

XPath on Steroids: Exploiting Relational Engines
 for XPath Performance †

Haris Georgiadis Vasilis Vassalos
Athens University of Economics and Business Athens University of Economics and Business
 76 Patission Str, GR 10434 Athens, Greece 76 Patission Str, GR 10434 Athens, Greece
 harisgeo@aueb.gr vassalos@aueb.gr

ABSTRACT
A lot of research has been conducted by the database community
on methods and techniques for efficient XPath processing, with
great success. Despite the progress made, significant opportunities
for optimization of XPath still exist. One key to further
improvements is to utilize more effectively existing facilities of
relational RDBSes for the processing of XPath queries. After
taking a comprehensive look at such facilities, we present
techniques for XPath processing that work by identifying the best
relational join algorithms, indices and file organization strategies
for XPath queries. Our techniques both reduce the latency of the
resulting SQL translations and guarantee their pipelined execution.
We also propose a new technique for XML reconstruction from
relations-mapped XML that "splits the difference" between
schema-aware and schema-oblivious XML-to-relational mapping
for a significant performance improvement. An extensive
experimental study confirms the performance benefits of our
optimization techniques and shows that a system implementing
these techniques on top of a commercial RDBMS is competitive
with respect to query performance with other native and relational-
based state-of-the-art XPath processing systems, commercial as
well as research prototypes.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Systems – Query processing,
Relational databases.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords: XML, XPath, Relational databases, XML
Reconstruction, Schema Mapping, Structural Joins, Indices, Dewey
encoding

1. INTRODUCTION
There is today wide and increasing use of XML for a variety of
data exchange, data processing, and data integration tasks. XML is
used in many application domains where there are large quantities

of semistructured data to be exchanged or processed, from
bioinformatics [5] to astronomy [6] to large corporate data
processing.

The wide applicability of XML and the difficulties in processing
XML data, arising from its semistructured and hierarchical nature,
the rich schema query language facilities, and the diverse
application requirements, have led the data management
community to devote a lot of effort to the XML processing
challenge [21].

Even though these efforts have yielded very efficient systems and
techniques, there is still significant room for improvement in a
variety of areas related to XML processing, and especially in using
relational infrastructure for XML processing [4][9]. We have
identified two such distinct areas of possible improvement:

• Reconstructing XML results from relational tables resulting
from XML shredding [13][12].

• Exploiting existing relational facilities for XML processing. To
the extent that relational back-ends are used to store and
process decomposed (i.e., shredded) XML data, it seems
natural to try to use the existing relational facilities in as
efficient a manner as possible. Not much effort has been
devoted to “fitting” SQL translations of XML queries to the
abilities of their relational “hosts”.

With regards to the second point, we take a comprehensive look at
the choices open to an XML-to-relational mapping system, and the
corresponding choices for XML-to-SQL translation. We identify
four key issues and devise techniques to improve performance in
each case:

a) Choosing the right relational join technique. We compare
relational join techniques and conclude that index nested loop
joins are superior to sort merge for queries processing shredded
XML data, for a variety of reasons (Section 5.2.1).

b) Eliminating redundant ordering and duplicate elimination
operations, which affect both latency and time to first result.
The properties of order encoding schemes used in XML-to-
relational mapping allow us to prove that often structural joins
produce correctly sorted results. In the other cases, performance
is improved by pushing ordering down the plan tree. Both result
in generation of SQL statements with fewer (or none) ORDER
BY and DISTINCT clauses (Sec. 5.2.2).

c) Generating pipeline-able plans, to improve “first result” and
total query performance. Using index nested loop joins, making
the effort to create pipeline-able plan trees, improves
performance further, as we discuss in Section 5.2.3.

† Research supported by the PENED Programme of the Greek Secretariat
of Research and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

317

d) Picking the right physical organization. Among the many
available options, indexed file organization is shown to be the
best choice (Section 5.3)

All of the above choices are validated with extensive experiments
over synthetic and real data presented in Section 6. We also note
that the relational optimizer, when left alone, makes the wrong
choices, so we create a relational-based system for XPath
processing that automatically inserts the appropriate optimizer
instructions, i.e., hints, in SQL translations.

Concerning the first point, we propose a new XML reconstruction
technique that decomposes XML in relations in two different ways
to combine the benefits of “schema-aware” and “schema-
oblivious” XML-to-relational mapping. This hybrid XML
reconstruction technique has significant performance benefit, as
shown in our experimental study in Section 6.4.

We implement a system on top of a commercial relational engine
that includes all the techniques we propose to exploit the observed
inefficiencies. In Section 6.5, we compare this system with a
variety of other state-of-the-art XPath processing systems,
commercial as well as research prototypes.

2. RELATED WORK
A lot of research work has been done for both relational [11][23]
and native [2][22] XML processing. A number of systems have
been developed, such as Natix[2], MonetDB/XQuery [8] and
Timber [22] that are able to store and query large collections of
XML documents. Commercial RDBMSs have also enhanced their
functionalities with XML management capabilities [4][24][3].

Many techniques have been developed to improve XML query
performance. Special index structures and joins algorithms have
been developed [25][26][27] and existing relational facilities for
indexing, such as B-trees, have been used [11]. In the context of
XML-to-relational mapping, several techniques [28][29][30] have
been proposed to explore among mapping alternatives and pick the
best for certain application characteristics. Not much attention has
been paid to better exploiting the full set of relational facilities,
e.g., join algorithms, indices, file organization methods, to speed
up XML querying.

A key issue for XPath and XQuery processing is XML
(re)construction, especially for relational-based systems. In
schema-oblivious XML-to-relational mapping, XML data is
shredded into a single element relation, and an order encoding
scheme (e.g. dewey or pre/post encoding [11]) is used for
structural relationships. These can be used to easily retrieve all
descendants of a given element [11]. In schema-aware mapping,
XML data is mapped to a relational schema derived from the XML
Schema of the data. Little work has been done on XML
reconstruction in this case. In [18], an XML Schema-to-Relational
mapping that uses inlining is enhanced with range encoding only
for handling XML reconstruction. For a given element, its XML
descendants are retrieved by issuing as many queries as the
number of relations that potentially store descendant elements. The
results of these queries are unioned and sorted in document order
outside the relational engine. The XML subtree is created from the
sorted relation as in [11]. Hence, several queries must be executed
for every result element of an XPath expression. In [30], a
technique for XML reconstruction based on storing preparsed
XML fragments as BLOBs is proposed.

There is also relevant work in XML publishing, i.e., exporting of
existing relational data into XML, where nesting is implied by
foreign-key references. Such techniques can be applied for
retrieving the subtree of each element returned by the SQL
translation of an XPath expression. In [12] and [13] two methods
are described: path outer unions and sorted outer joins. Both
evaluate all possible root-to-node paths as sequential foreign-key
joins and try to exploit common joins by using temporary views.
All queries corresponding to the root-to-node paths are unioned,
with the latter technique sorting the results on all the primary key
columns. Common joins for parent-child and sibling elements are
exploited in [14].

