where

• bind ≡ ( , , in)env[(/, , in)tuple[(/, , in)x1[(/, x1, =) [∅], . . . ,(/, , in)xk[(/, xk, =) [∅]]]]]

• of
′ ≡ of($X), x1[$x1], . . . , xk[$xk]

if FV (f) ∩ Att(e1) = ∅, FV (f1) ∩ Att(e1) = ∅, FV (Pred) ∩ Att(e1) = ∅, $X ⊆ Att(e1)

Example 4.9

path dependency In this form of dependency, the input filter of the inner query is applied to
variables coming from the outer query. The transformation is quite similar to that of the return

dependency.

Proposition 4.10 path dependency

e1 < (pathf (returnof (σPred(pathf1(db))))) >

≡

e1 �$X=$X (pathf,bind(returnof ′ (σPred(pathf1(e1)))))
where

• bind ≡ ( , , in)env[(/, , in)tuple[(/, , in)x1[(/, x1, =) [∅], . . . ,(/, , in)xk[(/, xk, =) [∅]]]]]

• of
′ ≡ of($X), x1[$x1], . . . , xk[$xk]

if FV (f) ∩ Att(e1) = ∅, FV (f1) ∩ Att(e1) = ∅, FV (Pred) ∩ Att(e1) = ∅, FV (db) = $X ⊆
Att(e1)

Example 4.11

5 Expressive Power

In this section a brief overview of the expressive power of the Xtasy algebra will be given. First,
a relational completeness result will be shown; then, we will characterize the class of XQuery
queries that can be represented in the algebra.
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5.1 Relational Completeness

Current XML query languages can be used to query not only semistructured or irregular data,
but also regular data, such as relational databases. This usually happens in integration systems,
which provide a uniform XML view of multiple heterogeneous data sources. Therefore, it is
important to show that the Xtasy algebra can be used to query relational data sources.

Theorem 5.1 Completeness for relational algebra with aggregates
There exists an encoding scheme M of relational data into XML data, and an encoding

scheme M′
of relational algebraic expressions extended with aggregation into Xtasy algebraic

expressions, such that for any relational database db and for any correct relational algebraic
expression Q on db:

M(Q(db)) ≡ M′
(Q)(M(db))

5.2 Representation and Translation of XQuery Queries

As in common object-oriented query languages, XQuery queries translation into algebraic ex-
pression is performed in two pahses. During the first phase, common syntactical transformations
are applied to the query tree; in particular:

1. any binder occurring in the where clause (e.g., SOME $y IN ...) is moved to the for clause,
and corresponding quantified predicates are introduced in the where clause;

2. any path expression occurring free in the where clause or in the return clause is bound to
a variable, and the corresponding binder is introduced in the for - let clauses;

3. nested queries, occurring in any clause, are bound to variables and corresponding binders
are introduced in the define clause (similar to the define clause of GOM);

4. finally, common subexpressions are factorized.

The following example shows the transformations applied to a sample query.

Example 5.2 Consider the following query:

FOR $b in book,
$t in $b/title

WHERE EVERY $a in $b/author SATISFIES $a != "Vassilis Christophides"
AND $b/publisher IN Q

RETURN <entry> $t </entry>

This query returns the title of each book not written by Vassilis Christophides, whose pub-
lisher is contained into the result of a nested query Q. By applying the above transformations,
this query is transformed as follows:

FOR $b in book,
$t in $b/title,
$a in $b/author
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LET $p = $b/publisher
DEFINE $_var = Q
WHERE EVERY $a SATISFIES $a != "Vassilis Christophides"

AND $p IN $_var
RETURN <entry> $t </entry>

After the first phase, for and let clauses are examined in order to build filter-like path trees.
This is performed by transforming each path expression into a filter-like path, and then by
merging together paths referring to the same persistence root.

Finally, the return clause is scanned in order to build corresponding output filters.
Thus, the output of this phase is a query satisfying the following grammar:

Q ::= BWSR
B ::= (F|D)+
F ::= for input_filter do
L ::= define var = Q do
W ::= where BoolExp do
S ::= sort_by sort_criteria
R ::= return output_filter

Given a query conforming to the previous grammar, its algebraic representation is obtained
by applying the following translation scheme.

�BWSR�ρ ≡ �R�(�S�(�W �(�B�ρ)))
�R�ρ ≡ �return output filter�ρ ≡ returnoutput filter(ρ)
�S�ρ ≡ �sort by sort criteria�ρ ≡ Sortsort criteria(ρ)
�W �ρ ≡ �where BoolExp�ρ ≡ σBoolExp(ρ)
�B� ≡ �b1, . . . , bn�ρ ≡ �b1�ρ < �b2�ρ < . . . < �bn�ρ > . . . >> where:

• �for input filter do�ρ ≡ pathinput filter(ρ) and

• �define var = Q do�ρ ≡ path( ,var,=) [∅](�Q�ρ)

Given any query in normal form, it can be translated into an equivalent algebraic expression.

