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ABSTRACT 
A lot of research has been conducted by the database community 
on methods and techniques for efficient XPath processing, with 
great success. Despite the progress made, significant opportunities 
for optimization of XPath still exist. One key to further 
improvements is to utilize more effectively existing facilities of 
relational RDBSes for the processing of XPath queries. After 
taking a comprehensive look at such facilities, we present 
techniques for XPath processing that work by identifying the best 
relational join algorithms, indices and file organization strategies 
for XPath queries. Our techniques both reduce the latency of the 
resulting SQL translations and guarantee their pipelined execution. 
We also propose a new technique for XML reconstruction from 
relations-mapped XML that "splits the difference" between 
schema-aware and schema-oblivious XML-to-relational mapping 
for a significant performance improvement. An extensive 
experimental study confirms the performance benefits of our 
optimization techniques and shows that a system implementing 
these techniques on top of a commercial RDBMS is competitive 
with respect to query performance with other native and relational-
based state-of-the-art XPath processing systems, commercial as 
well as research prototypes. 

Categories and Subject Descriptors 
H.2.4 [Information Systems]: Systems – Query processing, 
Relational databases. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords: XML, XPath, Relational databases, XML 
Reconstruction, Schema Mapping, Structural Joins, Indices, Dewey 
encoding 

1. INTRODUCTION 
There is today wide and increasing use of XML for a variety of 
data exchange, data processing, and data integration tasks. XML is 
used in many application domains where there are large quantities 

of semistructured data to be exchanged or processed, from 
bioinformatics [5] to astronomy [6] to large corporate data 
processing.  

The wide applicability of XML and the difficulties in processing 
XML data, arising from its semistructured and hierarchical nature, 
the rich schema query language facilities, and the diverse 
application requirements, have led the data management 
community to devote a lot of effort to the XML processing 
challenge [21]. 

Even though these efforts have yielded very efficient systems and 
techniques, there is still significant room for improvement in a 
variety of areas related to XML processing, and especially in using 
relational infrastructure for XML processing [4][9]. We have 
identified two such distinct areas of possible improvement:  

• Reconstructing XML results from relational tables resulting 
from XML shredding [13][12]. 

• Exploiting existing relational facilities for XML processing. To 
the extent that relational back-ends are used to store and 
process decomposed (i.e., shredded) XML data, it seems 
natural to try to use the existing relational facilities in as 
efficient a manner as possible. Not much effort has been 
devoted to “fitting” SQL translations of XML queries to the 
abilities of their relational “hosts”.  

With regards to the second point, we take a comprehensive look at 
the choices open to an XML-to-relational mapping system, and the 
corresponding choices for XML-to-SQL translation. We identify 
four key issues and devise techniques to improve performance in 
each case:  

a) Choosing the right relational join technique. We compare 
relational join techniques and conclude that index nested loop 
joins are superior to sort merge for queries processing shredded 
XML data, for a variety of reasons (Section 5.2.1). 

b) Eliminating redundant ordering and duplicate elimination 
operations, which affect both latency and time to first result. 
The properties of order encoding schemes used in XML-to-
relational mapping allow us to prove that often structural joins 
produce correctly sorted results. In the other cases, performance 
is improved by pushing ordering down the plan tree. Both result 
in generation of SQL statements with fewer (or none) ORDER 
BY and DISTINCT clauses (Sec. 5.2.2).  

c) Generating pipeline-able plans, to improve “first result” and 
total query performance. Using index nested loop joins, making 
the effort to create pipeline-able plan trees, improves 
performance further, as we discuss in Section 5.2.3.  
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d) Picking the right physical organization. Among the many 
available options, indexed file organization is shown to be the 
best choice (Section 5.3) 

All of the above choices are validated with extensive experiments 
over synthetic and real data presented in Section 6. We also note 
that the relational optimizer, when left alone, makes the wrong 
choices, so we create a relational-based system for XPath 
processing that automatically inserts the appropriate optimizer 
instructions, i.e., hints, in SQL translations.  

Concerning the first point, we propose a new XML reconstruction 
technique that decomposes XML in relations in two different ways 
to combine the benefits of “schema-aware” and “schema-
oblivious” XML-to-relational mapping. This hybrid XML 
reconstruction technique has significant performance benefit, as 
shown in our experimental study in Section 6.4.     

We implement a system on top of a commercial relational engine 
that includes all the techniques we propose to exploit the observed 
inefficiencies. In Section 6.5, we compare this system with a 
variety of other state-of-the-art XPath processing systems, 
commercial as well as research prototypes.    

2. RELATED WORK 
A lot of research work has been done for both relational [11][23] 
and native [2][22] XML processing. A number of systems have 
been developed, such as Natix[2], MonetDB/XQuery [8] and 
Timber [22] that are able to store and query large collections of 
XML documents. Commercial RDBMSs have also enhanced their 
functionalities with XML management capabilities [4][24][3]. 

Many techniques have been developed to improve XML query 
performance. Special index structures and joins algorithms have 
been developed [25][26][27] and existing relational facilities for 
indexing, such as B-trees, have been used [11]. In the context of 
XML-to-relational mapping, several techniques [28][29][30] have 
been proposed to explore among mapping alternatives and pick the 
best for certain application characteristics. Not much attention has 
been paid to better exploiting the full set of relational facilities, 
e.g., join algorithms, indices, file organization methods, to speed 
up XML querying.       

A key issue for XPath and XQuery processing is XML 
(re)construction, especially for relational-based systems. In 
schema-oblivious XML-to-relational mapping, XML data is 
shredded into a single element relation, and an order encoding 
scheme (e.g. dewey or pre/post encoding [11]) is used for 
structural relationships. These can be used to easily retrieve all 
descendants of a given element [11]. In schema-aware mapping, 
XML data is mapped to a relational schema derived from the XML 
Schema of the data. Little work has been done on XML 
reconstruction in this case. In [18], an XML Schema-to-Relational 
mapping that uses inlining is enhanced with range encoding only 
for handling XML reconstruction. For a given element, its XML 
descendants are retrieved by issuing as many queries as the 
number of relations that potentially store descendant elements. The 
results of these queries are unioned and sorted in document order 
outside the relational engine. The XML subtree is created from the 
sorted relation as in [11]. Hence, several queries must be executed 
for every result element of an XPath expression. In [30], a 
technique for XML reconstruction based on storing preparsed 
XML fragments as BLOBs is proposed.    