XML reconstruction from schema-aware mapped relations has
similarities to the problem of evaluating recursive queries: in both
cases SQL translations must evaluate multiple join paths. Recent
research [16],[17] handles such queries, even in the presence of
recursive schemas, using the SQL’99 WITH clause and a special
operator for linear recursion, respectively. The produced SQL
statements are very complicated and therefore hard to optimize.

Finally, in [9], we present a set of high performance techniques for
XPath processing on top of a relational engine. The main novel
techniques are one-step processing of complex path fragments
using regular expression filtering, and turning structural joins into
dewey-encoding-based theta joins. The techniques are shown to
offer significant performance benefits while being implemented
purely on top of existing relational technology. Nevertheless, the
system has significant limitations: it does not handle XML
reconstruction, i.e., XPath queries return just a list of selected
nodes. Also, there is no mention of physical data organization and
no effort is made to better exploit existing relational facilities.
Given the lightweight integration required with the underlying
relational engine, and the performance characteristics of the
techniques it introduces, we use [9] as the basis for our
investigation and the implementation of the novel techniques and
algorithms presented in this paper. In the following section, we
provide a short background description of PPF-based XPath
processing.

3. USING PRIMARY PATH FRAGMENTS
FOR XPATH
The PPF-based XPath processing system we described in [9] is an
RDBMS front-end for answering XPath queries. It creates a
dedicated relational schema for the XML schema of an XML
document (hence using a schema-aware XML-to-relational
mapping). Based on the schema mapping, it processes XPath
queries by translating them into SQL statements, which are then
processed by the relational engine. A brief description of those two
functions, necessary for the development of our work, follows in
Sections 3.1 and 3.2, respectively. We will use, by abuse of
abbreviation, PPFS to mean “the PPF-based XPath processing
system described in [9]”. We will refer to the novel system and
techniques we develop in this paper as PPFS+.

3.1 Schema Mapping
There are three main issues that must be considered in XML-to-
relational mapping. The first is how the main structures of XML
schema are mapped into relational ones. PPFS uses the simplest
alternative for that: each element definition is mapped into a
separate relation, attributes as well as text nodes are mapped into
columns of the appropriate type into the respective relations.

318

The second important aspect is how to store structural information
for the XML documents, like element nesting and ordering. PPFS
uses dewey encoding [19] for mapping both element nesting and
ordering.1 Each mapping relation has a dewey_pos primary key
column for storing the structural position of each element. In
dewey encoding, each element is assigned a unique vector of
numbers. Each number of the vector represents the local order of
the respective ancestor element among its siblings. Figure 1 shows
an example: the node with dewey position 1-3-2 is second among
its siblings and its parent is the third child of the root. PPFS uses a
parent column for handling the parent-child axis. In PPFS+ we
changed that: we don't maintain parent columns, since we noticed
that all axes can be handled with dewey-based structural joins

Figure 1. Dewey order of XML nodes

The third key issue is what additional information is stored to
allow more efficient querying. PPFS stores for each element node
its root-to-node path and uses it as an index. Paths are stored in a
separate relation, named Paths, which is usually very small (some
KB for XML databases of size in the hundreds of MB). All
mapping relations maintain a foreign key reference to this relation,
in a column named path_id.

Example 1: Consider a simple XML Schema H which will be used
as a running example for the following sections. The schema graph
I of the schema is illustrated in the left part of Figure 2. We
suppose that among the element definitions, only S and D have a
text node and that B and D have two attributes each, namely j and
k. The corresponding relational schema is shown in the right part
of Figure 2. �

Figure 2. Sample XML schema and corresponding relations

3.2 XPath-To-SQL Translation
Based on the XML mapping just described, PPFS uses an XPath-
to-SQL translation algorithm to create an SQL statement that
produces the tuples representing the target elements defined by the
XPath expression (but not their subtrees). The SQL statement
returns the tuples in document order [1]. To produce SQL
statements that are efficiently executed, two techniques are
employed: a) XPath expressions are divided into parts called
Primitive Path Fragments (PPFs), where each PPF can be
processed in a single step using regular expression filtering on the
root-to-node paths and b) using a clever encoding of dewey order,
any kind of structural join between PPFs (i.e., any XPath axis) is
translated into theta joins on simple arithmetic conditions. Briefly,
a PPF is:

• a forward path with no predicates except for the last step

1 We have experimented with an alternative encoding scheme, pre/post

encoding, and have identified performance benefits from using dewey
encoding. The experiments are not reported due to lack of space.

• a backward path with no predicates except for the last step or
• a single step of one of the other axes: following, following-

sibling, preceding or preceding-sibling.
PPFS identifies the relation, called the prominent relation, that
corresponds to the final step of each PPF path. Only prominent
relations participate in SQL translations. Each PPF is handled by
filtering the path ids of the tuples of the prominent relation, so that
their corresponding root-to-node paths match a regular expression
derived directly by the PPF path. For the regular expression
matching, PPFS uses the built-in REGEXP function of Oracle 10.2g
(other RDBMS use similar functions).

Example 2: Consider the query /R//B/*/D over an XML
document conforming to schema H of Example 1. The query
consists of a single PPF whose prominent relation, according to
our mapping, is D_. The regular expression equivalent of that PPF
is ‘/R/(.+/)? B/[^/]+/D’ (using the POSIX syntax). The final
SQL translation will be:

Although the XPath expression contains a descendant axis (//) and
a wildcard (*), only one mapping relation is involved in the SQL
statement and no structural joins are needed. �

When more than one PPF exist, the prominent relations of
consecutive PPFs are structurally joined on their dewey position
columns. Lexicographical comparisons over dewey positions are
used to handle all XPath axes.

Example 3: The XPath expression /R/A/A[B/*/D/@k=“2”]
consists of two PPFs, ‘/R/A/A’ and ‘/B/*/D’ with A_, D_ being
their prominent relations, respectively. The SQL translation is:

Note that chr(255) returns the character with ASCII code 255, thus
the byte corresponding to FF in hexadecimal notation. �

In what follows, we use the term backbone to refer to the path of
an XPath expression that remains if we omit all predicates. We
also define the selective prominent relation of an XPath to be the
prominent relation of the last PPF of the backbone path.

4. XML RECONSTRUCTION
PPFS only returns the sequence of XML nodes identified by an
XPath expression. Each node may have arbitrarily complex content
structure. For an XML management system to be practical, it must
be able to return results in XML form. We call target elements
those located by the XPath expression to distinguish them from the
elements of the subtrees rooted at them. In this section, we study
the problem of efficient XML reconstruction and describe the “first
cut” PPFS+ solution. For efficient XML reconstruction, the
following questions arise:

1. Which relations potentially store descendant elements?

319

2. Given an SQL translation of an XPath, how can we retrieve,
for each target tuple (that corresponds to a target element), all
its descendants in an efficient and pipelined manner?