Theorem 5.3 There exists a query translation scheme T , such that, for each query Q in normal
form, T (Q) is equivalent to Q.

6 Related Work

Several algebras for semistructured data and XML have been proposed in the past years. Here
we briefly review the most important ones.
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YAT The YAT query algebra has been developed in the context of the YAT project [CDSS98].
YAT is an integration system based on a semistructured tree data model, endowed with the
ability to specify references as well as recursive structures. Its query algebra, largely based
on the object-oriented algebra described in [CM93], manipulates relational-like intermediate
structured. The novelty of this approach is represented by two frontier operators, bind and
tree, which are similar to Xtasy path and return: bind expresses binding, vertical navigation,
horizontal navigation, as well as grouping operations; tree, instead, is used to create new trees,
and it can perform grouping and sorting operations.

Although very powerful, bind cannot directly evaluate regular path expression or XPath
patterns; indeed, recursive path expressions can be encoded in the YAT algebra only by using
recursive algebraic calls.

SAL SAL [BT99] is a query algebra for XML data based on an ordered data model. SAL
is quite similar to the YAT query algebra, even though it requires Map operations to perform
variable bindings. One key feature of SAL is the ρ operator, which is used to evaluate general
path expressions.

TAX TAX [JLST01] is a query algebra for XML data based on an ordered data model. Unlike
YAT and SAL, the TAX algebra directly manipulates tree data without the need for an explicit
intermediate structure. Data extraction and binding are performed by using pattern trees ;
pattern trees, which resemble Xtasy input filters, describe the structure of the desired data, and
impose conditions on them.

Even though very promising, the optimization properties of TAX are not clear.

Other algebras In [BMR99] authors present a query algebra for ordered XML data, which
are modeled as rooted graphs. The distinctive feature of this algebra, very influential in the
XML community, is the use of ordered algebraic operators; in particular, joins are ordered, i.e.,
A � B �= B � A. The bad consequences of this design choice are clear.

7 Conclusions and Future Work

This paper described a query algebra for XML data, as well as some basic optimization prop-
erties; this algebra is used in the Xtasy database management system, which is currently under
development.

Our future work moves along three lines. First, we are currently implementing a persistent
version of Xtasy, and we have to explore the dark world of run-time query processing. Second,
we need to investigate further the problem of query unnesting: we believe that a classification
of nested queries over XML data could be very useful. Finally, we plan to explore further the
problem of order preservation, in the light of the recent proposals of global ordering emerged in
the W3C XML Query Working Group discussions.
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A Formalization

A.1 Env and tuples operations

Four basic operations are defined on Env structures and tuples.

1. t.A = tj where A = labelj (where t is a tuple) (field extraction)

2. t.
→
A= {ti1, . . . , tip} where

→
A = (labeli1, . . . , labelip) (repeated field extraction)

3. t ↓
→
A= [labeli1 : ti1, . . . , labelip : tip] where

→
A = (labeli1, . . . , labelip)

4. •, a concatenation operator between tuples (known as tup concat in other algebras).

A.2 Support operators

1. e[x] = {[x : t] | t ∈ e}

2. child(t) =

(a) if t = vB , then child(t) = {}
(b) if t = [t1, . . . , tn], then child(t) = {ti | i ∈ 1, . . . , n}

3. descendant(t) = child(t)∪
⋃

ti∈child(t) descendant(ti)

4. self(t) = {t1, . . . , tn | t = t1, . . . , tn}
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5. self − descendant(t) = self(t) ∪ descendant(t)

6. nav(op)(label)(t) =

(a) if op = ( ), then nav(op)(label)(t) = {ti | t = t1, . . . , tn ∧ label(ti) = label}
(b) if op = (/), then nav(op)(label)(t) = {t′j | t = t1, . . . , tn ∧ ∃i ∈ 1, . . . , n : t