There is also relevant work in XML publishing, i.e., exporting of 
existing relational data into XML, where nesting is implied by 
foreign-key references. Such techniques can be applied for 
retrieving the subtree of each element returned by the SQL 
translation of an XPath expression. In [12] and [13] two methods 
are described: path outer unions and sorted outer joins. Both 
evaluate all possible root-to-node paths as sequential foreign-key 
joins and try to exploit common joins by using temporary views. 
All queries corresponding to the root-to-node paths are unioned, 
with the latter technique sorting the results on all the primary key 
columns. Common joins for parent-child and sibling elements are 
exploited in [14]. 

XML reconstruction from schema-aware mapped relations has 
similarities to the problem of evaluating recursive queries: in both 
cases SQL translations must evaluate multiple join paths.  Recent 
research [16],[17] handles such queries, even in the presence of 
recursive schemas, using the SQL’99 WITH clause and a special 
operator for linear recursion, respectively. The produced SQL 
statements are very complicated and therefore hard to optimize.   

Finally, in [9], we present a set of high performance techniques for 
XPath processing on top of a relational engine. The main novel 
techniques are one-step processing of complex path fragments 
using regular expression filtering, and turning structural joins into 
dewey-encoding-based theta joins. The techniques are shown to 
offer significant performance benefits while being implemented 
purely on top of existing relational technology. Nevertheless, the 
system has significant limitations: it does not handle XML 
reconstruction, i.e., XPath queries return just a list of selected 
nodes. Also, there is no mention of physical data organization and 
no effort is made to better exploit existing relational facilities. 
Given the lightweight integration required with the underlying 
relational engine, and the performance characteristics of the 
techniques it introduces, we use [9] as the basis for our 
investigation and the implementation of the novel techniques and 
algorithms presented in this paper. In the following section, we 
provide a short background description of PPF-based XPath 
processing. 

3. USING PRIMARY PATH FRAGMENTS 
FOR XPATH 
The PPF-based XPath processing system we described in [9] is an 
RDBMS front-end for answering XPath queries. It creates a 
dedicated relational schema for the XML schema of an XML 
document (hence using a schema-aware XML-to-relational 
mapping). Based on the schema mapping, it processes XPath 
queries by translating them into SQL statements, which are then 
processed by the relational engine. A brief description of those two 
functions, necessary for the development of our work, follows in 
Sections 3.1 and 3.2, respectively. We will use, by abuse of 
abbreviation, PPFS to mean “the PPF-based XPath processing 
system described in [9]”. We will refer to the novel system and 
techniques we develop in this paper as PPFS+.  

3.1 Schema Mapping 
There are three main issues that must be considered in XML-to-
relational mapping. The first is how the main structures of XML 
schema are mapped into relational ones. PPFS uses the simplest 
alternative for that: each element definition is mapped into a 
separate relation, attributes as well as text nodes are mapped into 
columns of the appropriate type into the respective relations.  
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The second important aspect is how to store structural information 
for the XML documents, like element nesting and ordering. PPFS 
uses dewey encoding [19] for mapping both element nesting and 
ordering.1 Each mapping relation has a dewey_pos primary key 
column for storing the structural position of each element. In 
dewey encoding, each element is assigned a unique vector of 
numbers. Each number of the vector represents the local order of 
the respective ancestor element among its siblings. Figure 1 shows 
an example: the node with dewey position 1-3-2 is second among 
its siblings and its parent is the third child of the root. PPFS uses a 
parent column for handling the parent-child axis. In PPFS+ we 
changed that: we don't maintain parent columns, since we noticed 
that all axes can be handled with dewey-based structural joins 

 
Figure 1. Dewey order of XML nodes 

The third key issue is what additional information is stored to 
allow more efficient querying. PPFS stores for each element node 
its root-to-node path and uses it as an index. Paths are stored in a 
separate relation, named Paths, which is usually very small (some 
KB for XML databases of size in the hundreds of MB). All 
mapping relations maintain a foreign key reference to this relation, 
in a column named path_id.  

Example 1: Consider a simple XML Schema H which will be used 
as a running example for the following sections. The schema graph 
I of the schema is illustrated in the left part of Figure 2. We 
suppose that among the element definitions, only S and D have a 
text node and that B and D have two attributes each, namely j and 
k. The corresponding relational schema is shown in the right part 
of  Figure 2. � 

 
Figure 2. Sample XML schema and corresponding relations 

3.2 XPath-To-SQL Translation 
Based on the XML mapping just described, PPFS uses an XPath-
to-SQL translation algorithm to create an SQL statement that 
produces the tuples representing the target elements defined by the 
XPath expression (but not their subtrees). The SQL statement 
returns the tuples in document order [1]. To produce SQL 
statements that are efficiently executed, two techniques are 
employed: a) XPath expressions are divided into parts called 
Primitive Path Fragments (PPFs), where each PPF can be 
processed in a single step using regular expression filtering on the 
root-to-node paths and b) using a clever encoding of dewey order, 
any kind of structural join between PPFs (i.e., any XPath axis) is 
translated into theta joins on simple arithmetic conditions. Briefly, 
a PPF is:  

• a forward path with no predicates except for the last step 
                                                                 
1 We have experimented with an alternative encoding scheme, pre/post 

encoding, and have identified performance benefits from using dewey 
encoding. The experiments are not reported due to lack of space.  

• a backward path with no predicates except for the last step or 
• a single step of one of the other axes: following, following-

sibling, preceding or preceding-sibling.  
PPFS identifies the relation, called the prominent relation, that 
corresponds to the final step of each PPF path. Only prominent 
relations participate in SQL translations. Each PPF is handled by 
filtering the path ids of the tuples of the prominent relation, so that 
their corresponding root-to-node paths match a regular expression 
derived directly by the PPF path. For the regular expression 
matching, PPFS uses the built-in REGEXP function of Oracle 10.2g 
(other RDBMS use similar functions). 

Example 2: Consider the query /R//B/*/D over an XML 
document conforming to schema H of Example 1. The query 
consists of a single PPF whose prominent relation, according to 
our mapping, is D_. The regular expression equivalent of that PPF 
is ‘/R/(.+/ )? B/[^/]+/D’ (using the POSIX syntax). The final 
SQL translation will be: 

 
Although the XPath expression contains a descendant axis (//) and 
a wildcard (*), only one mapping relation is involved in the SQL 
statement and no structural joins are needed. � 

When more than one PPF exist, the prominent relations of 
consecutive PPFs are structurally joined on their dewey position 
columns. Lexicographical comparisons over dewey positions are 
used to handle all XPath axes.  