3. For each target tuple, its descendants will be retrieved as a
sequence of flat tuples. How can we construct an XML subtree
from that sequence of tuples?

The first question is answered easily by resorting to the XML
Schema graph. Regarding the second question, since dewey
encoding is used for selecting descendant nodes, we retrieve the
descendants of each target node using range conditions on
dewey_pos columns. In short, we translate the XPath query into
an SQL select statement as described in Section 3.2 and define
with this statement a temporary view, called target_elements.
Another temporary view, called descendants, unions the relations
that possibly store descendant elements. Those two views are
defined using the ‘WITH clause’ of SQL’99 which allows the
definition, within a single statement, of several temporary views
along with a main query that refers to them. The main query joins
the two views using the ancestor-descendant join condition. We
present here a sketch of the technique via an example and elaborate
on it in Section 5.4.

Figure 3. XML-reconstruction enabled SQL translation

Example 4: Consider the XPath query /R/T over an XML
document that conforms to schema H. It consists of one PPF, with
selective prominent relation T_. We define view target_elements
using the algorithm discussed in Section 3.2. The relations
corresponding to descendants of T are S_, B_, C_ and D_. View
descendants takes a union of these relations. Figure 3 shows the
SQL statement that returns a denormalized relation produced by
the outer join of these two view relations. The join matches each
tuple of target_elements with its descendants from the descendants
view. Therefore, each target element is repeated in the result
relation as many times as the number of its descendants. To make
the conversion of this result into XML form more efficient, a
pseudo-column called target_element_num is added to the
target_elements view that stores the row number of each tuple in
the view. PPFS+ used the Oracle built-in pseudo-column ROWNUM.
Target elements are distinguished by comparing the values of the
target_element_num fields (which is much cheaper than
comparing their dewey_pos fields).

Execution of the resulting SQL statement will vary among
different RDBMSs. We discuss the generation of “better” SQL
statements and the generation of optimal execution plans for such
queries in the next section. The ORDER BY clause in the final query
guarantees that the results are sorted in document order. We will
see in Section 5.2.2 that there is a much cheaper way to guarantee
correct ordering. Moreover, note that the view descendants should
not be precomputed, resulting in a possibly huge intermediate

result. Instead, the final query that joins target_elements and
descendants should repeatedly compute parts of descendants that
correspond to the descendants of each tuple of target_elements,
exploiting existing indexes on relations E_, F_, G_ and H_ to
speed up the structural joins. �

Finally, note that the relations that are unioned in descendants may
have different schemas, since some of them may have columns
corresponding to text and attribute nodes and some may not. To
eliminate these differences, we group for each relation all attribute
columns under a single pseudo-column called attributes_, as
shown in Figure 3. If a relation doesn’t have attribute columns,
attributes_ equals NULL. Similarly, for those relations that do
not have a text_ column, we add a pseudo-column named
text_ equaling NULL. In Figure 3, B_ is enhanced with column
attributes_ which is defined as the concatenation of: the string
‘j=“’, the value of column j_, ‘” k=“’, the value of column k_, and
‘”’. Therefore, the value of the attributes_ field of a B_ tuple
with values ‘a’ and ‘b’ for the fields j_ and k_ will be ‘j=“a”
j=“b”’. The column is formatted as attributes are in XML elements,
so it can be included in XML elements reconstructed in the final
result with no extra effort.

The last question is how to reconstruct an XML document from the
result relation. For this, PPFS+ uses a technique similar to that
described in the appendix of [11], where the dewey position of the
element being fetched is compared with that of the previously
fetched element, to decide whether it should be nested in the
previous element or not. In PPFS+, a relation tuple includes
information for both a target element and a descendant. To produce
results correctly, we must identify when the target element
changes, which is done, as mentioned above, by comparing the
values of the field target_element_num.

5. TUNING THE RELATIONAL
IMPLEMENTATION
As discussed in previous sections, many different shredding
schemes and XPath-To-SQL translation techniques have been
proposed. A key requirement for all is that the SQL translations of
XPath queries must be as efficient as possible. The relational back-
end executes the plan that the query optimizer estimates as the
optimal; however, in most cases SQL translations are complicated
and, moreover, shredded XML data have some non-obvious
characteristics that can be exploited for better perfor-mance –
which relational optimizers always miss. In this section we take a
closer look at XML-to-Relational mapping, XPath-to-SQL
translation and the XML reconstruction technique presented in the
previous sections, and focus on the implementation strategies
available with a relational storage and execution engine. We
conclude on certain strategies and significantly modify the XPath
processing techniques to improve query performance.

In Section 5.1 we discuss some distinctive features of our SQL
translation and mapping techniques. Based on these features, we
first focus on the relational join algorithm and indices that fit better
with dewey-based structural joins and discuss how they affect the
XPath-to-SQL translation algorithm (Section 5.2). We then
compare file organization methods and identify the most
appropriate one for XPath processing (Section 5.3). Based on these
findings, we revisit XML reconstruction and provide new
algorithms that significantly improve efficiency (Section 5.4).
Detailed experiments (Section 6) validate the proposed techniques.

320

5.1 Key observations and requirements
An important requirement of XPath semantics [1] is that the
sequence of target elements returned by the evaluation of an XPath
expression must be sorted by document order and have no
duplicates. This implies that the result relation of the target query
must be ordered by the dewey_pos column. Likewise, the
elements of the sub-trees rooted at each target element must
preserve the ordering of the original XML document.

One interesting observation for dewey order that cannot be
explicitly declared in the database engine is the following: if the
dewey position of element A is greater than the dewey position of
element B, and A is not a descendant of B, then the dewey position
of every descendant of A will be greater than the dewey position of
every descendant of B. This is important because it implies that,
under certain conditions, the result of ancestor-descendant
structural joins is naturally ordered by the dewey_pos column of
the descendants relation without extra effort.

When deciding on indices and file organization, it is important to
know what columns of the relational encoding are accessed to
answer an XPath query. The dewey_pos and path_id columns of
all prominent relations participate in selection conditions. The
existence of filtering predicates may also cause columns
corresponding to text or attribute nodes to participate in selection
conditions. The selective prominent relation returns all its columns.
Concerning the descendants view, almost all columns of the
relations are projected since they are needed for the construction of
the resulting XML document.

Finally, note that, given the wide use of XML in web-based
applications and their interactive nature, it is usually vital for XML
processing to provide “first answers” quickly. To achieve this goal,
execution plans must be pipelined and blocking operations must be
avoided, which means that explicitly declared sorting should be
avoided. When XML reconstruction is required, the number of
tuples processed and returned by the SQL translation can be very
large, since every single element is mapped into a separate tuple
(no inlining is used), which makes sorting them prohibitively
expensive. We exploit the above observations in the following
sections.

