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ABSTRACT
We study the problem of querying relational data embedded in
XML. Relational data can be represented by various tree structures
in XML. However, current XML query methods, such as XPath
and XQuery, demand explicit path expressions, and thus it is quite
difficult for users to produce correct XML queries in the presence
of structural variations.

To solve this problem, we introduce a novel query method that
automatically discovers various XML structures derived from rela-
tional data. A challenge in implementing our method is to reduce
the cost of enumerating all possible tree structures that match the
query. We show that the notion of functional dependencies has an
important role in generating efficient query schedules that avoid ir-
relevant tree structures.

Our proposed method, the relational-style XML query, has sev-
eral advantages over traditional XML data management. These in-
clude removing the burden of designing strict tree-pattern schemas,
enhancing the descriptions of relational data with XML’s rich se-
mantics, and taking advantage of schema evolution capability of
XML. In addition, the independence of query statements from the
underlying XML structure is advantageous for integrating XML
data from several sources. We present extensive experimental re-
sults that confirm the scalability and tolerance of our query method
for various sizes of XML data containing structural variations.

Categories and Subject Descriptors:
H.2.4 [Database Management]: Systems—Query processing

General Terms: Design, Management

1. INTRODUCTION
XML (eXtensible Markup Language) [6] is a text format for

tree-structured data. While it is suitable for describing any type of
data, there is no such common data format for relational databases.
Hence, XML is a promising portable format for relational data.
However, there is no obvious simple manner for making queries
of relational data embedded in tree-structured XML.

With regard to the expressibility of data, there is no significant
difference between XML and relational data [16]. For example,
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node and edge tables are sufficient to describe tree-structured data
in relational databases. Even so, the tree structure of XML is nec-
essary in several cases. XHTML [9], which is an XML version of
HTML, uses a tree structure for data layout, which would not work
in relational form. Another case is the use of user-defined tags in
XML for organizing data groups or appending additional informa-
tion to extend the schema of XML dynamically.

Other than these two cases involving data layout and the schema-
evolution facilities of XML, various types of data can be expressed
in relational format. Hierarchical data, often mentioned as an ideal
XML application, are not difficult to describe in relational form us-
ing simulated data hierarchies with keys to expand multiple columns.
An example of this is shown in Figure 1, illustrating relational and
XML data with corresponding hierarchies. A triplet of company,
section and employee (IDs) comprises a primary key in the follow-
ing relational data:

company section employee
c1 s1 e1
c1 s1 e2
c1 s2 e3

<company id="c1">
<section id="s1">
<employee id="e1"/>
<employee id="e2"/>

</section>
<section id="s2">
<employee id="e3"/>

</section>
</company>

Figure 1: Hierarchical data in relational and XML format

This translation from relational data to XML is quite natural and
straightforward for the hierarchy of companies through to sections
and employees. However, by changing the viewpoints of this rela-
tional data, other XML representations are also possible. In Figure
2, the XML data on the left-hand side organize the above relational
data for each section, and those on the right-hand side are for each
employee:

<sectionList>
<section id="s1">
<company id="c1"/>
<employee id="e1"/>
<employee id="e2"/>

</section>
<section id="s2">
<company id="c1"/>
<employee id="e3"/>

</section>
</sectionList>

<employeeList>
<employee id="e1">
<company id="c1"/>
<section id="s1"/>

</employee>
<employee id="e2">
<company id="c1"/>
<section id="s1"/>

</employee>
<employee id="e3">
<company id="c1"/>
<section id="s2"/>

</employee>
</employeeList>

Figure 2: Various XML representations of relational data
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Although the meaning of these XML data is the same, XML
queries using path expressions are dependent on the specific XML
structures. For example, an XPath [8] query to retrieve all employ-
ees in a company c1 and section s1 is completely different for each
XML dataset, as shown below:

P1: //company[@id=’c1’]/section[@id=’s1’]/employee (Fig. 1)
P2: //section[@id=’s1’][company[@id=’c1’]]/employee (lhs of Fig. 2)
P3: //employee[company[@id=’c1’]][section[@id=’s1’]] (rhs of Fig. 2),

where the descendant-axis (//) traverses an arbitrary-depth of XML
data, while the child-axis (/) for child nodes, the attribute-axis (@)
for attribute nodes (data contained in start tags), and the brackets([ ])
enclose twig nodes to test. This example indicates that without
knowledge of the precise XML structure, users cannot produce cor-
rect XML queries.

This problem of the structural variations of XML data is com-
mon when translating relational data into XML. One possible so-
lution to this problem is to disallow structural variations using an
XML schema [25], DTD [6], or RelaxNG [18]. However this greatly
limits the flexibility of XML data modeling, and prevents dynamic
schema evolution or the population of XML nodes with user-defined
tags. The requirement for XML schemas comes mainly from the
existing standard XML processing methods (e.g., SAX [20], DOM
[6], XPath [8], XQuery [5], etc.). These query methods are based
on tree navigation, so without detailed knowledge of the underlying
XML structure, it is quite difficult to traverse tree-structured XML
data correctly.

A brute-force solution would be to cover all structural variations
with a single XPath expression by exhaustively concatenating all
possible tree patterns. For the above example, the query would
be P1 | P2 | P3. However, a slight change in the XML structure,
for example when some employees join a project team, and thus
XML data are modified as in Figure 3, would still force the user to
modify query statements or XML reader programs to accommodate
this new structure:

<company id="c1">
<section id="s1">
<team project="p1">
<employee id="e1"/>
<employee id="e2"/>

</team>
</section>
<section id="s2">
<employee id="e3"/>

</section>
</company>

Figure 3: Decorating employee data with a custom tag, team.

Unlike the examples of the above XPath queries, SQL query
statements are stable after this sort of schema evolution. For ex-
ample, the following SQL select statement,

SELECT company, section, employee FROM ...

can be used without any modification, because a relation consisting
of company, section and employee nodes still holds after insertion
of the team node.

This observation motivated us to develop a means of querying
XML data in relational style. For example, we use a simple ex-
pression (company, section, employee) to specify node names in
a relation without reference to the tree structure, and retrieve vari-
ously structured relational data embedded in XML. A key insight in

company

section section section

employee employee employee

an invalid structure

employeeemployee

a correct structure

Figure 4: An example of an inappropriate query result.

this development is that even if XML representations vary accord-
ing to the specific viewpoint of relational data, these XML struc-
tures are all derived from the same relational data. To describe
these variously structured relational data with a simple expression,
we define a class of tree structures that construct relations in XML.
Given a query expression, e.g., (company, section, employee), our
query method covers all possible tree structures that can be gener-
ated from input company, section and employee nodes.

A challenge in implementing our query method is to discover the
appropriate tree structures from the XML data. In general, the num-
ber of possible structural variations of n XML nodes is nn−1, which
is identical to the number of labeled trees with n nodes. To improve
query performance, we must avoid issuing nn−1 queries. Another
challenge is that even for a single tree pattern, its instances in XML
data could be numerous. For example, XML data in Figure 4 has
a hierarchical pattern with one company node, three section nodes
and five employee nodes. While there are 1×3×5 = 15 instances of
(company, section, employee) pairs, only 5 of those are appropriate in
that they connect each employee node with its corresponding parent
section node. This shows that naive enumeration of tree instances
is inefficient for larger volumes of XML data. Therefore, eliminat-
ing incorrect tree structures is another key to achieving good query
performance.