Example 3: The XPath expression /R/A/A[B/*/D/@k=“2”] 
consists of two PPFs, ‘/R/A/A’ and ‘/B/*/D’ with A_, D_ being 
their prominent relations, respectively. The SQL translation is: 

 
Note that chr(255) returns the character with ASCII code 255, thus 
the byte corresponding to FF in hexadecimal notation. � 

In what follows, we use the term backbone to refer to the path of 
an XPath expression that remains if we omit all predicates. We 
also define the selective prominent relation of an XPath to be the 
prominent relation of the last PPF of the backbone path. 

4. XML RECONSTRUCTION 
PPFS only returns the sequence of XML nodes identified by an 
XPath expression. Each node may have arbitrarily complex content 
structure. For an XML management system to be practical, it must 
be able to return results in XML form. We call target elements 
those located by the XPath expression to distinguish them from the 
elements of the subtrees rooted at them. In this section, we study 
the problem of efficient XML reconstruction and describe the “first 
cut” PPFS+ solution. For efficient XML reconstruction, the 
following questions arise: 

1. Which relations potentially store descendant elements? 
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2. Given an SQL translation of an XPath, how can we retrieve, 
for each target tuple (that corresponds to a target element), all 
its descendants in an efficient and pipelined manner?  

3. For each target tuple, its descendants will be retrieved as a 
sequence of flat tuples. How can we construct an XML subtree 
from that sequence of tuples? 

The first question is answered easily by resorting to the XML 
Schema graph. Regarding the second question, since dewey 
encoding is used for selecting descendant nodes, we retrieve the 
descendants of each target node using range conditions on 
dewey_pos columns. In short, we translate the XPath query into 
an SQL select statement as described in Section 3.2 and define 
with this statement a temporary view, called target_elements. 
Another temporary view, called descendants, unions the relations 
that possibly store descendant elements. Those two views are 
defined using the ‘WITH clause’ of SQL’99 which allows the 
definition, within a single statement, of several temporary views 
along with a main query that refers to them. The main query joins 
the two views using the ancestor-descendant join condition. We 
present here a sketch of the technique via an example and elaborate 
on it in Section 5.4. 

 
Figure 3. XML-reconstruction enabled SQL translation 

Example 4: Consider the XPath query /R/T over an XML 
document that conforms to schema H. It consists of one PPF, with 
selective prominent relation T_. We define view target_elements 
using the algorithm discussed in Section 3.2. The relations 
corresponding to descendants of T are S_, B_, C_ and D_. View 
descendants takes a union of these relations. Figure 3 shows the 
SQL statement that returns a denormalized relation produced by 
the outer join of these two view relations. The join matches each 
tuple of target_elements with its descendants from the descendants 
view. Therefore, each target element is repeated in the result 
relation as many times as the number of its descendants. To make 
the conversion of this result into XML form more efficient, a 
pseudo-column called target_element_num is added to the 
target_elements view that stores the row number of each tuple in 
the view. PPFS+ used the Oracle built-in pseudo-column ROWNUM. 
Target elements are distinguished by comparing the values of the 
target_element_num fields (which is much cheaper than 
comparing their dewey_pos fields). 

Execution of the resulting SQL statement will vary among 
different RDBMSs. We discuss the generation of “better” SQL 
statements and the generation of optimal execution plans for such 
queries in the next section. The ORDER BY clause in the final query 
guarantees that the results are sorted in document order. We will 
see in Section 5.2.2 that there is a much cheaper way to guarantee 
correct ordering. Moreover, note that the view descendants should 
not be precomputed, resulting in a possibly huge intermediate 

result. Instead, the final query that joins target_elements and 
descendants should repeatedly compute parts of descendants that 
correspond to the descendants of each tuple of target_elements, 
exploiting existing indexes on relations E_, F_, G_ and H_ to 
speed up the structural joins. � 

Finally, note that the relations that are unioned in descendants may 
have different schemas, since some of them may have columns 
corresponding to text and attribute nodes and some may not. To 
eliminate these differences, we group for each relation all attribute 
columns under a single pseudo-column called attributes_, as 
shown in Figure 3. If a relation doesn’t have attribute columns, 
attributes_ equals NULL. Similarly, for those relations that do 
not have a text_ column, we add a pseudo-column named 
text_ equaling NULL. In Figure 3, B_ is enhanced with column 
attributes_ which is defined as the concatenation of: the string 
‘j=“’, the value of column j_, ‘” k=“’, the value of column k_, and 
‘”’. Therefore, the value of the attributes_ field of a B_ tuple 
with values ‘a’ and ‘b’ for the fields j_ and k_ will be ‘j=“a” 
j=“b”’. The column is formatted as attributes are in XML elements, 
so it can be included in XML elements reconstructed in the final 
result with no extra effort.  

The last question is how to reconstruct an XML document from the 
result relation. For this, PPFS+ uses a technique similar to that 
described in the appendix of [11], where the dewey position of the 
element being fetched is compared with that of the previously 
fetched element, to decide whether it should be nested in the 
previous element or not. In PPFS+, a relation tuple includes 
information for both a target element and a descendant. To produce 
results correctly, we must identify when the target element 
changes, which is done, as mentioned above, by comparing the 
values of the field target_element_num. 

5. TUNING THE RELATIONAL 
IMPLEMENTATION 
As discussed in previous sections, many different shredding 
schemes and XPath-To-SQL translation techniques have been 
proposed. A key requirement for all is that the SQL translations of 
XPath queries must be as efficient as possible. The relational back-
end executes the plan that the query optimizer estimates as the 
optimal; however, in most cases SQL translations are complicated 
and, moreover, shredded XML data have some non-obvious 
characteristics that can be exploited for better perfor-mance – 
which relational optimizers always miss. In this section we take a 
closer look at XML-to-Relational mapping, XPath-to-SQL 
translation and the XML reconstruction technique presented in the 
previous sections, and focus on the implementation strategies 
available with a relational storage and execution engine. We 
conclude on certain strategies and significantly modify the XPath 
processing techniques to improve query performance.    

In Section 5.1 we discuss some distinctive features of our SQL 
translation and mapping techniques. Based on these features, we 
first focus on the relational join algorithm and indices that fit better 
with dewey-based structural joins and discuss how they affect the 
XPath-to-SQL translation algorithm (Section 5.2). We then 
compare file organization methods and identify the most 
appropriate one for XPath processing (Section 5.3). Based on these 
findings, we revisit XML reconstruction and provide new 
algorithms that significantly improve efficiency (Section 5.4). 
Detailed experiments (Section 6) validate the proposed techniques.  
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5.1 Key observations and requirements 
An important requirement of XPath semantics [1] is that the 
sequence of target elements returned by the evaluation of an XPath 
expression must be sorted by document order and have no 
duplicates. This implies that the result relation of the target query 
must be ordered by the dewey_pos column. Likewise, the 
elements of the sub-trees rooted at each target element must 
preserve the ordering of the original XML document.  