′
j ∈

child(ti) ∧ label(t
′
j) = label}

(c) if op = (∀/), then

nav(op)(label)(t) =

{
nav(/)( )(t) if ∀t

′ ∈ child(t) : label(t
′
) = label

{} otherwise

(d) if op = (//), then nav(op)(label)(t) = {t′j | t = t1, . . . , tn, ∃i ∈ 1, . . . , n : t
′
j ∈

self − descendant(ti) ∧ label(t
′
j) = label}

(e) if op = (∀//), then

nav(op)(label)(t) =

{
nav(//)( )(t) if ∀t

′ ∈ self − descendant(t) : label(t
′
) = label

{} otherwise

A.3 Basic Operators

Map χf (e) = {f(t) | t ∈ e}

Join e1 �
f
Pred e2 = {f(t1, t2) | t1 ∈ e1 ∧ t2 ∈ e2 ∧ Pred(t1, t2)}

TupJoin e1 �Pred e2 = {t1 • t2 | t1 ∈ e1 ∧ t2 ∈ e2 ∧ Pred(t1, t2)}

DJoin e1 < e2 >= {y • x | y ∈ e1, x ∈ e2(y)}

Selection σPred(e) = {t | t ∈ e, Pred(t)}

Projection π→
A
(e) = {t ↓

→
A | t ∈ e}

GroupBy GroupByg;A;f1;f ;θ(e) = {y.A • [g : G] | y ∈ e, G = f({x | x ∈ e, f1(x)θf1(y)})}
where A ⊆ Att(e) and y /∈ Att(e)

Sort SortPred(e) = 〈t1, . . . , tn〉 such that ti ∈ e (i = 1, . . . , n)(∀t ∈ e∃i ∈ [1, n] : t = ti)(∀i ∈
[1, n− 1] : Pred(ti, ti+1) where Pred is an ordering predicate.

TupSort TupSort(x1,... ,$xn)(e) = Sort<Tup($x1,... ,$xn)(e) where:

<Tup ($x1, . . . , $xn)(u, v) = (pos(u.$x1) < pos(v.$x1))∨
(pos(u.$x1) = pos(v.$x1) ∧ pos(u.$x2) < pos(v.$x2)) ∨ . . .∨
(pos(u.$x1) = pos(v.$x1) ∧ . . . ∧ pos(u.$xn−1) = pos(v.$xn−1)∧
pos(u.$xn) < pos(v.$xn))
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A.4 Path

Input filters grammar

(1) F ::= F1, . . . , Fn | F1 ∨ . . .∨ Fn | (op, var, binder)label[F ] | ∅
(2) op ∈ {/, //, , ∀/, ∀//}
(4) var ∈ label ∪ { }
(5) binder ∈ { , in, =}

pathf (t) =

1. if f = f1, . . . , fm and t = t1, . . . , tn, then pathf (t) = pathf1(t) TupJoin(true) . . .TupJoin(true)
pathfm(t)

2. if f = f1 ∨ . . .∨ fm, then pathf (t) = pathf1(t) OuterUnion . . .OuterUnion pathfm(t)

3. if f = ( , , binder)label[∅] and t = t1, . . . , tn, then pathf (t) = {};

4. if f = ( , , binder)label[F ] and t = t1, . . . , tn, then pathf (t) = pathF (nav( )(label)(t));

5. if f = (op, l, in)label[∅] and t = t1, . . . , tn, then pathf (t) = nav(op)(label)(t)[l];

6. if f = (op, l, =)label[∅] and t = t1, . . . , tn, then pathf (t) = {[l : nav(op)(label)(t)]};

7. if f = (op, l, in)label[F ] and t = t1, . . . , tn, then pathf (t) =
⋃

ti∈nav(op)(label)(t){[l : ti]}TupJoin(true)pathF (ti)

8. if f = (op, l, =)label[F ] and t = t1, . . . , tn, then pathf (t) = {[l : nav(op)(label)(t)]}
TupJoin(true) pathF (nav(op)(label)(t))};

9. if f = (op, , )label[∅] and t = t1, . . . , tn, then pathf (t) = {};

10. if f = (op, , )label[F ] and t = t1, . . . , tn, then pathf (t) = pathF (nav(op)(label)(t));

11. path∅(t) = {};

A.5 Return

Output filters grammar

(1)OF ::= OF1, . . . , OFn | label[OF ] | @label[val] | val
(2)val ::= vB | var

returnfo(e) =

1. if fo = vB, then returnfo(e) =
⋃n

i=1 vB where e = {t1, . . . , tn};

2. if fo = var, then returnfo(e) = {t.var | t ∈ e};

3. if fo = @label[val], then returnfo(e) =
⋃n

i=1 @label[returnval({ti}) where e = {t1, . . . , tn};

4. if fo = label[fo
′
], then returnfo(e) =

⋃n
i=1 label[returnfo

′({ti}) where e = {t1, . . . , tn};

5. if fo = fo1, . . . , fon, then returnfo(e) =
⋃n

i=1 returnfo1({ti}), . . . , returnfon({ti}) where
e = {t1, . . . , tn}.
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