To remove irrelevant tree structures from query results, it is nec-
essary to know the implied semantics in the XML data, e.g., each
employee node belongs to a section node. We describe these seman-
tics with functional dependencies (FDs) [17] tailored to XML. For
example, an FD could be employee → section, meaning that each
employee node belongs to a unique section node. Our definition of
FD is flexible to allow structural variations, as a section node may
be a child of an employee node (Figure 2), or there may be another
node inserted between them, as shown in Figure 3.

Our proposed method, the relational-style XML query, provides
new insight into XML query processing. While the de facto stan-
dards for XML query processing languages, such as XPath [8] and
XQuery [5], require explicit path expressions to perform queries,
we use FDs to define XML data structures, and thus have no need
to specify tree structures in query statements. All we need to query
XML data is to describe target nodes of interest with tag names,
predicates, keywords, etc. Relational-style XML queries enable the
user to perform queries without detailed knowledge of the XML
structure. This means query expressions are much simpler than
those for path-based query methods.

The outline and contributions of this paper are as follows:
• We present a compelling example of the relational-style XML

query, which does not use explicit path structures for either
queries or schemas (Section 2).

• We define a relation in XML that can capture structural vari-
ations in XML data, and present an XML algebra to describe
XML queries (Section 3).
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• We define FDs for XML, and create a relationship between
XML structures and FDs (Section 4).

• We present optimization techniques based on our XML al-
gebra to expedite retrieval of XML structures satisfying FDs
(Section 5).

• We present experimental evaluation of our proposed meth-
ods to confirm the scalability and tolerance of our proposed
method. (Section 6)

We present a survey of related work in Section 7, and conclude this
work in Section 8.

2. RELATIONAL-STYLE XML QUERY
Relational-style XML query allows structural variations in XML

databases. This capability provides a great impact on XML query
processing. For example, by detecting relational-part from existing
XML data, we call this a relation in XML, query expressions of
XML becomes much simpler than path-based query methods. In
addition, in creating a XML database from scratch, its schema de-
sign becomes straightforward translation from an ER-diagram [17],
which is far simpler than defining a comprehensive tree schema. To
illustrate these benefits, let us consider an XML database of a com-
pany data that has several employees and working projects. Figure
5 illustrates an ER-diagram of this database:

project employee

id id

id

task

: entity

: attribute
key : key

: relationship

section

company
1

M

1

M

M M

1 1

: (project, task, employee)

Relation examples:
: (company, section, employee)

name

Figure 5: An ER-diagram of a company data, and its decom-
position into relations.

To create an XML database from this model, we first decompose
this ER-diagram into several relations:

R1: (company, section, employee)
R2: (project, task, employee)
R3: (employee, name)

We choose these relations so that each of these node pairs orga-
nizes a reasonable unit in this data model, so a relation can be a
much smaller fragment, e.g., (company, section), (section, employee),
etc. This decomposition process is similar to the design of table
schemas in relational databases.

One-to-Many Relationship. In this ER-model, a company has
several sections, and each employee belongs to one of these sec-
tions. This is an example of one-to-many relationships between a
company and sections, and a section and employees. To describe
these relationships in the ER-diagram, we extract the following
functional dependencies (FDs):

employee→ section (Each employee belongs to a section)
section→ company (Each section belongs to a company)

An one-to-many relationship between P and Q corresponds to an
FD Q→ P, meaning that from each node Q we can uniquely deter-
mine another node P. Stated in another way, a node P may have
several associated nodes Q.

Many-to-Many Relationship. This data model has a project node,
each of them has several tasks. Each task is assigned to an em-
ployee, and employees may be assigned several tasks in several
projects. This is a many-to-many relationship between projects and

employees. In general, we can divide such many-to-many relation-
ships into one-to-many relationships [17]. The following FDs rep-
resent two one-to-many relationships (project-task and employee-
task):

task→ project
task→ employee

Relation to XML Structures. Relations and FDs are sufficient to
describe a schema of XML. Figure 6 shows an example of XML
data generated from the ER-diagram. This example involves vari-
ous tree structures that denote data in the same relation. The node
pairs of (company, section, employee) are hierarchically organized
when ignoring the employee list node. The tree structures of (project,
task, employee) pairs are different under the project list and task list
nodes. In the traditional XML schema design, we have to decide
which structure to use, even though this structural difference has no
significant meaning. The relational-style XML query completely
does away with the inconvenience, because query expressions for
retrieving these distinct tree structures are the same as follows:

(project, task, employee)

From a given set of definitions of relations and FDs, our query pro-
cessor automatically finds XML structures that form a relation.

Querying Relational Data Enhanced with XML. XML has rich-
data semantics that can enhance the meanings of relational data.
For example, a relation (project, task, employee) in Figure 6 is deco-
rated with an intermediate node, active (17), which does not appear
in the ER-diagram. The other nodes employee list (2), project list
(14) and task list (26) also enhance relational data by grouping the
XML structures representing relations.

In XML, it is required to handle database queries that contain
both relational and XML semantics. Consider a query for employee
names who are working for active tasks. In Figure 6, two task
nodes 18, 22 are marked as active, but the ER-diagram has no infor-
mation of the active node. A query Q1 in Figure 7, which is written
in XQuery [5], has to traverse several paths, then performs a value-
based join operation on employee/@id. To produce this XQuery
statement, the user must know that the active node appears only
under the project list node, and employee names are under the em-
ployee list. However, learning such knowledge requires a great deal
of efforts and demands the ability to make a complex query.

In the relational-style XML query, this query expression becomes
much simpler as shown in Q2 in Figure 7, which first retrieves two
relations (employee, name) and (active, task, employee), then joins
them by using employee@id values. Since we have the knowledge
of the FD task → employee, we can avoid invalid node pairs such
as (employee (20), active (17), task (22)), which connects irrelevant
employee and task nodes. In processing XML queries, we have to
correctly extract relations embedded in XML, such as (employee,
task), and at the same time to locate XML nodes (e.g., active) asso-
ciated to these relations.

3. RELATION IN XML
In this section, we define a relation in XML that specifies XML

structures of interest using a pattern tree, which allows various
structure organizations by using the notion of amoeba [19]. On
this basis, we define an XML algebra, which is the foundation for
describing XML queries with a nested form of expressions.

Throughout this paper, we use a tree model of XML data, made
up of tree nodes with text values and edges. To distinguish element
nodes (general tree nodes) and attribute nodes [6], attribute node
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R2  = (project, task, employee)  
RR1  = //employee/name

employee@id = "e1"       
employee@id = "e2"      

company

section

employee
@id

name

employee

name

project_list

project

employee

@id

@id

@id

task_list

task

employee

@id

project

@id

employee

@id

"David"
"Lucy"

"e1"

"p1"

"e1" "p3" "e2"

"e1" "e2"

: attribute node
: element node

: text value

active

task

task
@id @id

"t3" "t4"

@id
"t1"

employee_list

1

3

4

5
6

7

8

9

14

15
16

17

19 20

26

33

29

30

31

32

35

36
employee

@id

"e2"

24

25

"..."

18

27

project

@id

"p4"

37

38

task
22

@id
"t2"

21

23

28 34
section

employee

name

@id

"Mike"

"e3"

10

11

12

13

2

Figure 6: Managing variously structured relations in an XML document.