One interesting observation for dewey order that cannot be 
explicitly declared in the database engine is the following: if the 
dewey position of element A is greater than the dewey position of 
element B, and A is not a descendant of B, then the dewey position 
of every descendant of A will be greater than the dewey position of 
every descendant of B. This is important because it implies that, 
under certain conditions, the result of ancestor-descendant 
structural joins is naturally ordered by the dewey_pos column of 
the descendants relation without extra effort.   

When deciding on indices and file organization, it is important to 
know what columns of the relational encoding are accessed to 
answer an XPath query. The dewey_pos and path_id columns of 
all prominent relations participate in selection conditions. The 
existence of filtering predicates may also cause columns 
corresponding to text or attribute nodes to participate in selection 
conditions. The selective prominent relation returns all its columns. 
Concerning the descendants view, almost all columns of the 
relations are projected since they are needed for the construction of 
the resulting XML document.    

Finally, note that, given the wide use of XML in web-based 
applications and their interactive nature, it is usually vital for XML 
processing to provide “first answers” quickly. To achieve this goal, 
execution plans must be pipelined and blocking operations must be 
avoided, which means that explicitly declared sorting should be 
avoided. When XML reconstruction is required, the number of 
tuples processed and returned by the SQL translation can be very 
large, since every single element is mapped into a separate tuple 
(no inlining is used), which makes sorting them prohibitively 
expensive. We exploit the above observations in the following 
sections.    

5.2 Index Nested Loops For Structural Joins 
This section answers three interrelated questions: what relational 
join algorithms map better to dewey-based structural joins, what 
indexes help the most, and under which circumstances DISTINCT 
or ORDER BY clauses are redundant. 

5.2.1 Nested Loops and b-tree index on dewey_pos 
Since structural joins involve range comparisons, a standard B-tree 
index for the dewey_pos column is optimal since it can efficiently 
handle range conditions. A simple example follows.  

Example 5: Consider an ancestor-descendant join between element 
types C, D defined in the XML schema H of Example 1. C_ and 
D_ are the respective relations. The SQL statement that performs 
this join is the following:  

 
The query enforces the condition that elements corresponding to 
D_ tuples are descendants of those corresponding to C_ tuples. 

Dewey encoding allows the discovery of all descendant D 
elements of a given C element with a simple range index lookup. 
Particularly, if the dewey position of the C element is x then we 
need all D elements with dewey positions ranging from x up to 
x||CHR(FF). These can be easily retrieved from the linked list of 
the block leaves of B-tree indices. � 

Given the above, index nested loops (index-NL) are ideal for 
performing structural joins based on dewey encoding: Scan the 
ancestor relation and, for each dewey position key, perform a 
range index lookup in the dewey position index of the descendant 
relation. This way, only B-tree leaf blocks containing descendant 
tuples are visited. A clustered index on the dewey position column 
is present since this column is the primary key.  

We can force the optimizer to use index-NL by incorporating 
special implementation instructions, i.e., hints, as comments into 
the SQL translations before we issue them to an RDBMS. The 
RDBMS reads the hints and tries, if possible, to produce physical 
plans that conform to these instructions. Hints can demand specific 
join algorithms, access path method, use of indices, join ordering, 
etc. In the statement of Example 5 as well as in following SQL 
statements, we use natural language to describe hints, for ease of 
understanding. In the PPFS+ implementation, the necessary Oracle 
hints are generated automatically.   

NL can also provide the first matching row quickly. Sequences of 
NL joins can be executed in a pipelined fashion, which as 
discussed is desirable for XPath-to-SQL translations. The 
execution plan of the SQL translation of an XPath query with 
predicates will have a tree structure of nested loops joins, which 
still preserves pipelining. However DISTINCT and ORDER BY 
clauses will spoil pipelining. 

In Section 6.1, index-NL join is compared with the other well-
known relational join algorithm for dewey-based structural joins, 
Sort Merge join. As shown by the experiments NL join performs 
much better than Sort Merge. 

5.2.2 Eliminating redundant sorting 
In the previous section we highlighted that the result relation of an 
SQL translation must be ordered by the dewey_pos column of the 
selective prominent relation. For Example 5, this means that we 
must add an ORDER BY clause on the D_.dewey_pos column. 
Since relation D_ is the inner argument of a nested loop join, the 
index on the dewey position column cannot help for sorting; the 
engine has to sort the join results. However, we can exploit the 
property of dewey_pos mentioned in the previous section in order 
to omit the sorting overhead. First, a necessary definition: We call 
recursive a relation whose corresponding node in the schema graph 
is part of a cycle. In schema graph I from Example 1, relation A_ is 
the only recursive relation. 

Theorem 1: Consider an ancestor-descendant join between rela-
tions R_ and S_ corresponding to element types R and S 
respectively and assume that ancestor element type R is not 
recursive. If relation R_ is accessed in dewey_pos order, relation 
S_ has a B-tree index on the dewey_pos column and index-NL 
join is used, then the projection of the join tuples on the columns 
of S_ will be duplicate-free and sorted by document order. � 

The theorem can be generalized to sequences of structural 
ancestor-descendant joins: When the backbone of an XPath 
expression consists of forward PPFs whose prominent relations are 
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not recursive, ORDER BY and DISTINCT clauses can be omitted 
from the target query.  

Example 6: Let’s see why we can omit the ORDER BY clause in 
the structural join of Example 5. Element type C is not recursive, 
so for two C elements that are accessed in document order, all the 
descendant elements of the first will open and close before the 
second C element opens. Therefore, if relation C_ is accessed in 
dewey_pos order and index-NL is used, the result will have 
descendant D_ tuples in dewey_pos order without duplicates. � 

If the ancestor relation is recursive, result ordering and duplicate 
elimination are necessary.  