5.2 Index Nested Loops For Structural Joins
This section answers three interrelated questions: what relational
join algorithms map better to dewey-based structural joins, what
indexes help the most, and under which circumstances DISTINCT
or ORDER BY clauses are redundant.

5.2.1 Nested Loops and b-tree index on dewey_pos
Since structural joins involve range comparisons, a standard B-tree
index for the dewey_pos column is optimal since it can efficiently
handle range conditions. A simple example follows.

Example 5: Consider an ancestor-descendant join between element
types C, D defined in the XML schema H of Example 1. C_ and
D_ are the respective relations. The SQL statement that performs
this join is the following:

The query enforces the condition that elements corresponding to
D_ tuples are descendants of those corresponding to C_ tuples.

Dewey encoding allows the discovery of all descendant D
elements of a given C element with a simple range index lookup.
Particularly, if the dewey position of the C element is x then we
need all D elements with dewey positions ranging from x up to
x||CHR(FF). These can be easily retrieved from the linked list of
the block leaves of B-tree indices. �

Given the above, index nested loops (index-NL) are ideal for
performing structural joins based on dewey encoding: Scan the
ancestor relation and, for each dewey position key, perform a
range index lookup in the dewey position index of the descendant
relation. This way, only B-tree leaf blocks containing descendant
tuples are visited. A clustered index on the dewey position column
is present since this column is the primary key.

We can force the optimizer to use index-NL by incorporating
special implementation instructions, i.e., hints, as comments into
the SQL translations before we issue them to an RDBMS. The
RDBMS reads the hints and tries, if possible, to produce physical
plans that conform to these instructions. Hints can demand specific
join algorithms, access path method, use of indices, join ordering,
etc. In the statement of Example 5 as well as in following SQL
statements, we use natural language to describe hints, for ease of
understanding. In the PPFS+ implementation, the necessary Oracle
hints are generated automatically.

NL can also provide the first matching row quickly. Sequences of
NL joins can be executed in a pipelined fashion, which as
discussed is desirable for XPath-to-SQL translations. The
execution plan of the SQL translation of an XPath query with
predicates will have a tree structure of nested loops joins, which
still preserves pipelining. However DISTINCT and ORDER BY
clauses will spoil pipelining.

In Section 6.1, index-NL join is compared with the other well-
known relational join algorithm for dewey-based structural joins,
Sort Merge join. As shown by the experiments NL join performs
much better than Sort Merge.

5.2.2 Eliminating redundant sorting
In the previous section we highlighted that the result relation of an
SQL translation must be ordered by the dewey_pos column of the
selective prominent relation. For Example 5, this means that we
must add an ORDER BY clause on the D_.dewey_pos column.
Since relation D_ is the inner argument of a nested loop join, the
index on the dewey position column cannot help for sorting; the
engine has to sort the join results. However, we can exploit the
property of dewey_pos mentioned in the previous section in order
to omit the sorting overhead. First, a necessary definition: We call
recursive a relation whose corresponding node in the schema graph
is part of a cycle. In schema graph I from Example 1, relation A_ is
the only recursive relation.

Theorem 1: Consider an ancestor-descendant join between rela-
tions R_ and S_ corresponding to element types R and S
respectively and assume that ancestor element type R is not
recursive. If relation R_ is accessed in dewey_pos order, relation
S_ has a B-tree index on the dewey_pos column and index-NL
join is used, then the projection of the join tuples on the columns
of S_ will be duplicate-free and sorted by document order. �

The theorem can be generalized to sequences of structural
ancestor-descendant joins: When the backbone of an XPath
expression consists of forward PPFs whose prominent relations are

321

not recursive, ORDER BY and DISTINCT clauses can be omitted
from the target query.

Example 6: Let’s see why we can omit the ORDER BY clause in
the structural join of Example 5. Element type C is not recursive,
so for two C elements that are accessed in document order, all the
descendant elements of the first will open and close before the
second C element opens. Therefore, if relation C_ is accessed in
dewey_pos order and index-NL is used, the result will have
descendant D_ tuples in dewey_pos order without duplicates. �

If the ancestor relation is recursive, result ordering and duplicate
elimination are necessary.

Example 7: For the structural join between relations A_ and B_
from schema H, the ancestor relation is recursive. Therefore, it is
possible that A_ contains two elements a1 and a2, the first being an
ancestor of the second, or, equivalently, a1.dewey_pos <
a2.dewey_pos < a1.dewey_pos||CHR(255). Let’s call B(a1)
and B(a2) the descendant sequences of a1 and a2. It holds that B(a2)
⊂ B(a1). During index-NL join, for element a1 , the inner iteration
retrieves B(a1). When a2 is accessed, the inner iteration retrieves
B(a2). The result is not ordered by dewey_pos and contains
duplicates. �

When intermediate structural joins produce duplicates, they must
be removed as early as possible: duplicated tuples imply redun-
dant processing effort, since they can cause useless iterations over
identical tuples in the following NL joins. Moreover, because of
the hierarchical structure of XML, duplicates are likely to be
multiplied in ancestor-descendant structural joins. Because of this,
once a recursive prominent relation A_ is identified along a
backbone path, if the following prominent relation B_ in the
backbone path is not recursive, we put the SQL statement
generated so far, augmented with the A_-B_ join, in a view (using
the WITH clause). We apply on that view the DISTINCT and ORDER
BY clauses. Note that the use of ORDER BY inside view definitions
is not supported by all RDBMS. However, Oracle permits this as
long as the view is not updatable, which is the case for temporary
views created within a “WITH clause” statement. The target view
uses the above view as its first prominent relation. The algorithm is
illustrated below.

parsePPF is a recursive function that is called for each PPF of the
backbone of an XPath. It defines and adds temporary views in the
global tempViewList list and defines also the global
targetSelect which represents the target_elements view of the
final SQL statement. The curSelect is the sub-query currently
constructed, the prevPromRelation is the prominent relation of
the previously parsed PPF and the curPPF is the PPF that is being
parsed. The function translateNewPPF enhances the subquery
under construction by adding the prominent relation of the current
PPF into the FROM clause and the appropriate structural join and
path_id filtering predicate in the WHERE clause of curSelect.
As mentioned earlier in the section, if the prevPromRelation is
recursive and the prominent relation of the curPPF is not (lines 3-
12), then DISTINCT and ORDER BY clauses are added to the
curSelect (lines 4-5). Then, unless the curPPF is the last one
(lines 6-7), a new temporary view called tmpView is added to the
tempViewList. The parsePPF function is called for the
following PPF (lines 9-11). The cases where the curProm-
Relation is also recursive and where prevPromRelation is not
recursive are dealt appropriately also (lines 14-23 and 23-28

respectively). The function returns in lines 7, 18 or 25, after setting
the target subquery to the currently constructed one.