(Q1): for $x in /company/employee_list/section/employee,
$y in /company/project_list/project/active/task

where $x/@id = $y/employee/@id
return $x/name

(Q2): (employee, name) join
(active, task, employee) on employee@id

Figure 7: Queries for employee names who are working for
active tasks

names are prefixed with “@.” Each element and attribute node has
a global ID, which is unique in the XML data.

Amoeba Structure. To describe various tree structures that can
be generated from XML nodes, the notion of amoeba has been pro-
posed [19] as a relaxed definition of trees from the graph theory:

D 3.1 [Amoeba]. Given a set r = {r1, . . . , rk} of XML
nodes, where ri is an XML node, we say r is an amoeba if one of
r1, . . . , rk is a common ancestor of the others, denoted by 〈〈r1, . . . , rk〉〉.

For example, every structural variation in Figure 8 is an amoeba.
To describe a set of amoebas consisting of three types of nodes,
project, task and employee, we use a notation 〈〈project, task, em-
ployee〉〉. It is important that regardless of the structure of a node set
in the XML data, the node set can be considered to be an amoeba
as long as it contains a common root node. The root node of an
amoeba is usually an element or attribute node, but a singleton node
set, e.g., r = {r1}, can also form an amoeba. This definition of
amoeba allows node insertions. Figure 3 shows an example of this
where a team node is inserted into the tree structure of company,
section and employee nodes.

3.1 Relation in XML
To describe a set of XML data fragments all of which match a

specific tree pattern, we need a pattern expression, such as XPath
[8]. Such an XPath expression is typically modeled as a pattern
tree [11]. However, in the presence of structural variations, it is too
restrictive to demand that data structures obey a single tree pattern.
Furthermore, concatenating all possible path structures into a sin-
gle XPath expression can be tedious. To represent both strict and
flexible tree structures easily, we introduce the notion of a relation
in XML, which can express various path structures, including twigs
and amoebas:

project

task employee

project

task

employee

project

employee

task

employee

project task

employee

project

task

employee

task

project

task

project employee

task

employee

project

task

project

employee

Figure 8: All possible structural variations of project, task and
employee nodes.

D 3.2 [Relation in XML]. A relation R in XML is a k-
ary tuple of nodes (for element and attribute nodes) with a Boolean
conjunction of conditions of the following types:
• A condition to specify a subset of nodes in R, say {a, b, c}, con-

structs an amoeba, denoted 〈〈a, b, c〉〉.
• For two XML nodes u and v ∈ R, u is a child (or descendant)

of v.
• Comparison of a text value of a node in R with a constant using

one of the operators =, >, <,≤ or ≥.

Although it is possible to use other types of conditions (e.g. doc-
ument orders of nodes, sibling axes in XQuery [8], etc.), we limit
the condition types in a relation for the purpose of illustration.

D 3.3 [An instance of a relation]. An instance of a re-
lation R in an XML data, denoted ~R�, is a set of node tuples
{(r1, . . . , rk)} such that each XML node ri matches a correspond-
ing node name in R, and satisfies all conditions in R. We denote a
node tuple r contained in an instance of R as r = (r1, . . . , rk) ∈ ~R�.

A relation in XML can be used to describe a fixed tree struc-
ture, which is common in XPath expressions. For example, by us-
ing an XPath expression, we simply denote a relation in XML as
R1 = //employee/name to specify a tree pattern consisting of em-
ployee and name nodes, where name nodes must be a child of a
employee node in the XML document. We denote an instance of
R1 as ~R1� or ~//company/name�. Figure 9 shows another example
of a relation in XML that has element nodes project, task and em-
ployee, and a text value [employee@id]. Its predicates are 〈〈project,
task, employee〉〉 and a path constraint that an employee@id node is
a child of an employee node. Its instance is shown in the table in
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Figure 9. Unlike relational databases, which only use value-based
tuples, an instance of a relation in XML can have both node ids and
text values. Another extreme example is an XML document, which
can be represented as ~//*�, containing every node in the document.

To denote a relation, consisting of one or more relations R1, . . . ,Rk,
we use their Cartesian product R1 × · · · × Rk. For example, if
we have R1 = //employee list and R2 = //employee/name, their in-
stances for the XML data in Figure 6 are ~R1� = {(2)} and ~R2�
= {(4, 6), (7, 9), (11, 13)}. Consequently, the instance of their Carte-
sian product R1 × R2 is:

~R1 × R2� = {(2, 4, 6), (2, 7, 9), (2, 11, 13)}.

3.2 XML Algebra
We present three essential algebraic operations for XML queries:

selection, projection and amoeba join.

Selection. First, we introduce the selection operation for XML:

D 3.4 [Selection]. Let R be a relation in XML, and C
be a Boolean conjunction of conditions listed in Definition 3.2. A
selection operator, denoted by σC(R), applies a condition C to a
relation R, i.e.,

~σC(R)� = {r | r ∈ ~R� ∧ r satisfies C}.

Node Labels. It is essential to have the capability of specifying
some nodes in a relation in XML. In relational databases, a table
has columns and each column has a name. Hence, users of the rela-
tional database can perform algebraic operations by specifying data
columns by name. Node names can be used as equivalents in XML.
For example, in an XML relation R1 =〈〈project, task, employee〉〉,
node names project, task and employee can be used to specify nodes
in R1. To avoid ambiguity of node names between several relations
in XML, we use a dot notation. For example, when R2 = //task/@id
and R3 = //employee/@id, we can distinguish these two @id nodes
as R2.@id and R3.@id, or we simply denote these node labels as
task@id and employee@id. We use a label for a text value of a node
n as [n]. For example, [task@id] and [name] specify text values for
task@id and name, respectively.

In this paper, we consider that the inputs and outputs of an XML
query are relations in XML, and that a query is evaluated using in-
stances of each input relation. Then, the query produces an instance
of another relation. In particular, XML queries often involve inter-
mediate results, which are themselves relations. Assigning new
temporary node names to all intermediate relations can be a daunt-
ing task. Therefore, for readability, we assume node names are
inherited by the intermediate relations. For example, if we perform
a selection operation on a relation R =//book/@isbn and generate
another relation R′ = //book[@isbn=”xx1”], then we can use the node
names book and book@isbn that exist in both the relations R and R′.

Projection. To retrieve a specific set of XML nodes from a rela-
tion, we define the projection of a relation R, denoted by πNL(R),
where NL is a list of node labels. For example, when R = //em-
ployee/name and ~R� = {(4, 6), (7, 9), (11, 13)}, then the result of a
projection ~πname(R)� is {(6), (9), (13)}.

Amoeba Join. Given a list of relations in XML, R1 = //project,
R2 = //task and R3 = //employee, for example, we need an operation
to construct their amoebas. This operation is called an amoeba join
[19]. A similar operation is a structural join [1], which concate-
nates two nodes p and q if p is an ancestor of q. The structural join
is generally used to process descendant-axis (//) queries. However,

employee

project

task

employee@id

child

amoeba
project

15
15
15
15
31
37

task
18
18
22
22
27
33

employee
20
24
20
24
29
35

[employee@id]
“e1”
“e2”
“e1”
“e2”
“e1”
“e2”

invalid relations

Figure 9: An example of an relation in XML (left) and its in-
stance (right) in Figure 6. The colored rows are invalid in-
stances violating FDs (see Section 4).

to handle structural variation, we also must consider both the case
where p is an ancestor of q, or p is a descendant of q. In addi-
tion, there are indirect structural relationships involving more than
two nodes, for example, nodes p and q connected through another
node r. To collect instances of variously structured XML data, we
describe the amoeba join operation as an operator in the XML al-
gebra:

D 3.5 [Amoeba Join]. Given a list of node labels L1,
. . . , Lm, and a list of input relations R1, . . . ,Rk, an amoeba join
operation AJL1 ,...,Lm (R1, . . . ,Rk) is a selection with an amoeba con-
dition for L1, . . . , Lk, i.e.,

AJL1 ,...,Lm (R1, . . . ,Rk) = σ〈〈L1 , . . . , Lm〉〉(R1 × · · · × Rk).