Example 7: For the structural join between relations A_ and B_ 
from schema H, the ancestor relation is recursive. Therefore, it is 
possible that A_ contains two elements a1 and a2, the first being an 
ancestor of the second, or, equivalently, a1.dewey_pos < 
a2.dewey_pos < a1.dewey_pos||CHR(255). Let’s call B(a1) 
and B(a2) the descendant sequences of a1 and a2. It holds that B(a2) 
⊂ B(a1). During index-NL join, for element a1 , the inner iteration 
retrieves B(a1). When a2 is accessed, the inner iteration retrieves 
B(a2). The result is not ordered by dewey_pos and contains 
duplicates. � 

When intermediate structural joins produce duplicates, they must 
be removed as early as possible: duplicated tuples imply redun-
dant processing effort, since they can cause useless iterations over 
identical tuples in the following NL joins. Moreover, because of 
the hierarchical structure of XML, duplicates are likely to be 
multiplied in ancestor-descendant structural joins. Because of this, 
once a recursive prominent relation A_ is identified along a 
backbone path, if the following prominent relation B_ in the 
backbone path is not recursive, we put the SQL statement 
generated so far, augmented with the A_-B_ join, in a view (using 
the WITH clause). We apply on that view the DISTINCT and ORDER 
BY clauses. Note that the use of ORDER BY inside view definitions 
is not supported by all RDBMS. However, Oracle permits this as 
long as the view is not updatable, which is the case for temporary 
views created within a “WITH clause” statement. The target view 
uses the above view as its first prominent relation. The algorithm is 
illustrated below.  

parsePPF is a recursive function that is called for each PPF of the 
backbone of an XPath. It defines and adds temporary views in the 
global tempViewList list and defines also the global 
targetSelect which represents the target_elements view of the 
final SQL statement. The curSelect is the sub-query currently 
constructed, the prevPromRelation is the prominent relation of 
the previously parsed PPF and the curPPF is the PPF that is being 
parsed. The function translateNewPPF enhances the subquery 
under construction by adding the prominent relation of the current 
PPF into the FROM clause and the appropriate structural join and 
path_id filtering predicate in the WHERE clause of curSelect. 
As mentioned earlier in the section, if the prevPromRelation is 
recursive and the prominent relation of the curPPF is not (lines 3-
12), then DISTINCT and ORDER BY clauses are added to the 
curSelect (lines 4-5). Then, unless the curPPF is the last one 
(lines 6-7), a new temporary view called tmpView is added to the 
tempViewList. The parsePPF function is called for the 
following PPF (lines 9-11). The cases where the curProm-
Relation is also recursive and where prevPromRelation is not 
recursive are dealt appropriately also (lines 14-23 and 23-28 

respectively). The function returns in lines 7, 18 or 25, after setting 
the target subquery to the currently constructed one. 

 
Example 8:  Consider the XPath fragment //A[…]/B[…]/S over 
XML data conforming to the XML Schema H of Example 1. The 
only recursive prominent relation of the query is A_. The main 
query of the SQL equivalent (omitting path filtering and XML 
reconstruction) doesn’t need DISTINCT or ORDER BY: 

 � 

5.2.3 Path filtering and pipelining  
In the previous sections we discussed the benefits of using index-
NL for structural ancestor-descendant joins, where a b-tree index 
on the inner relation is required for such a join to be efficient. 
Moreover, to eliminate redundant sorting, the outer relation must 
be accessed in dewey_pos order. It is nontrivial to satisfy these 
two requirements while also using root-to-node path filtering. 
Recall that each prominent relation must be also joined with the 
Paths relation, on which a regular expression filtering predicate is 
added. The following example illustrates the problem.  

Example 9:  The SQL translation for query //A/B//D[F/*/H] is 
shown in Figure 4(a). The prominent relation H_ corresponds to a 
PPF that is included in a predicate, which is translated into a 
correlated subquery. The result must be sorted by dewey_pos. Our 
aim is to do this without an ORDER BY clause, taking into account 
that NL joins preserve the ordering of the outer relation, which is 
D_ in our example. 
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Figure 4. Translation of //A/B//D[F/*/H] and alternative plans 

Figure 4 (b) and Figure 4(c) show two plans that both use NL join. 
In the first plan, even if D_ is accessed ordered by dewey_pos, 
there is no guarantee that D_>< σ(Paths) will preserve the 
ordering unless a NL join is used with the Paths being the inner 
relation. The most important thing is that H_>< σ(Paths), which is 
the inner relation of the top level NL join,  is not indexed, making 
the performance of NL join extremely poor. In the second plan, the 
result of D_ >< σ(Paths) is sorted only if  a NL join is used. 
Similarly, the final join with the Paths relation would preserve the 
ordering if a NL join is used. � 

An alternative option is to avoid joining prominent relations 
directly with the Paths relation. In particular, whenever a path 
filtering is needed, we can filter the Paths relation with a separate 
SQL statement, create a list of ids of the returned root-to-node 
paths and store the comma-separated ids as a string. This string is 
used in the main query filtering the path_id of the respective 
prominent relation using an IN-list selection clause, as shown in 
the following example. This way, the SQL translations produce 
simpler plans and, moreover, the Paths relation is accessed fewer 
times. We made experiments, not presented in this paper due to 
lack of space, which show performance benefits when this 
alternative is applied.  

Example 10: Figure 5(a) shows the SQL translation of query 
//A/B//D[F/*/H] using IN-list selection clauses for filtering the 
path ids. The execution plan, shown in Figure 5(b), uses simple 
selection operations for filtering the path ids of relations D_ and 
H_, without affecting ordering: D_ is accessed in dewey_pos and 
the selection on the path_id column will preserve this ordering. 
For each outer iteration, an index range lookup occurs on the index 
of F_, producing a sequence of tuples sorted by dewey_pos. This 
sequence is filtered by path_id before it is joined with the current 
D_ tuple.  � 

 
Figure 5. New translation of //A/B//D[F/*/H] and its plan 

5.3 Organizing relations as indices 
As discussed in previous sections, NL joins in combination with 
dewey position indices are optimal for structural joins as well as 
for preserving the document order of the results without the need 
for keeping intermediate relations. However, index range scans 
introduce an inefficiency: When the query involves columns other 

than dewey_pos, additional disk reads are needed to access those 
columns from the actual relation. In particular, the path_id 
column of every prominent relation is accessed. Also, almost all 
columns of the selective prominent relation as well as of the 
descendant relations that are unioned in the descendants view must 
be projected. To improve efficiency we can use a concatenated 
(composite) index on the dewey_pos and path_id columns. The 
problem remains for the projected columns of the selective 
prominent relation and for the relations storing descendants of the 
target elements (in case of XML reconstruction).  

A better alternative is to use indexed file organization for the 
mapping relation. In this file organization method, the data entries 
of the index, stored in the leaf block of the b-tree, include the 
actual data records. This way one level of indirection is omitted 
since both relation and index coexist in a single structure. Modern 
RDBMS support such file organization, e.g. IOT in Oracle, tables 
with clustered index in SQL Server, etc. With this organization, 
presence of non-key columns in the projection or in the selection 
part of an SQL query will not cause additional block accesses. 
Similarly, because rows are physically stored in key order, range 
access by the primary key involves the minimum number of block 
accesses. Experiments shown in Section 6.3 justify the 
organization of relations as indices, especially when XML 
reconstruction is required; the performance benefit is remarkable.  