Example 8: Consider the XPath fragment //A[…]/B[…]/S over
XML data conforming to the XML Schema H of Example 1. The
only recursive prominent relation of the query is A_. The main
query of the SQL equivalent (omitting path filtering and XML
reconstruction) doesn’t need DISTINCT or ORDER BY:

 �

5.2.3 Path filtering and pipelining
In the previous sections we discussed the benefits of using index-
NL for structural ancestor-descendant joins, where a b-tree index
on the inner relation is required for such a join to be efficient.
Moreover, to eliminate redundant sorting, the outer relation must
be accessed in dewey_pos order. It is nontrivial to satisfy these
two requirements while also using root-to-node path filtering.
Recall that each prominent relation must be also joined with the
Paths relation, on which a regular expression filtering predicate is
added. The following example illustrates the problem.

Example 9: The SQL translation for query //A/B//D[F/*/H] is
shown in Figure 4(a). The prominent relation H_ corresponds to a
PPF that is included in a predicate, which is translated into a
correlated subquery. The result must be sorted by dewey_pos. Our
aim is to do this without an ORDER BY clause, taking into account
that NL joins preserve the ordering of the outer relation, which is
D_ in our example.

322

Figure 4. Translation of //A/B//D[F/*/H] and alternative plans

Figure 4 (b) and Figure 4(c) show two plans that both use NL join.
In the first plan, even if D_ is accessed ordered by dewey_pos,
there is no guarantee that D_>< σ(Paths) will preserve the
ordering unless a NL join is used with the Paths being the inner
relation. The most important thing is that H_>< σ(Paths), which is
the inner relation of the top level NL join, is not indexed, making
the performance of NL join extremely poor. In the second plan, the
result of D_ >< σ(Paths) is sorted only if a NL join is used.
Similarly, the final join with the Paths relation would preserve the
ordering if a NL join is used. �

An alternative option is to avoid joining prominent relations
directly with the Paths relation. In particular, whenever a path
filtering is needed, we can filter the Paths relation with a separate
SQL statement, create a list of ids of the returned root-to-node
paths and store the comma-separated ids as a string. This string is
used in the main query filtering the path_id of the respective
prominent relation using an IN-list selection clause, as shown in
the following example. This way, the SQL translations produce
simpler plans and, moreover, the Paths relation is accessed fewer
times. We made experiments, not presented in this paper due to
lack of space, which show performance benefits when this
alternative is applied.

Example 10: Figure 5(a) shows the SQL translation of query
//A/B//D[F/*/H] using IN-list selection clauses for filtering the
path ids. The execution plan, shown in Figure 5(b), uses simple
selection operations for filtering the path ids of relations D_ and
H_, without affecting ordering: D_ is accessed in dewey_pos and
the selection on the path_id column will preserve this ordering.
For each outer iteration, an index range lookup occurs on the index
of F_, producing a sequence of tuples sorted by dewey_pos. This
sequence is filtered by path_id before it is joined with the current
D_ tuple. �

Figure 5. New translation of //A/B//D[F/*/H] and its plan

5.3 Organizing relations as indices
As discussed in previous sections, NL joins in combination with
dewey position indices are optimal for structural joins as well as
for preserving the document order of the results without the need
for keeping intermediate relations. However, index range scans
introduce an inefficiency: When the query involves columns other

than dewey_pos, additional disk reads are needed to access those
columns from the actual relation. In particular, the path_id
column of every prominent relation is accessed. Also, almost all
columns of the selective prominent relation as well as of the
descendant relations that are unioned in the descendants view must
be projected. To improve efficiency we can use a concatenated
(composite) index on the dewey_pos and path_id columns. The
problem remains for the projected columns of the selective
prominent relation and for the relations storing descendants of the
target elements (in case of XML reconstruction).

A better alternative is to use indexed file organization for the
mapping relation. In this file organization method, the data entries
of the index, stored in the leaf block of the b-tree, include the
actual data records. This way one level of indirection is omitted
since both relation and index coexist in a single structure. Modern
RDBMS support such file organization, e.g. IOT in Oracle, tables
with clustered index in SQL Server, etc. With this organization,
presence of non-key columns in the projection or in the selection
part of an SQL query will not cause additional block accesses.
Similarly, because rows are physically stored in key order, range
access by the primary key involves the minimum number of block
accesses. Experiments shown in Section 6.3 justify the
organization of relations as indices, especially when XML
reconstruction is required; the performance benefit is remarkable.

5.4 Accelerating XML reconstruction
The above observations and developed techniques can also help in
developing new efficient XML reconstruction methods. We first
improve on the basic SQL translation for XML reconstruction. We
then propose an alternative solution based on maintaining
redundant data, which “splits the difference” between schema-
oblivious and schema-aware XML-to-relational mapping and
significantly accelerates XML reconstruction without sacrificing
the efficiency of XPath filtering.

5.4.1 Using Index NL join and reducing sorting cost
The “direct” SQL translation for XML reconstruction presented in
Section 4 suffers from a severe disadvantage. In order to return the
result relation sorted by dewey_pos of the descendant elements,
the basic query (that joins the target_elements and descendants
views) needs an ORDER BY clause, as shown in Figure 3. There is a
better alternative: we can push the ORDER BY clause inside the
descendants view, as shown in Figure 6. SQL of Example 4 using
basic XML reconstruction. We call this XML reconstruction
method basic XML reconstruction.

Using hints, we force the use of index-NL for the outer structural
join of target_elements and descendants. The target_elements
subquery is executed as discussed in Section 5.2 and its result
tuples are pipelined in document order. Whenever a target element
tuple is pipelined, it is joined with its descendant tuples from the
descendants view. These descendants are evaluated as the union of
the results of many index range scans: as many as the number of
the descendant relations that participate in the descendants view.
Descendant tuples from each such relation are produced in
document order, due to index range scanning, but overall, the
result of the union will not be sorted in document order. Hence, an
ORDER BY clause inside the descendants view is needed, but not
one in the main query. Since complexity of sorting is O(nlgn), the
more tuples are produced by the target_elements view, the bigger
the benefit of pushing the ORDER BY clause into the descendants

323

view. Moreover, since smaller sets of tuples are sorted, it is more
likely that the sorting will occur in main memory. We call this
technique basic XML reconstruction. Note that it has similarities
with [18] but uses a single SQL statement. In [18] for each target
element multiple queries are issued to the RDBMS for retrieving
descendants from all possible relations.

Figure 6. SQL of Example 4 using basic XML reconstruction

5.4.2 A global relation (for XML reconstruction)
The basic XML reconstruction method described in the previous
section has some shortcomings. For each target element, there are
as many b-tree index lookups as the number of descendant
relations, and sorting is still required. The cost for a b-tree index
range scan is the height of the tree plus the number of leaf blocks
covering the range condition, if we assume for simplicity that only
I/O accesses count. Consider an XPath query where 5 possible
descendant relations are unioned in the descendants view. For the
116 MB XMark dataset, the average height of each b-tree index is
2. Therefore, for each target element, 10 blocks are accessed on
average. If the number of target elements is n, the upper bound
total cost for b-tree I/O is 10n. Many of these index blocks are
gradually cached as the cache warms up. Nevertheless, many key
comparisons still take place.