For example, when R1 = //project, R2 = //task and R3 = //employee,
then an amoeba join AJproject,task,employee(R1,R2,R3) is a selec-
tion with a condition 〈〈project, task, employee〉〉, and generates all
instances of amoebas in the XML document, matching one of the
structures in Figure 8.

4. FUNCTIONAL DEPENDENCIES
A relation in XML has the capability of handling variously struc-

tured XML data. However, without knowledge of the semantics
hidden in XML data, it is not possible to retrieve correct XML
structures. For example, Figure 9 shows invalid tuples (colored
in blue) that connect irrelevant task and employee nodes (18, 24)
and (22, 20). To resolve this problem, we need information of data
semantics, such as each task belongs to a project and is assigned to
an employee. These data semantics are described with FDs, task→
project and task→ employee. In this section, to incorporate data se-
mantics into XML, we define FDs in XML and a class of relations
that can be used to describe XML structures satisfying FDs.

We describe a functional dependency for XML with node labels
in relations. Let X and Y be lists of node labels. Then, a functional
dependency for XML is expressed as X → Y . Now, we give the
definition of FDs in XML:

D 4.1 [FDs in XML]. We say a relation R satisfies an
FD X → Y if for each pair of instances p, q ∈ ~R�, p.X = q.X
implies p.Y = q.Y, where p.X denotes a list of nodes (or text values)
in p corresponding each node label in X. The equality of two nodes
(or text values) n1, n2 is defined as follows:

n1.id = n2.id (when n1 and n2 are XML nodes),
n1 = n2 (when n1 and n2 are text values),

where n.id is a unique node ID in the XML data.

Intuitively, an FD X → Y specifies that a node set belonging to
X uniquely determine a node belonging to Y . For example, some
instances in Figure 9 violate the FD task→ employee; two distinct
employee nodes 20 and 24 are associated to each of the task nodes
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18 and 22. These invalid node pairs are involved due to the flexibil-
ity of amoeba structures. In the next section, we solve this problem
by restricting allowable XML structures in describing relations.

4.1 Tree Relation
In our definition of FDs, any relation consisting of an arbitrary

node set can be used, since a relation in XML not always have a tree
structure, such as a projection result, etc. However, in describing
a relation instance as an XML data, it is convenient that we have
a template structure for reading and writing XML data, such as a
table row in relational database. As its counterpart in XML, we use
amoeba structures that can be embedded in XML data. However,
an amoeba structure itself is a connected component of tree nodes,
and thus invalid nodes may be connected, as illustrated in Figure 9.
To avoid these irrelevant node connections, while allowing various
tree structures in describing XML data, we introduce a restricted
class of XML structures, called a tree relation.

Before defining a tree relation, we introduce some notations. Let
F be a set of FDs, NL(F) is the set of node labels appearing in F.
Given a list I of relations R1, . . . ,Rk, then if each Ri contains at least
one node label in NL(F), and all node labels in NL(F) are contained
in I, we say that I covers NL(F). For example, for F ={employee
→ name}, then NL(F) ={employee, name}, and thus the pair of re-
lations R1 = //employee and R2 = //name covers NL(F).

Now, we define a tree relation in XML:

D 4.2 [Tree Relation]. Let F be a set of FDs and R1,
. . . ,Rk be a list of relations that covers NL(F) = {L1, . . . , Lm}. A
tree relation R for F is a result of selection σC(R1 × · · · × Rk) such
that R satisfies all FDs in F, and C is a conjunction of the following
amoeba conditions:

(P1) 〈〈L1, . . . , Lm〉〉 Li ∈ NL(F)
(P2) 〈〈X,Y1〉〉 ∧ · · · ∧ 〈〈X,Y j〉〉 for each FD X → Y1 . . . Y j ∈ F

where X is a list of node labels, and each Yi is a single node la-
bel.

For example, when F = {A → B, B → CD}, then NL(F) =

{A, B,C,D}, and its tree relation for F has the following condition:

〈〈A, B,C,D〉〉 ∧ 〈〈A, B〉〉 ∧ 〈〈B,C〉〉 ∧ 〈〈B,D〉〉.

As another example, an FD with the form AB → C, which has
several node labels in the left hand side, imposes the constraint
〈〈A, B,C〉〉.

The first constraint (P1) 〈〈L1, . . . , Lm〉〉 confirms that nodes in
NL(F) construct an amoeba, i.e., a node set of L1 . . . , Lm must
at least form a tree structure in the XML data. The second con-
straint (P2) indicates that nodes appearing in an FD must also have
an amoeba structure. Intuitively, to establish the correspondence
between FDs and XML structures, we consider XML nodes that
construct an amoeba structure are semantically related. If there are
partial dependencies (FDs) within a relation, XML structures must
represent all of these relationships. Figure 10 illustrates variations
of tree relations for several sets of FDs; A tree relation of nodes
A, B and C must form a tree structure but allows several tree shapes.
When FDs are defined in this relation, tree shapes are restricted so
that these FDs can be represented in these tree structures.

These structural constraints imposed by FDs have an important
role in eliminating incorrect XML structures that do not match the
data semantics. For example, when F has two FDs task → project
and task → employee, then a tree relation for F must satisfy the
following condition:

〈〈project, task, employee〉〉 ∧ 〈〈task, project〉〉 ∧ 〈〈task, employee〉〉.
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Figure 10: Structures of tree relation (A, B,C) vary according
to a set F of FDs.

In Figure 6, an instance of a relation R2 satisfies all of these con-
ditions. Thus, we say R2 is a tree relation for F. The first con-
straint 〈〈project, task, employee〉〉 allows all possible tree structures
consisting of these three nodes. However, a node pair (15, 18, 24) in
Figure 9 satisfies 〈〈task, project, employee〉〉 but connects irrelevant
task (18) and employee (24) nodes. Hence, the other constraints
〈〈task, project〉〉 and 〈〈task, employee〉〉, which are imposed by FDs,
are needed to remove such inappropriate tree structures.

Next, we present some examples of FDs in XML:
• employee→ employee@id : Each employee node must have an

@id attribute node.
• employee@id → employee : The is the opposite of the FD

above. In XML, every attribute must belong to a single ele-
ment, so this type of FD always holds for all attribute nodes.

• author → paper : Each author belongs to a paper. In other
words, a paper may have several authors. The rationale to use
an amoeba structure 〈〈author, paper〉〉 to represent this one-to-
many relationship is that, for each paper node, its author nodes
should be ancestor or descendant nodes, not sibling or other
nodes. The amoeba condition 〈〈author, paper〉〉 covers such tree
structures. If several paper nodes are found for an author node,
such XML data violate this FD, and needs to be modified.

• [book@isbn]→ book : Given an book@isbn value, we can uniquely
determine a book node. In this case, the book@isbn value is a
key (global ID) of book node, no duplicate value of book@isbn
is allowed in the XML document.