5.4 Accelerating XML reconstruction 
The above observations and developed techniques can also help in 
developing new efficient XML reconstruction methods. We first 
improve on the basic SQL translation for XML reconstruction. We 
then propose an alternative solution based on maintaining 
redundant data, which “splits the difference” between schema-
oblivious and schema-aware XML-to-relational mapping and 
significantly accelerates XML reconstruction without sacrificing 
the efficiency of XPath filtering. 

5.4.1 Using Index NL join and reducing sorting cost 
The “direct” SQL translation for XML reconstruction presented in 
Section 4 suffers from a severe disadvantage. In order to return the 
result relation sorted by dewey_pos of the descendant elements, 
the basic query (that joins the target_elements and descendants 
views) needs an ORDER BY clause, as shown in Figure 3. There is a 
better alternative: we can push the ORDER BY clause inside the 
descendants view, as shown in Figure 6. SQL of Example 4 using 
basic XML reconstruction. We call this XML reconstruction 
method basic XML reconstruction. 

Using hints, we force the use of index-NL for the outer structural 
join of target_elements and descendants. The target_elements 
subquery is executed as discussed in Section 5.2 and its result 
tuples are pipelined in document order. Whenever a target element 
tuple is pipelined, it is joined with its descendant tuples from the 
descendants view. These descendants are evaluated as the union of 
the results of many index range scans: as many as the number of 
the descendant relations that participate in the descendants view. 
Descendant tuples from each such relation are produced in 
document order, due to index range scanning, but overall, the 
result of the union will not be sorted in document order. Hence, an 
ORDER BY clause inside the descendants view is needed, but not 
one in the main query. Since complexity of sorting is O(nlgn), the 
more tuples are produced by the target_elements view, the bigger 
the benefit of pushing the ORDER BY clause into the descendants 
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view. Moreover, since smaller sets of tuples are sorted, it is more 
likely that the sorting will occur in main memory. We call this 
technique basic XML reconstruction. Note that it has similarities 
with [18] but uses a single SQL statement. In [18] for each target 
element multiple queries are issued to the RDBMS for retrieving 
descendants from all possible relations. 

 
Figure 6. SQL of Example 4 using basic XML reconstruction 

5.4.2 A global relation (for XML reconstruction) 
The basic XML reconstruction method described in the previous 
section has some shortcomings. For each target element, there are 
as many b-tree index lookups as the number of descendant 
relations, and sorting is still required. The cost for a b-tree index 
range scan is the height of the tree plus the number of leaf blocks 
covering the range condition, if we assume for simplicity that only 
I/O accesses count. Consider an XPath query where 5 possible 
descendant relations are unioned in the descendants view. For the 
116 MB XMark dataset, the average height of each b-tree index is 
2. Therefore, for each target element, 10 blocks are accessed on 
average. If the number of target elements is n, the upper bound 
total cost for b-tree I/O is 10n. Many of these index blocks are 
gradually cached as the cache warms up. Nevertheless, many key 
comparisons still take place.  

We propose a completely different technique, hybrid XML 
reconstruction, that improves significantly the performance of 
XPath-to-SQL translations that also perform XML reconstruction. 
Sorting is completely avoided and index accesses to retrieve 
descendants are eliminated. A global materialized view, called 
global_table, is maintained, that unions all the mapping relations, 
with the dewey_pos column as primary key. We eliminate the 
schema differences among the mapping relations using the same 
method we used for defining the descendants union view (see 
Section 4): for each mapping relation we accumulate all attribute 
columns under a single one called attributes_ and introduce a 
NULL-valued column named text_ for those relations that don’t 
have a column for storing text nodes.  

To reconstruct the XML result of an XPath query, the descendents 
of the target elements are retrieved exclusively from the 
global_table relation. This way we preserve optimal performance 
for retrieving target elements, provided by PPF-based processing, 
while accelerating the XML reconstruction process. The first 
reason why XML reconstruction occurs much faster is because, for 
each target element, a single lookup takes place on the b-tree of the 
global_table, instead of having to lookup on multiple b-tree 
indices. Moreover, there is no need for sorting, since for each 
target element its descendants are retrieved naturally sorted due to 
index range scanning. Using hybrid XML reconstruction, the SQL 
translation of Example 4 is shown in Figure 7 

Experiments presented in Section 6.4 confirm that hybrid XML 
reconstruction is more efficient than basic XML reconstruction, 
and that both methods give better overall performance than using 
exclusively the global table for evaluating and constructing the 
XML result of an XPath query (which is what happens with 
schema-oblivious XML-to-relational mapping). 

 
Figure 7. SQL of Example 4 using hybrid XML reconstruction   

6. EXPERIMENTAL EVALUATION 
The goals of the experimental evaluation are twofold:  
• to evaluate the performance of each proposed optimization and 

measure their impact on XPath processing, and  
• to compare a system using our complete set of techniques, 

implemented on top of a commercial RDBMS, against a wide 
variety of existing systems, both relational-based and native, 
commercial and research prototypes. 

 
Table 1. Queries for the XMark datasets 

 
We used three XML datasets, the 116 MB and 580 MB documents 
from the XMark [20] benchmark and the 700MB Protein Sequence 
DB [10].The 116 MB XMark document has 1,6 million elements 
and 514 different root-to-node paths whereas the 580 MB XMark 
document has 8 million elements and 514 different root-to-node 
paths. The Protein DB has 21.3 million elements and 85 different 
root-to-node paths. The XMark schema is recursive while the 
Protein schema is not.  

The query sets for the XMark datasets and for the Protein 
Sequence DB are shown in Table 1 and Table 2. These queries, 
used in all experiments (unless otherwise mentioned), cover a wide 
range of XPath, including all XPath axes, wildcards, and nested 
predicates. The reported values are the average of four repeats. All 
experiments were performed on an Intel Pentium IV machine at 
3.2 GHz with 2GB of RAM running Windows XP, with the 
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exception of the experiments on the Natix system, which were 
done on the same PC running SUSE 10. PPFS+ is implemented in 
C++ as a COM object on top of Oracle 10.2g. 

Table 2. Queries for the Protein System DB 

 

6.1 Picking the right join method 
We tested six simple ancestor-descendant joins on the 116 MB 
XMark document, first forcing the optimizer to use Index-NL join 
and then Sort Merge. The experiments were performed with cold 
cache. Note that PPFS+ can handle these queries simply using 
root-to-node path filtering, as described in Section 3.2. We force 
PPFS+ to translate the queries using structural join for the purposes 
of the experiment. The choice of the optimizer when no hints are 
used is always Sort Merge. Execution times as well as the 
cardinalities of the join relations and the results of the joins are 
shown in Figure 8. The experiments confirm the dominance of 
Index NL for dewey-based structural joins over Sort Merge.  