We propose a completely different technique, hybrid XML
reconstruction, that improves significantly the performance of
XPath-to-SQL translations that also perform XML reconstruction.
Sorting is completely avoided and index accesses to retrieve
descendants are eliminated. A global materialized view, called
global_table, is maintained, that unions all the mapping relations,
with the dewey_pos column as primary key. We eliminate the
schema differences among the mapping relations using the same
method we used for defining the descendants union view (see
Section 4): for each mapping relation we accumulate all attribute
columns under a single one called attributes_ and introduce a
NULL-valued column named text_ for those relations that don’t
have a column for storing text nodes.

To reconstruct the XML result of an XPath query, the descendents
of the target elements are retrieved exclusively from the
global_table relation. This way we preserve optimal performance
for retrieving target elements, provided by PPF-based processing,
while accelerating the XML reconstruction process. The first
reason why XML reconstruction occurs much faster is because, for
each target element, a single lookup takes place on the b-tree of the
global_table, instead of having to lookup on multiple b-tree
indices. Moreover, there is no need for sorting, since for each
target element its descendants are retrieved naturally sorted due to
index range scanning. Using hybrid XML reconstruction, the SQL
translation of Example 4 is shown in Figure 7

Experiments presented in Section 6.4 confirm that hybrid XML
reconstruction is more efficient than basic XML reconstruction,
and that both methods give better overall performance than using
exclusively the global table for evaluating and constructing the
XML result of an XPath query (which is what happens with
schema-oblivious XML-to-relational mapping).

Figure 7. SQL of Example 4 using hybrid XML reconstruction

6. EXPERIMENTAL EVALUATION
The goals of the experimental evaluation are twofold:
• to evaluate the performance of each proposed optimization and

measure their impact on XPath processing, and
• to compare a system using our complete set of techniques,

implemented on top of a commercial RDBMS, against a wide
variety of existing systems, both relational-based and native,
commercial and research prototypes.

Table 1. Queries for the XMark datasets

We used three XML datasets, the 116 MB and 580 MB documents
from the XMark [20] benchmark and the 700MB Protein Sequence
DB [10].The 116 MB XMark document has 1,6 million elements
and 514 different root-to-node paths whereas the 580 MB XMark
document has 8 million elements and 514 different root-to-node
paths. The Protein DB has 21.3 million elements and 85 different
root-to-node paths. The XMark schema is recursive while the
Protein schema is not.

The query sets for the XMark datasets and for the Protein
Sequence DB are shown in Table 1 and Table 2. These queries,
used in all experiments (unless otherwise mentioned), cover a wide
range of XPath, including all XPath axes, wildcards, and nested
predicates. The reported values are the average of four repeats. All
experiments were performed on an Intel Pentium IV machine at
3.2 GHz with 2GB of RAM running Windows XP, with the

324

exception of the experiments on the Natix system, which were
done on the same PC running SUSE 10. PPFS+ is implemented in
C++ as a COM object on top of Oracle 10.2g.

Table 2. Queries for the Protein System DB

6.1 Picking the right join method
We tested six simple ancestor-descendant joins on the 116 MB
XMark document, first forcing the optimizer to use Index-NL join
and then Sort Merge. The experiments were performed with cold
cache. Note that PPFS+ can handle these queries simply using
root-to-node path filtering, as described in Section 3.2. We force
PPFS+ to translate the queries using structural join for the purposes
of the experiment. The choice of the optimizer when no hints are
used is always Sort Merge. Execution times as well as the
cardinalities of the join relations and the results of the joins are
shown in Figure 8. The experiments confirm the dominance of
Index NL for dewey-based structural joins over Sort Merge.

Figure 8. Execution times (sec) of different join algorithms for
structural join

6.2 Reducing Sorting Impact
To verify the benefit from eliminating redundant sorting as well as
duplicate removal, we experimented with five XPath queries.
Queries, Q14, Q18, Q19 from Table 1, and two additional queries:
QA:/site/people/person[address]//interest
QB:/site//parlist[listitem]//text[text()]//keyword
The queries returned only target elements without XML
reconstruction. We tested two versions of SQL translations of these
queries: the original translation used in the PPFS system as
outlined in Section 3.2, and the translation used in PPFS+, which is
enhanced by Algorithm 1 discussed in Section 5.2.2 that eliminates
redundant ORDER BY and DISTINCT. The queries are run on the
116 MB XMark dataset with cold cache.

The results, shown in Figure 9, confirm the benefits of the PPFS+
technique for eliminating sorting. The effects are more pronounced
for the larger data sets.

Note that Q14, Q18, Q19 and QA satisfy the condition of Theorem
1. QB was constructed to not satisfy the condition, to evaluate the
benefit of moving the ORDER BY to an intermediate view as in
Example 8.

In particular, element parlist is recursive. Note that, even
though the XMark schema shows element type text as recursive,

it is not really: text elements cannot be nested in other text
elements, and are not nested in either the 116 MB or the 580 MB
versions of XMark. Since parlist is recursive, and considering
text as non-recursive, the query fragment
/site//parlist[listitem]//text[text()] is evaluated in
a separate temporary view, as in Example 8, and the main query
does not have any sorting or duplicate elimination.

Figure 9. Removing sorting and duplicate elimination

6.3 Picking the right physical organization
We compare the execution times of the 22 XPath queries against
the 116 MB XMark document for three different physical
organizations of the relational tables: standard heap organized
tables with indices only on the dewey_pos columns (HOT-D-Ix),
heap organized tables with concatenated indices on the
dewey_pos and path_id columns (HOT-D-P-Ix) and index-
organized tables with dewey_pos being the index key (IOT-D).
For each case, we measure the execution times for the COUNT
version of the queries, which only return the number of target
elements, and for queries with full XML reconstruction. The basic
XML reconstruction method is used.

(a) COUNT Queries

(b) Queries with XML reconstruction

Figure 10. Comparing different physical organizations

The results are shown in Figure 10. For COUNT queries, the HOT-
D-P-Ix implementation gives the best performance, as expected.
When XML reconstruction is required, the IOT-D implementation
dominates, as a much larger number of tuples are retrieved from
the database -- for our query set, in most queries each target
element has thousands of descendants. Therefore, if the index is

325

kept separately from the heap organized relation, even if the index
is clustered, an extra block is accessed for each result tuple.

6.4 Comparing XML reconstruction techniques
We compare three XML-reconstruction enabled XPath-to-SQL
translation techniques: the basic and the hybrid methods, presented
in Sections 5.4.1 and 5.4.2, and a third method we call single-
relation that uses exclusively the global table both for evaluating
the target elements and for retrieving their descendants. The
single-relation method resembles [11] (schema-oblivious). We test
all queries in the 116 MB XMark dataset in warm and cold cache.