• country, ssn→ person : Any person node is identified by a pair
of country and ssn (social security number) nodes. This is an
example of a primary key with two nodes. Either of the country
or ssn nodes is not sufficient to locate a person node, as an ssn
may not be unique outside of a country.

• country, [person@ssn] → person : With the information of an
country node and person@ssn value, a unique person node can
be determined. This example can be considered as a relative
key [7], which localizes the key definition under the specified
path, as uniqueness of [person@ssn] values is also localized
in the context of the country node, but various data structures
are allowed compared to the relative keys proposed in [7]. For
example, a country node can be a parent or child of a person
node in our definition of FDs.

5. QUERY PROCESSING

5.1 Pushing Structural Constraints
Using the operations defined so far, we are able to implement the
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Figure 11: Selection (amoeba join) order affects the perfor-
mance of the query processing.

“pushing selection” technique developed for relational databases,
which makes it efficient to process tree relations for a set of FDs.

Queries for a tree relation for a set of FDs contain several amoeba
predicates. As we explained in Section 4, amoeba constraints im-
posed by FDs eliminate irrelevant structures to the tree relation.
The order in which these conditions are applied is an important
factor in reducing the size of the intermediate query results.

In this section, we present optimization techniques that trans-
late a query operation into a nested form of several amoeba joins
so that temporary results can be minimized by gradually applying
structural constraints imposed by FDs. This method enables se-
lective retrieval of XML structures that satisfy each amoeba con-
straints, and avoids extraction of unwanted XML structures. To
give an equivalent translation of a query expression, we incorporate
the commutative law and cascading selection of relational algebra
[17] into XML:

T 5.1 [Pushing Selection]. Let R and S be input rela-
tions, and C be a condition. When a relation S contains no node
label that appears in C, the following translations hold:

σC(R × S ) = σC(R) × S (commutative law)

σc1∧c2 (R) = σc1 (σc2 (R)) (cascading selection),

where c1 and c2 are conditions.

P (S). The proof is an induction on the number of
conditions based on the fact that relations of the left-hand side and
right-hand side in the above expressions have the same set of con-
ditions.

Using the rules in Theorem 5.1, we can decompose a selection
operation to retrieve a tree relation into a nested form of selections.
If A is a set of amoeba conditions, and a is an amoeba condition in
A, then the following translation holds:

σA(R × S ) = σa(σA−{a}(R × S )) = σa(σA−{a}(R) × S ),

where a relation S does not contain node labels in A − {a}.
When a = 〈〈X,Y〉〉, a selection operation σa is an amoeba join

AJX,Y that connects nodes X and Y . Hence, this decomposition
technique can be used repeatedly to derive a series of amoeba joins
equivalent to the original query. Figure 11 illustrates query sched-
ules generated by this decomposition. In this example, we have
three amoeba conditions, 〈〈A, B, C〉〉, 〈〈A, B〉〉 and 〈〈A, C〉〉. When we
choose one of the conditions, say 〈〈A, B, C〉〉 (a1), as a decomposi-
tion target, the query schedule becomes like the left-hand schedule
in Figure 11. This schedule effectively reduces the search space
of possible relations by evaluating amoeba conditions a3 and a2 in
earlier steps, thus decreasing the input size of the final AJA,B,C op-
eration. On the other hand, the right-hand schedule evaluates the

condition a1 first, which enumerates all possible structural varia-
tions, and subsequently makes selections with 〈〈A, B〉〉 and 〈〈A, C〉〉.

This translation is equivalent to the so-called pushing-down se-
lection in relational algebra. This technique is also useful in XML
query processing to eliminate instances of irrelevant XML struc-
tures from intermediate query results.

Parent-Child Join Decomposition. Functional dependencies are
frequently observed between parent and child nodes, e.g., task@id
→ task, which imposes 〈〈task@id, task〉〉, and the task node must
be the parent of the task@id node. In this case, we can explicitly
decompose the query using a parent-child join:

C 5.2. Let R and S be input relations, and A be a set
of amoeba conditions. For an amoeba condition a = 〈〈P,C〉〉 ∈ A,
where P is the parent node of C, and when a relation S does not
contain node labels in A − {a}, the following translation holds:

σA(R × S ) = PCP,C(σA−{a}(R) × S ),

where PCP,C denotes the parent-child join, which is a specialized
version of an amoeba join that connects parent nodes P and child
nodes C.

5.2 Minimal Relation
Unlike relational databases that use flat tables, relations in XML

have tree structures. This structural discrepancy often demands an
XML query to involve extra nodes that do not necessarily appear
in the final results. For example, consider a query for a pair of
project and employee nodes from a relation (project, task, employee).
In SQL, simply specifying project and employee labels is sufficient
to produce this query statement. In XML, however, we also have
to include task node label in the query operation, because when a
task node is a root node of the amoeba structure, the project and em-
ployee nodes cannot be connected without the task node. Therefore,
project, task, customer is a minimal relation required to answer this
query.

The algorithm to compute minimal relation for a given list L of
input node labels is simple. Let Fq be a subset of pre-defined FDs
such that each FD in Fq contains some node label appeared in L.
Then, the minimal relation of the node list L is NL(Fq) ∪ L, which
is a list of all node labels that appear in Fq and L. For example,
when L = {project, employee} and a pre-defined set F of FDs is
{task → project, task → employee}, then Fq is identical to F, and
NL(Fq) = {project, task, employee}, which is the minimal relation
of (project, employee). Its query operation is described as follows:

πproject, employee(σC(project × task × employee)) (S 1)

where a condition C = 〈〈project, task, employee〉〉 ∧ 〈〈task, project〉〉 ∧
〈〈task, employee〉〉, which is derived from Fq. This query correctly
locates the minimal relation for the project and employee nodes, and
then the projection eliminates the task node, which is not contained
in the original input. The notion of minimal relations can be utilized
to complement some missing nodes in the query, so the users can
produce queries without considering structural differences between
relational and XML structures. For example, a query statement for
S 1 is simple as follows:

(project, employee) (S 1)
There is a case that some node labels in a query do not appear

in any FDs. This is usual for relational data enhanced with XML
syntax, as explained in Section 2. For example, a minimal relation
of (task list, task, employee) has no additional node, since an only
FD related to this relation is task → employee, but its node labels
are already contained in this relation. This query is evaluated with a
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nested form of amoeba joins using the query translation technique
described in the previous section:

AJtask list, task, employee(
AJtask, employee(task, employee), task list) (S 2)

which first retrieves a relation (task, employee), then finds task list
nodes associated to this relation.

5.3 Database Integration
XML is a tree-structured data, however, a single tree is not suffi-

cient to describe data models of the real world that often should be
described as a graph structure. As we illustrated in Section 2, any
graph-structured data model can be decomposed into several trees
(relations). To integrate several trees into a single XML document,
H. V. Jagadish et al. introduced the notion of colorful XML [12],
which appends a color property to each XML node so that a pro-
jection of each colored tree represents one of the trees decomposed
from a graph-structured data. However, the colorful XML requires
a significant extension of the XML specification [6], and also to
edit multiply colored XML data is quite difficult for standard text
editors or simple script programs.