 
Figure 8. Execution times (sec) of different join algorithms for 
structural join  

6.2 Reducing Sorting Impact 
To verify the benefit from eliminating redundant sorting as well as 
duplicate removal, we experimented with five XPath queries. 
Queries, Q14, Q18, Q19 from Table 1, and two additional queries: 
QA:/site/people/person[address]//interest 
QB:/site//parlist[listitem]//text[text()]//keyword  
The queries returned only target elements without XML 
reconstruction. We tested two versions of SQL translations of these 
queries: the original translation used in the PPFS system as 
outlined in Section 3.2, and the translation used in PPFS+, which is 
enhanced by Algorithm 1 discussed in Section 5.2.2 that eliminates 
redundant ORDER BY and DISTINCT. The queries are run on the 
116 MB XMark dataset with cold cache. 

The results, shown in Figure 9, confirm the benefits of the PPFS+ 
technique for eliminating sorting. The effects are more pronounced 
for the larger data sets.  

Note that Q14, Q18, Q19 and QA satisfy the condition of Theorem 
1. QB was constructed to not satisfy the condition, to evaluate the 
benefit of moving the ORDER BY to an intermediate view as in 
Example 8. 

In particular, element parlist is recursive. Note that, even 
though the XMark schema shows element type text as recursive, 

it is not really: text elements cannot be nested in other text 
elements, and are not nested in either the 116 MB or the 580 MB 
versions of XMark. Since parlist is recursive, and considering 
text as non-recursive, the query fragment 
/site//parlist[listitem]//text[text()] is evaluated in 
a separate temporary view, as in Example 8, and the main query 
does not have any sorting or duplicate elimination. 

 
Figure 9. Removing sorting and duplicate elimination 

6.3 Picking the right physical organization 
We compare the execution times of the 22 XPath queries against 
the 116 MB XMark document for three different physical 
organizations of the relational tables: standard heap organized 
tables with indices only on the dewey_pos columns (HOT-D-Ix), 
heap organized tables with concatenated indices on the 
dewey_pos and path_id columns (HOT-D-P-Ix) and index-
organized tables with dewey_pos being the index key (IOT-D). 
For each case, we measure the execution times for the COUNT 
version of the queries, which only return the number of target 
elements, and for queries with full XML reconstruction. The basic 
XML reconstruction method is used.  

 

 
(a) COUNT Queries 

 
(b) Queries with XML reconstruction 

Figure 10. Comparing different physical organizations 

The results are shown in Figure 10. For COUNT queries, the HOT-
D-P-Ix implementation gives the best performance, as expected. 
When XML reconstruction is required, the IOT-D implementation 
dominates, as a much larger number of tuples are retrieved from 
the database -- for our query set, in most queries each target 
element has thousands of descendants. Therefore, if the index is 
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kept separately from the heap organized relation, even if the index 
is clustered, an extra block is accessed for each result tuple.  

6.4 Comparing XML reconstruction techniques 
We compare three XML-reconstruction enabled XPath-to-SQL 
translation techniques: the basic and the hybrid methods, presented 
in Sections 5.4.1 and 5.4.2, and a third method we call single-
relation that uses exclusively the global table both for evaluating 
the target elements and for retrieving their descendants. The 
single-relation method resembles [11] (schema-oblivious). We test 
all queries in the 116 MB XMark dataset in warm and cold cache. 

As shown in [9], the single-relation method is not efficient for 
identifying the target elements. XML reconstruction is expected to 
be more efficient when the global table is used, as in the hybrid 
and single-relation methods. Since the basic and the hybrid 
methods share the same technique for retrieving target elements, 
their only difference is the way descendants are retrieved .  

Based on a simple cost model for the two methods, we expect the 
hybrid method to outperform the other two on all queries. For the 
basic method, the cost for retrieving the descendants of a single 
target element is approximately given by the following formula: 
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where k is the number of descendant relations, hi is the height of 
the b-tree of index-organized relation i, ni is the number of leaf 
blocks accessed during the range scanning on relation i, n is the 
total number of leaf blocks accessed from all descendant relations 
for retrieving the descendants of a target element and Csorting is the 
cost of sorting the descendants of a target element. 

On the other hand, the cost for retrieving the descendants of the 
same target element from the global materialized view is given by: 

)2('nhC glhybrid
+=   

where hgl is the height of the b-tree of the index organized global 
view and n΄ is the number of leaf blocks accessed during the index 
range scan of the global view. Given that nn ′≥ 2, Cbasic is greater 
than Chybrid, for all queries.  

The experimental results when queries are executed in warm 
cache, shown in Figure 11(b), validate this conclusion: the hybrid 
method outperforms both other methods in all queries by a median 
of 63%.  

Experimental results in cold cache, shown in Figure 11(a), show 
that the basic method is faster than the hybrid in a few (8 out of 
22) queries. This is due to the different caching behavior of the two 
methods. During the execution of the NL join of the main query, 
the descendant relations (for the basic method), or the global view 
(for the hybrid method), are gradually cached, i.e., internal and leaf 
blocks of the indices are moved into memory. The blocks cached 
from descendant relations are more relevant (i.e., visited more 
often) than the blocks of the much larger global table: if an XPath 
query selects 10% of an XML document that are all B elements, up 
to 10% of the leaves of the global table index need to be visited, 
but a much larger percentage of the leaves of the much smaller B_ 

                                                                 
2 In an index range scan one more tree leaf block than necessary may be 

read. In the basic method we read from multiple tree indices, and hence 
read more such blocks. 

table. This reduces I/O cost on queries using the basic 
reconstruction method on cold cache and explains why it even 
outperforms hybrid on a few queries. For cold cache, over all 
queries the median performance difference between hybrid and 
basic is 17%, and between hybrid and single relation it is 189%. 

 

 
(a) Cold Cache 

 
(b) Warm Cache 

Figure 11. Comparing XML reconstruction techniques 

6.5 Overall performance comparisons 
We conclude our experimental analysis with a comparison between 
PPFS+ and other systems for XPath processing. As described 
already, PPFS+ is based on PPFS [9], uses IOT tables as physical 
organization for the shredded relations and implements structural 
joins using Index NL joins (and outer joins). It produces optimized 
SQL translations that omit redundant sorting and duplicate 
elimination operations, filter root-to-node paths using IN-list 
selection predicates and implements hybrid XML reconstruction. 
PPFS+ uses Oracle 10.2g as the relational backend with 1.2 GB for 
buffer cache. We compare PPFS+ with:  

• The native XML Management System Natix 2.1.0 [2]. We 
used the default configuration parameters except for the size of 
the buffer cache which we increased to 1.2 GB.  