As shown in [9], the single-relation method is not efficient for
identifying the target elements. XML reconstruction is expected to
be more efficient when the global table is used, as in the hybrid
and single-relation methods. Since the basic and the hybrid
methods share the same technique for retrieving target elements,
their only difference is the way descendants are retrieved .

Based on a simple cost model for the two methods, we expect the
hybrid method to outperform the other two on all queries. For the
basic method, the cost for retrieving the descendants of a single
target element is approximately given by the following formula:

)1()(
11

ChCnhC sorting

k

i
isorting

k

i
iibasic

n ++=++= ∑∑
==

where k is the number of descendant relations, hi is the height of
the b-tree of index-organized relation i, ni is the number of leaf
blocks accessed during the range scanning on relation i, n is the
total number of leaf blocks accessed from all descendant relations
for retrieving the descendants of a target element and Csorting is the
cost of sorting the descendants of a target element.

On the other hand, the cost for retrieving the descendants of the
same target element from the global materialized view is given by:

)2('nhC glhybrid
+=

where hgl is the height of the b-tree of the index organized global
view and n΄ is the number of leaf blocks accessed during the index
range scan of the global view. Given that nn ′≥ 2, Cbasic is greater
than Chybrid, for all queries.

The experimental results when queries are executed in warm
cache, shown in Figure 11(b), validate this conclusion: the hybrid
method outperforms both other methods in all queries by a median
of 63%.

Experimental results in cold cache, shown in Figure 11(a), show
that the basic method is faster than the hybrid in a few (8 out of
22) queries. This is due to the different caching behavior of the two
methods. During the execution of the NL join of the main query,
the descendant relations (for the basic method), or the global view
(for the hybrid method), are gradually cached, i.e., internal and leaf
blocks of the indices are moved into memory. The blocks cached
from descendant relations are more relevant (i.e., visited more
often) than the blocks of the much larger global table: if an XPath
query selects 10% of an XML document that are all B elements, up
to 10% of the leaves of the global table index need to be visited,
but a much larger percentage of the leaves of the much smaller B_

2 In an index range scan one more tree leaf block than necessary may be

read. In the basic method we read from multiple tree indices, and hence
read more such blocks.

table. This reduces I/O cost on queries using the basic
reconstruction method on cold cache and explains why it even
outperforms hybrid on a few queries. For cold cache, over all
queries the median performance difference between hybrid and
basic is 17%, and between hybrid and single relation it is 189%.

(a) Cold Cache

(b) Warm Cache

Figure 11. Comparing XML reconstruction techniques

6.5 Overall performance comparisons
We conclude our experimental analysis with a comparison between
PPFS+ and other systems for XPath processing. As described
already, PPFS+ is based on PPFS [9], uses IOT tables as physical
organization for the shredded relations and implements structural
joins using Index NL joins (and outer joins). It produces optimized
SQL translations that omit redundant sorting and duplicate
elimination operations, filter root-to-node paths using IN-list
selection predicates and implements hybrid XML reconstruction.
PPFS+ uses Oracle 10.2g as the relational backend with 1.2 GB for
buffer cache. We compare PPFS+ with:

• The native XML Management System Natix 2.1.0 [2]. We
used the default configuration parameters except for the size of
the buffer cache which we increased to 1.2 GB.

• The native XML engine of major relational vendor A. The
engine supports schema-aware XML shredding as well as
storage of XML documents as CLOBs. The second option has
very poor query performance, so the first option was used.
Experiments were run with 1.2 GB of buffer cache. The XML
schema-to-relational mapping was performed by the engine.

• The native XML engine of major relational vendor B. The
engine stores XML documents shredded into a table. Order is
encoded using a variant of dewey order. Each tuple
corresponding to an element stores the element’s position, its
root-to-node path, its tag name and its text value (if any).
Buffer cache size is set automatically by the engine. For our
experiments we additionally defined a path index, supported
by the engine, to improve performance.

• The MonetDB/XQuery (Version 0.12). This is an XQuery
implementation built on the foundation of the main memory
DBMS MonetDB [8].

The experiments don’t permit direct comparisons between the
relational-based systems, as they use vastly different relational

326

engines. The efficiency of the underlying engine affects
significantly the performance of XML processing, if it is built
directly on top of the existing relational infrastructure (as with
PPFS+ and, to a lesser extent, MonetDB/XQuery): a faster
relational engine directly improves XML processing performance.
Nevertheless, a number of useful conclusions can be drawn.

 (a) Queries with XML reconstruction (b) COUNT Queries

(c) Queries Vendor A engine cannot handle

Figure 12. Comparison of PPFS+ and Vendor A engine

The Vendor A engine only succeeded in running a small number of
queries of the XMark 116MB dataset. We were not able to load the
other datasets. For the queries that ran successfully, the
comparison with PPFS+ is shown in Figure 12(a) and (b). For the
queries that didn’t run, Figure 12(c) explains: we use ‘ ’ if the
execution didn’t finish within a reasonable time, and ‘ ’ if the
query is not supported. Note that queries with ‘//’ or ‘*’ (such as
Q6, Q7, Q8, etc) are evaluated by loading the entire document in
memory and evaluating the queries on the DOM tree directly.

Figure 13. Queries with XML reconstruction-XMark 116MB

Figure 14. COUNT queries-XMark 116 MB

For the other systems (PPFS+, MonetDB/XQuery, Natix, and
Vendor B engine), Figure 13 and Figure 14 show the execution
times in warm cache of two versions of the 22 queries of Table 1
for the 116 MB XMark dataset. The same experiments are repeated
for the 580 MB XMark dataset, as shown in Figure 15 and Figure
16. Some queries could not be run by the Vendor B engine, and are
marked in the graphs below the query axis, similarly to Figure
12(c). Figure 17 shows the results on the 700 MB XML Protein
Sequence Database. The dataset could not be loaded on the Vendor
B system and on MonetDB/XQuery.

As shown in the graphs, PPFS+ outperforms other systems in the
vast majority of queries, with COUNT or with full XML
reconstruction, with the exception of MonetDB/XQuery.

In comparison to Natix, when XML reconstruction is required,
PPFS+ is faster than Natix in 36 queries from the three datasets.
The median performance difference is 130%. Natix is faster in 17
queries, the median difference being 36%. All 53 COUNT queries
run faster in PPFS+, the median performance difference being
2000%. We conclude that XPath filtering techniques over
relational engines can significantly outperform native XML
processing techniques. XML reconstruction imposes a hardship on
relational systems, but with our hybrid reconstruction technique
overall performance is still superior in most cases.