Our solution to this problem is to store several aspects of the
data model separately in the form of XML data fragments, and to
retrieve them using relational-style XML queries. These query re-
sults are joined using keys defined for XML. This approach does
not require any extension of the XML specification. Figure 12 il-
lustrates this approach. This XML data has some employee data
(left), and associated office and section XML data (right) that wrap
employees:

<employee id="e1">
<name>David</name>

</employee>
<employee id="e2">
<name>Lucy</name>

</employee>

<office location="L.A.">
<employee id="e1"/>
<employee id="e2"/>

</office>

<section id="s1">
<employee id="e1"/>
<employee id="e2"/>

</section>

Figure 12: Employee data (left) and additional information (of-
fice and section) described in two separated trees (right).

These three XML fragments might be placed in the same XML
document, or in different XML files. The colorful XML [12] merges
these three XML fragments into a single tree while tolerating em-
ployee nodes with different colors. This method enables an XML
query processor to traverse name, office and section nodes from an
employee node. Our solution to this problem is much simpler and
leaves the XML data as they are, because a query for employee
names, office and section can be expressed as a join operation of
relations using employee@id values, described as follows:

(employee, name) Zemployee@id (office, employee)

Zemployee@id (section, employee)

Let R, S be relations, and p be a node label for a join target, then
a join operation R Zp S is a selection σR.p=S .p(R × S ). Therefore,
without actually materializing a merged form of XML fragments,
we can integrate the above XML data from the knowledge that em-
poloyee@id values connect three relations; namely, employee@id is
a key (or foreign key) for relations (employee, name), (office, em-
ployee), and (section, employee).

A key is a special case of an FD, and it can be used to uniquely
locate XML nodes. In this example, we have the following key def-
initions for these three relations:

[employee@id]→ employee name for (employee, name)

[employee@id]→ office employee for (office, employee)

[employee@id]→ section employee for (section, employee)

These keys (FDs) mean that an employee@id value is sufficient to
uniquely locate all nodes in each relation (employee, name), (office,
employee) and (section, employee). Buneman et al. have proposed
keys for XML [7], however, their definition cannot handle struc-
tural variations. Our definition of FD allows both the cases that
an office node is a child (descendant) of an employee node, or vice
versa.

Integration of variously structured XML data is also useful for
handling schema evolution. Figure 12 illustrates a process of en-
hancing employee data by appending supplementary information.
Suppose that, first, we have only the employee name data, and
subsequently these employees are assigned to some office and sec-
tion, which is described as the right-hand side XML data in Figure
12. When creating a new database, it is usual that some data are
missing or not available yet. With the capability to query variously
structured XML data, schema evolution of XML databases can be
managed with a simple join operation of several XML data. In ad-
dition, it is flexible to allow various XML structures in designing
new XML data for enhancing existing databases.

Related to database integration, we mention several open prob-
lems that still need further study:

Handling Variations of Tag Names. There may be variations of
tag names in describing the same data model in XML. For example,
an XML tag employee may be named worker in another location. To
handle these variations of tag names, one can use, for example,
a simple mapping function that translates worker into employee or
some dictionary that groups synonym words. In general, however,
we have to consider a more difficult problem, called semantic inte-
gration [4], which needs to resolve semantic heterogeneity of XML
tag names under specific paths.

Semantics of Nested Elements. When XML data has a recursive
structure, its data semantics may be ambiguous. Figure 13 illus-
trates this problem; two name nodes are located under the manager
node. To query a manager name, the amoeba condition 〈〈manager,
name〉〉 cannot be used, since the manager is associated with its cor-
rect name Lucy as well as its employee’s name David unexpectedly.
A solution to this problem is to clarify the data semantics by using
XML namespace e.g., manager:name, employee:name, etc. XML
attributes, such as manager@name, also can be used to avoid the
problem of the semantic ambiguity. Although it is quite easy to
capture the amoeba structure 〈〈manger, manager:name〉〉, the prob-
lem of automatic assignment of these namespace labels remains
open.

<manager>
<info>
<name>Lucy</name>

</info>
<employee>
<name>David</name>

</employee>
</manager>

<manager>
<info>
<manager:name>Lucy</manager:name>

</info>
<employee>
<employee:name>David</employee:name>

</employee>
</manager>

Figure 13: Clarifying semantics of the name tags by using XML
namespace.

5.4 Querying Incomplete Relations
Although the relational-style XML query manages structural vari-

ations of XML data, the user who only has a limited knowledge of
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Figure 14: Query schedule of (employee, name, (active, task)),
which computes incomplete relations, then merges them to fill
blank columns.

the underlying XML structure may fail to retrieve necessary infor-
mation from the XML data. For example, a query for employee
names who are working for active tasks can be described as fol-
lows:

(employee, name, (active, task)),
which has a nested query (active, task) to retrieve task nodes marked
as active. This query has to find a relation (employee, name, active,
task), but there is no matching tree structure for this relation in the
XML data in Figure 6. In reality, many partially matching struc-
tures are available and would provide useful information.

To detect these partial matches, we present a query operation that
collects incomplete relations allowing null values. For example,
the query process of (employee, name, (active, task)) involves node
pairs (4, 6, null, null), (20, null, 17, 18) and (29, null, null, null).
Figure 14 shows these nodes tuples. Then, to fill null values in
these node pairs, we merge employee nodes 4, 20 and 29 by using
equality of the employee@id value “e1”, and generate a node tuple
({4, 20, 29}, 6, 17, 18) as one of the query results. In this query
process, employee@id values work as object IDs of employee nodes.

We extend the definition of the amoeba join to tolerate null val-
ues in the query result:

D 5.3 [AJ∗]. Let NL be a list of node labels, and R
be an input relation, an amoeba join allowing null values, denoted
AJ∗NL(R), generates the same relation with an amoeba join AJNL(R),
except that each result instance in AJ∗NL(R) is allowed to have null
nodes other than the node corresponding a first node label in NL.

The AJ∗ operation has a flavor of the outer join in relational databases,
but is different in that AJ∗ considers structural variations of input
nodes.

Figure 14 illustrates a query schedule of (employee, name, (ac-
tive, task)) that uses AJ∗ operations instead of AJ. First, to merge
employee nodes using employee@id values, this schedule performs
PC-join of these nodes (P1). Then, to retrieve task nodes that are
marked active, we simply compute their amoeba join (P2). Among
the inputs of the query, a pair of employee and task has a struc-
tural constraint imposed by the FD task → employee, so we have
to connect them by using a AJ∗ operation (P3) allowing null values
for the task nodes. In the similar manner, we perform AJ∗ opera-
tion between employee and name to compose a relation (employee,
name) (P4). The upper-right table in Figure 14 shows the interme-
diate query results up to (P4) phase. In (P5), employee nodes that
have the same employee@id values are merged to fill the blank col-
umn in the table, and incomplete rows that still have null values
are eliminated. Finally, using projection π, the query reports only
requested nodes by the user, excluding employee@id column (P5),
and the result is the lower-right table in Figure 14.

5.5 Amoeba Join Processing
The amoeba join processing depends on the capability to detect

an ancestor-descendant relationships of two nodes, because to test
an amoeba condition 〈〈a, b, c〉〉, we need to check one of the nodes
among a, b and c is a common ancestor of the others. If node a is
a common ancestor in the amoeba structure, then the node a is an
ancestor of nodes b and c.

To make faster the detection of ancestor-descendant relation-
ships, we use indexes that label each XML node with an interval
(start, end) [14]. The tree structure of XML is encoded so that ev-
ery interval of an ancestor node subsumes all its descendant nodes,
and all intervals are disjoint. Using this node label, the detec-
tion of the ancestor-descendant relationship becomes a containment
test of two intervals, i.e. a node p is an ancestor of a node q iff
p.start < q.start ∧ q.end < p.end.