• The native XML engine of major relational vendor A. The 
engine supports schema-aware XML shredding as well as 
storage of XML documents as CLOBs. The second option has 
very poor query performance, so the first option was used. 
Experiments were run with 1.2 GB of buffer cache. The XML 
schema-to-relational mapping was performed by the engine.  

• The native XML engine of major relational vendor B.  The 
engine stores XML documents shredded into a table. Order is 
encoded using a variant of dewey order. Each tuple 
corresponding to an element stores the element’s position, its 
root-to-node path, its tag name and its text value (if any). 
Buffer cache size is set automatically by the engine. For our 
experiments we additionally defined a path index, supported 
by the engine, to improve performance.    

• The MonetDB/XQuery (Version 0.12). This is an XQuery 
implementation built on the foundation of the main memory 
DBMS MonetDB [8]. 

The experiments don’t permit direct comparisons between the 
relational-based systems, as they use vastly different relational 
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engines. The efficiency of the underlying engine affects 
significantly the performance of XML processing, if it is built 
directly on top of the existing relational infrastructure (as with 
PPFS+ and, to a lesser extent, MonetDB/XQuery): a faster 
relational engine directly improves XML processing performance. 
Nevertheless, a number of useful conclusions can be drawn.  

 

 
     (a) Queries with XML reconstruction       (b) COUNT Queries 

 
(c) Queries Vendor A engine cannot handle 

Figure 12. Comparison of PPFS+ and Vendor A engine 

The Vendor A engine only succeeded in running a small number of 
queries of the XMark 116MB dataset. We were not able to load the 
other datasets. For the queries that ran successfully, the 
comparison with PPFS+ is shown in Figure 12(a) and (b). For the 
queries that didn’t run, Figure 12(c) explains: we use ‘ ’ if the 
execution didn’t finish within a reasonable time, and ‘ ’ if the 
query is not supported. Note that queries with ‘//’ or ‘*’ (such as 
Q6, Q7, Q8, etc) are evaluated by loading the entire document in 
memory and evaluating the queries on the DOM tree directly. 

 

 
Figure 13. Queries with XML reconstruction-XMark 116MB 

 
Figure 14. COUNT queries-XMark 116 MB 

For the other systems (PPFS+, MonetDB/XQuery, Natix, and 
Vendor B engine), Figure 13 and Figure 14 show the execution 
times in warm cache of two versions of the 22 queries of Table 1 
for the 116 MB XMark dataset. The same experiments are repeated 
for the 580 MB XMark dataset, as shown in Figure 15 and Figure 
16. Some queries could not be run by the Vendor B engine, and are 
marked in the graphs below the query axis, similarly to Figure 
12(c). Figure 17 shows the results on the 700 MB XML Protein 
Sequence Database. The dataset could not be loaded on the Vendor 
B system and on MonetDB/XQuery.   

As shown in the graphs, PPFS+ outperforms other systems in the 
vast majority of queries, with COUNT or with full XML 
reconstruction, with the exception of MonetDB/XQuery. 

In comparison to Natix, when XML reconstruction is required, 
PPFS+ is faster than Natix in 36 queries from the three datasets. 
The median performance difference is 130%. Natix is faster in 17 
queries, the median difference being 36%. All 53 COUNT queries 
run faster in PPFS+, the median performance difference being 
2000%. We conclude that XPath filtering techniques over 
relational engines can significantly outperform native XML 
processing techniques. XML reconstruction imposes a hardship on 
relational systems, but with our hybrid reconstruction technique 
overall performance is still superior in most cases. 

We can also conclude that the XML engines of the commercial 
relational RDBMSs used in the comparison have a long way to go 
to offer satisfactory performance on relatively complex XPath 
queries. PPFS+ outperformed Vendor A and Vendor B engines on 
all queries (by a median  of 1200%). In particular, note that, even 
though Vendor B engine stores the root-to-node paths for all 
elements in order to reduce the number of structural joins needed, 
it seemingly cannot avoid structural joins for handling wildcards. 
PPFS+ (following PPFS [9]) handles both ‘//’ and ‘*’ using regular 
expression filtering.  

 
Figure 15. Queries with XML reconstruction-XMark 580MB   

 
Figure 16. COUNT queries- XMark  580 MB 

Regarding MonetDB/XQuery, when XML reconstruction is 
required, it outperforms PPFS+ in 31 out of 44 queries – the 
median performance difference is 117%. PPFS+ outperforms 
MonetDB/XQuery in 13 queries, showing a median improvement 
of 66%. In COUNT queries, PPFS+ is faster than 
MonetDB/XQuery in 23 queries (300% median difference) and 
slower in 15 (120% median difference). The underlying relational 
engine used by MonetDB/XQuery, MonetDB, is an in-memory 
database system that uses a special storage model and a CPU-tuned 
vectorized query execution architecture [7]. Previous studies [7] 
have shown a significant performance advantage of MonetDB over 
Oracle, which may explain the differences we observe. On the 
other hand, the existence of many queries where PPFS+ 
outperforms MonetDB/XQuery shows that easy to implement 
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techniques, even implemented at the application level, can 
significantly improve XPath performance.   

Implementation of the novel techniques of MonetDB/XQuery 
directly on top of a traditional relational engine is not possible, as 
some techniques, e.g., staircase joins, need to be implemented 
inside the engine. We are planning to implement PPFS+ on top of 
MonetDB, in order to allow for a more direct comparison.  

 

             
(a) Queries with XML reconstruction   (b) COUNT Queries 

Figure 17. Protein Sequence Database 

7. CONCLUSIONS 
Despite significant progress, processing of XPath queries still has 
room for improvement. A strategy that has yielded impressive 
dividends for relational data processing is devising storage and 
execution strategies appropriate for the data model characteristics. 
For XML processing using relational engines, using the right join 
algorithms, index structures and storage options hasn’t received 
enough attention. As our results show, large performance 
improvements can be the result of more careful consideration of 
the impact of such choices. Moreover, we propose a novel and 
faster XML reconstruction technique.  

Our techniques are implemented on top of a relational engine 
without any need for engine modification. We plan to investigate 
how to make optimizers natively aware of the issues we identified. 
We are also working on similar techniques for XQuery processing   
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