We can also conclude that the XML engines of the commercial
relational RDBMSs used in the comparison have a long way to go
to offer satisfactory performance on relatively complex XPath
queries. PPFS+ outperformed Vendor A and Vendor B engines on
all queries (by a median of 1200%). In particular, note that, even
though Vendor B engine stores the root-to-node paths for all
elements in order to reduce the number of structural joins needed,
it seemingly cannot avoid structural joins for handling wildcards.
PPFS+ (following PPFS [9]) handles both ‘//’ and ‘*’ using regular
expression filtering.

Figure 15. Queries with XML reconstruction-XMark 580MB

Figure 16. COUNT queries- XMark 580 MB

Regarding MonetDB/XQuery, when XML reconstruction is
required, it outperforms PPFS+ in 31 out of 44 queries – the
median performance difference is 117%. PPFS+ outperforms
MonetDB/XQuery in 13 queries, showing a median improvement
of 66%. In COUNT queries, PPFS+ is faster than
MonetDB/XQuery in 23 queries (300% median difference) and
slower in 15 (120% median difference). The underlying relational
engine used by MonetDB/XQuery, MonetDB, is an in-memory
database system that uses a special storage model and a CPU-tuned
vectorized query execution architecture [7]. Previous studies [7]
have shown a significant performance advantage of MonetDB over
Oracle, which may explain the differences we observe. On the
other hand, the existence of many queries where PPFS+
outperforms MonetDB/XQuery shows that easy to implement

327

techniques, even implemented at the application level, can
significantly improve XPath performance.

Implementation of the novel techniques of MonetDB/XQuery
directly on top of a traditional relational engine is not possible, as
some techniques, e.g., staircase joins, need to be implemented
inside the engine. We are planning to implement PPFS+ on top of
MonetDB, in order to allow for a more direct comparison.

(a) Queries with XML reconstruction (b) COUNT Queries

Figure 17. Protein Sequence Database

7. CONCLUSIONS
Despite significant progress, processing of XPath queries still has
room for improvement. A strategy that has yielded impressive
dividends for relational data processing is devising storage and
execution strategies appropriate for the data model characteristics.
For XML processing using relational engines, using the right join
algorithms, index structures and storage options hasn’t received
enough attention. As our results show, large performance
improvements can be the result of more careful consideration of
the impact of such choices. Moreover, we propose a novel and
faster XML reconstruction technique.

Our techniques are implemented on top of a relational engine
without any need for engine modification. We plan to investigate
how to make optimizers natively aware of the issues we identified.
We are also working on similar techniques for XQuery processing

8. REFERENCES
[1] J.Clark, S.DeRose: “XML Path Language (XPath) Version

1.0”. W3C Recommendation 16 November 1999.
[2] T. Fiebig et al.: “Anatomy of a native XML base

management system”. VLDB J. 11(4) .2002
[3] M. Krishnaprasad, et al.: “Query Rewrite for XML in Oracle

XML DB”. VLDB 2004: 1122-1133
[4] S. Pal, I.Cseri, et al.: “XQuery Implementation in a Relational

Database System”. VLDB 2005:1175-1186.

[5] E. Cerami: XML for Bioinformatics, Springer-Verlag, 2005
[6] A.C. Davenhall, et al.: “VOTable: an XML data format for

virtual astronomy”. XML Europe 2003
[7] P. A. Boncz, M.Zukowski, et al.: “MonetDB/X100: Hyper-

Pipelining Query Execution”. CIDR 2005: 225-237
[8] P. A. Boncz, T. Grust, et al.: “MonetDB/XQuery: a fast

XQuery processor powered by a relational engine”. SIGMOD
Conference 2006: 479-490

[9] H. Georgiadis, V. Vassalos: “Improving the Efficiency of
XPath Execution on Relational Systems”. EDBT 2006.

[10] XML Data Repository, at www.cs.washington.edu/research/
[11] T. Grust, M. Keulen et al.: “Accelerating XPath evaluation in

any RDBMS”. ACM Trans. Database Syst. Vol 29, 2004
[12] J, Shanmugasundaram, et al.: Efficiently Publishing

Relational Data as XML Documents. VLDB 2000: 65-76
[13] M. F. Fernandez, et al: Efficient Evaluation of XML Middle-

ware Queries. SIGMOD Conference 2001
[14] S. Amer-Yahia, Y. Kotidis, et al: Teaching Relational

Optimizers About XML Processing. XSym 2004: 158-172
[15] S. Chaudhuri, et al.: On Relational Support for XML

Publishing: Beyond Sorting and Tagging. SIGMOD 2003
[16] R. Krishnamurthy, et al.: “Recursive XML Schemas,

Recursive XML Queries, and Relational Storage: XML-to-
SQL Query Translation”. Proc. of the 20th ICDE, 2004

[17] W. Fan, J. Xu Yu, et al.: “Query Translation from XPath to
SQL in the Presence of Recursive DTDs”. VLDB 2005

[18] A. Chebotko, D. Liu, et al: “Reconstructing XML Subtrees
from Relational Storage of XML Documents”. XSDM’05

[19] J.Shanmugasundaram, et al.: “Relational Databases for
Querying XML Documents: Limitations and Opportunities.”
VLDB 1999

[20] A. Schmidt, F. Waas, M. Kersten, et al.: “XMark: A
Benchmark for XML Data Management”. VLDB 2002

[21] I. Manolescu, Y. Papakonstantinou: “XQuery Midflight:
Emerging Database-Oriented Paradigms and a Classification
of Research Advances”, tutorial, ICDE 2005.

[22] S. Paparizos, et al.: ”TIMBER: A Native System for Querying
XML”. SIGMOD Conference 2003.

[23] S.Amer Yahia, F.Du, J.Freire: “A Comprehensive Solution to
the XML-to-Relational Mapping Problem.” WIDM’04.

[24] K. Beyer, et al.: “System RX: One Part Relational, One Part
XML”. SIGMOD Conference 2005: 347-358

[25] W. Wang et al.: “Efficient Processing of XML Path Queries
Using the Disk-Based F&B Index.” VLDB 2005.

[26] S.-Y. Chien, Z. Vagena, et al.: “Efficient Structural Joins on
Indexed XML Documents.” VLDB 2002: 263-274

[27] T. Grust, M. van Keulen, J. Teubner: “Staircase Join: Teach a
Relational DBMS to Watch its (Axis) Steps”, VLDB 2003

[28] Surajit Chaudhuri, Zhiyuan Chen, Kyuseok Shim, Yuqing
Wu: “Storing XML (with XSD) in SQL Databases: Interplay
of Logical and Physical Designs.” IEEE TKDE 17(12)

[29] P. Bohannon, J. Freire, et al.: Bridging the XML Relational
Divide with LegoDB. ICDE 2003: 759-760

[30] Yi Chen, S. B. Davidson, Y. Zheng: “BLAS: An Efficient
XPath Processing System”. SIGMOD Conference 2004

[31] A. Balmin, Y. Papakonstantinou: “Storing and Querying
XML Data using Denormalized Relational Databases”, VLDB
Journal 14(1), 2001.

328

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