The details of the amoeba join algorithm are described in [19],
thus we present its outline. The amoeba join can be processed
efficiently by sorting input nodes in advance in the order of start
values, since the root node of an amoeba always has the smallest
start value. By sweeping the sorted input nodes, the amoeba join
chooses a node p that has the smallest start value as a candidate
of the root node of an amoeba. Then, for each input node list of
the amoeba join except that contains p, it searches the descendant
nodes of p from range between p.start and p.end for the other com-
ponents of the amoeba. After the search, this algorithm enumerates
all amoeba structures rooted by p, therefore, it sweeps the node p
off from the input, then proceed to the next smallest node.

6. EXPERIMENTAL RESULTS
We evaluated the performance of the relational-style XML query

to show the scalability of our method for various sizes of XML data,
and the tolerance to structural variations.

Implementation. We implemented a prototype of our database
management system in C++, which consists of several compo-
nents, such as XML reader, index generator, query processor, etc.
Our implementation of database indexes uses B+-trees provided
by the Berkeley DB library [22]. On top of the B+-tree, we stored
XML nodes labeled with (start, end, level, path ID, text), where the
start and end is the interval labels [14] to efficiently detect ancestor-
descendant relationships, and the level is the depth of a node in the
XML tree, which is required to detect parent-child relationships of
XML nodes. The path ID represents an ID assigned to each distinct
path. The text is a text content encapsulated by tags or attributes.

XML nodes are stored in a B+-tree in ascending order of their
start values. To make node retrieval faster, we also generated a sec-
ondary B+-tree index using a compound key (path ID, start), which
aligns XML nodes first in the order of path IDs, then that of start
values. This secondary index is used to efficiently locate nodes be-
longing to specific paths, e.g. //A, //A/B, etc.

Machine Environment. As a test vehicle, we used a Windows XP
machine; dual Xeon 3.0GHz processors, 2GB memory and 250GB
7,200 rpm HDD.

Experimental Methodology. We run each query six times and
take the average of the last five runs, because OS caches of the
database files are quite different between the first run and the others.
The standard deviation of the query performance is at most 0.02
(3σ = 0.06 seconds) or a far smaller value. It is sufficiently small
to measure differences of the query performance.

Query Performance on XMark. To evaluate the query perfor-
mance on standard XML data, we used XMark [21] benchmark
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program. We have changed its scalability parameter f from 0.1
to 1 to produce various sizes of XML data, which are almost 10M,
25M, 50M and 100M bytes. Figure 15 shows query schedules used
in this experiment (Q1 to Q6S ). This query set is designed so that
the characteristics and scalability of the amoeba join algorithm be-
come clear, so simple path queries and join (Z) operation that can
be processed with the standard techniques are not presented.

The XMark database contains 83 types of tag names. A relation
in XML is a subset of these tag names. To detect FDs in the XMark
data, we created a simple program that investigates one-to-many or
one-to-one relationships that hold in the XMark data. For example,
under the root node “site” in the XMark data, there are many person
nodes, and each person node has many descendant interest nodes.
These relationships correspond to FDs person→ site and interest→
person.

Query Q1 and Q2 are amoeba joins of two nodes that have one-
to-many relationships. Figure 16 shows the performance of these
queries and their result sizes. The performance of Q1 and Q2 scales
in proportion to the XML data sizes.

Here, we present two examples that emphasize the significant
benefit of query optimization. When more than two nodes involved
in the amoeba join operation (Q3), its performance significantly de-
teriorates. Our implementation of the query processor does not use
secondary storages to store intermediate results of a query. The
permutation size of site, person and interest nodes is quite huge,
and consequently the query Q3, which simply computes all possi-
ble tree structures consisting of these nodes, exhausted the main
memory storage, and stopped after an out of memory error was ob-
served. Query Q3F is an optimized query schedule of Q3 using the
pushing-structural constraint technique described in Section 5, and
the amoeba constraints derived from the FDs person→ site and per-
son → interest are pushed into the sub queries. Although both Q3

and Q3F has the same amoeba join operation AJsite, person, site, the
performance of Q3F scales well with increase in XML data sizes.
This is because nested amoeba join queries in Q3F construct appro-
priate tree structures in a bottom-up fashion, and efficiently avoids
irrelevant tree structures. This result indicates that the right-hand
schedule in Figure 11, which first processes an amoeba condition
with more than two nodes, must be avoided. Query Q4 and Q4F are
more complex examples of nested query schedules. To retrieve the
relation (regions, item, mail, date), Q4 considers an FD mail → date
in the path mail/date, so PC-join can be used in this query. How-
ever, the relation (regions, item, mail, date) in the XMark data has
several other FDs as shown in Q4F . Similar to the results of Q3 and
Q3F , computation of Q4 could not be completed in the main mem-
ory, and Q4F , which considers all of these FDs, is scalable to the
database size.

Query Q5 and Q5F show that amoeba join is not always slow; In
XMark data, the mail object is a parent of two child nodes, ’from’
and ’date’, so the amoeba join of these nodes never reports incor-
rect results. In this case, the decomposed schedule Q5F is less ef-
ficient due to the overhead of pipelining. Query Q6, Q6F and Q6S

retrieve nested relations in which each open auction node has cur-
rent price information and several bidders associated with the bid
time and amount of increase data. Query Q6 misses the one-to-
many relationship between open auction and bidder, so Q6F , which
totally decomposes the schedule, becomes efficient. Considering
that two relations (open auction, current) and (bidder, increase, time)
comprise distinct objects, and are connected through an FD bidder
→ open auction, we can produce a more efficient query schedule
Q6S , which reduces the number of sub queries. This type of query
optimization needs to be exploited but is left as a future work.

Tolerance to Structural Variations. To further study the toler-

ance of our method for variously structured XML data, we devel-
oped an XML data generator that produces three types of structural
variations: simple, hierarchical, and random. Figure 17 illustrates
these tree-structures generated from the same input table. The sim-
ple structure converts each row in the table into an XML fragment
organized from the first column data to the last one. A column
value in the input table is described as an XML attribute. The hi-
erarchical structure aggregates column values that have the same
value. For example, all values in the column a are aggregated into
a single tag. This aggregation process is repeated recursively from
column a to c. This type of aggregation is frequently observed in
the real-world XML data. The random structure is generated in
almost the same manner with the hierarchical structure, but it ran-
domly chooses target columns of aggregation, so the random XML
data contains many structural variations. The generated XML data
is a collection of a relation (a, b, c) that satisfies two FDs c → b
and b→ a, representing two one-to-many relationships. The fanout
parameter controls the number of associated nodes in these rela-
tionships. For example, when fanout = 5, each a node has 5 b
nodes, and each b node has 5 c nodes. We programmed this data
generator so that all three types of XML data consist of the same
number of instances of the relation (a, b, c).

Figure 18 shows the query performance of Q7 grouped by var-
ious query result sizes, and next by fanout values. Even in the
presence of structural variations, the query performance between
the simple and random format is stable. This characteristic is suited
for integrating variously structured XML data. When the fanout pa-
rameter is between 2 to 100, the hierarchical data is more efficient
for query processing, because it efficiently aggregates one-to-many
relationships, and thus its database sizes are smaller than those of
the others. However, when the fanout values are 500 and 1000, their
query performance becomes slower. This is because our query pro-
cessor expands the aggregated XML data into node tuples to report
intermediate results, so many duplicate nodes are instantiated. For
example, in Figure 17, a single a node in the hierarchical data is
copied three times to generate intermediate node tuples. This inef-
ficiency can be improved by holding intermediate results as a tree
structure.

Our experiments demonstrate the scalability of our query opti-
mization techniques to process queries of relatively large amount
of results. If value conditions are involved, input data sizes of the
amoeba join will be squeezed, so naive application of the amoeba
join probably works well even for multiple input nodes. It still
needs further study to estimate costs of amoeba join operations for
various input data. Other than this cost estimation methodology,
we can leverage the existing techniques of System R style query
optimization on our XML algebra. In addition, the relational-style
XML query provides independence of query statements from the
underlying XML data structure. This property can be utilized to re-
organize XML data structure for efficient query processing or min-
imizing database sizes. Although it might be possible to use rela-
tional databases as a storage scheme for relations in XML, it must
have capabilities to query and store other XML nodes associated to
relations.

7. RELATED WORK
The use of relational model to query complex structured data, in-

cluding XML, has been studied in [16]. Our approach is unique in
that it allows structural variations of XML data, and utilizes func-
tional dependencies to capture data semantics of XML.

Finding Relations in XML. There have been several studies of
the problem in finding relations in XML; Y. Li et al. [15] attempted
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Relation (Query Expression) FD Query Schedule
Q1 (site, person) person→ site AJsite, person(site, person)
Q2 (person, interest) interest→ person AJperson, interest(person, interest)
Q3 (site, person, interest) AJsite, person, interest(site, person, interest)
Q3F (site, person, interest) interest→ person,

person→ site
AJsite, person, interest(

AJsite, person(site, AJperson, interest(person, interest)))
Q4 (regions, item, mail, date) mail→ date AJregions, item, mail, date(regions, item, PCmail, date(mail, date))
Q4F (regions, item, mail, date) mail→ date, mail→ item,

item→ regions
AJregions, item, mail, date(AJregions, item(regions,
AJitem, mail(item, PCmail, date(mail, date)))

Q5 (mail, from, date) AJmail, date, from(mail, date, from)
Q5F (mail, from, date) mail→ from date AJmail, from, date(AJmail, from(AJmail, date(mail, date), from))
Q6 (open auction, current,

(bidder, increase, time))
AJopen auction, current, bidder, increase, time(

open auction, current, bidder, increase, time)
Q6F (open auction, current,

(bidder, increase, time))
open auction→ current,
bidder→ open auction,
bidder→ increase time

AJopen auction, current, bidder, increase, time(
AJopen auction, current(current,
AJopen auction, bidder(open auction,
AJbidder, increase(increase, AJbidder, time(bidder, time)))))

Q6S (open auction, current,
(bidder, increase, time))

bidder→ open auction AJopen auction, bidder(
AJopen auction, current(open auction, current),
AJbidder, increase, time(bidder, increase, time))

Q7 (a, b, c) c→ b, b→ a AJa, b, c(AJa, b(a, AJb, c(b, c)))

Figure 15: Query schedules for retrieving relations with several FDs in XMark (Q1 to Q6S ) and synthetic data set (Q7).
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<table>
<a value="1">
<b value="1">
<c value="1"/>
</b>
</a>
<a value="1"/>
<b value="2"/>
<c value="2"/>
</b>
</a>
<a value="1">
<b value="2">
<c value="3"/>
</b>
</a>
</table>

<table>
<a value="1">
<b value="1">
<c value="1"/>
</b>
<b value="2">
<c value="2"/>
<c value="3"/>
</b>
</a>
</table>

a b c
1 1 1
1 2 2
1 2 3

<table>
<b value="1">
<c value="1">
<a value="1"/>
</c>
</b>
<b value="2">
<a value="1">
<c value="2"/>
<c value="3"/>
</a>
</b>
</table>

Figure 17: Synthetic XML data of simple (left), hierarchical (cen-
ter) and random (right) structures, generated from the same in-
put table data.
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Figure 18: Query performance of Q7 for variously structured
XML data, which have the same number of relations (a, b, c).
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to extract particular patterns, containing the smallest least common
ancestor (slca) of a given set of XML nodes. The slca, which was
coined in [27], is a least common ancestor (lca) that contains no
other lca nodes among its descendants. This definition of slca is
an attempt to exclude the XML root node from query results. This
is because XML is a single-rooted tree, and thus irrelevant nodes
that never belong to the same relation may be connected through
the root node. However, the slca approach is highly dependent on
the query input. For example, when two unrelated nodes are the
inputs of an slca query, the root node will be wrongly reported as a
query result. The amoeba join [19] successfully avoids such unin-
tentional results, since it does not rely on any additional lca nodes.
However, the cost of enumerating all tree structures is prohibitive
without the knowledge of functional dependencies. Query meth-
ods that retrieve XML structures without using knowledge of the
schema or FDs do return incorrect results. Several such cases were
presented in [23].

Another approach to querying variously structured XML data is
to search the data to the level of ancestor or descendant nodes [2,
10] or nearest neighbor nodes [26]. However, these methods cannot
address all possible tree structures derived from relational data. In
addition, they are optimized for keyword-search queries, and are
thus not suited to rigid database queries.

Functional Dependencies for XML. FDs and keys have been well
studied to find ways of reducing data redundancy and avoiding up-
date anomalies [17]. In recent years, these concepts have been ap-
plied to XML in the form of XML keys [7] and XML FDs [3, 13,
24, 28]. These approaches are based on paths; given sets X and Y of
paths, an FD for XML is defined as X → Y . However, these path-
based definitions of FDs cannot handle XML documents containing
structural variations, which require multiple path expressions.

In summary, previous work on FDs for XML [3, 7, 13, 24, 28] in-
ferred FDs from a path structure of an XML document. In contrast,
our approach that assumes FDs are defined outside the XML data,
and are specified using node names (e.g., tag or attribute names) on
a relation, rather than on paths. Unlike path-based definitions, our
definition of FD allows various XML data expressions, and there-
fore makes the design of XML databases much easier.

8. CONCLUSIONS
The presence of structural variations is a serious problem for the

traditional XML query processors, because path-expression queries
are dependent to the underlying XML tree structures. We overcome
this problem by introducing the relational-style XML query, which
uses the notion of a relation in XML that allows amoeba struc-
tures. In addition, to capture the data semantics implied in the XML
structure, we incorporated the well-known notion of functional de-
pendencies into XML, and devised efficient query processing tech-
niques for retrieving relations satisfying FDs. With these capabil-
ities, we can utilize heterogeneous XML structures to design and
integrate several XML databases. The contributions described in
this paper include:
• The notion of the relation in XML. With this capability, FDs

and keys are smoothly incorporated into XML.
• A class of XML structures, called a tree relation, which can

be used as an XML counterpart of relational tables.
• A departure from path-expression queries. XML structures of

interest are automatically determined from a set of FDs.
• Capability of integrating variously structured XML data.
• Experimental results that confirm the scalability and tolerance

of our query method in the presence of structural variations.

Repeatability Assessment Result
All the results (except Q5 to Q6s) in this paper were verified by
the SIGMOD repeatability committee. Results of query Q5 to Q6s

were added after the submission of the code in order to reflect a
reviewer’s comment. Code and data used in the paper are available
at http://www.sigmod.org/codearchive/sigmod2008/.
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