
XPath: Looking Forward

Dan Olteanu1, Holger Meuss2, Tim Furche1, and François Bry1

1 Insitute for Computer Science, University of Munich, Germany
{olteanu, timfu, bry}@informatik.uni-muenchen.de

2 Center for Information and Language Processing, University of Munich, Germany
meuss@cis.uni-muenchen.de

Abstract. The location path language XPath is of particular impor-
tance for XML applications since it is a core component of many XML
processing standards such as XSLT or XQuery. In this paper, based on
axis symmetry of XPath, equivalences of XPath 1.0 location paths in-
volving reverse axes, such as anc and prec, are established. These equiv-
alences are used as rewriting rules in an algorithm for transforming loca-
tion paths with reverse axes into equivalent reverse-axis-free ones. Loca-
tion paths without reverse axes, as generated by the presented rewriting
algorithm, enable efficient SAX-like streamed data processing of XPath.

1 Introduction

Query languages for XML and semistructured data rely on location paths for
selecting nodes in data items. In particular, XQuery [1] and XSLT [2] are based
on XPath [3]. XPath takes a navigational approach for specifying the nodes
to be selected, described by a large number of navigational axes, e.g. child,
descendant, preceding. The number as well as the relevance of these naviga-
tional axes for querying XML has been challenged in [4,1,5].

The random access to XML data that is enabled by the various navigational
axes of XPath has proven particularly difficult for an efficient stream-based pro-
cessing of XPath queries. Processing of XML has seen the widespread use of the
W3C document object model (DOM) [6], where an in-memory representation
of the entire XML data is used. As DOM has been developed with focus on
document processing in user agents (e.g. browsers), this approach has several
shortcomings for other application areas:

First, a considerable amount of XML applications, in particular data-centric
applications, handle documents too large to be processed in memory. Such doc-
uments are often encountered in natural language processing [7], in biological [8]
and astronomical [9] projects.

Second, the need for progressive processing (also referred to as sequential
processing) of XML has emerged: Stream-based processing generating partial
results as soon as they are available gives rise to a more efficient evaluation in
certain contexts, e.g.:

– For selective dissemination of information (SDI), documents have to be fil-
tered according to complex requirements specified as XPath queries before

A.B. Chaudhri et al. (Eds.): EDBT 2002 Workshops, LNCS 2490, pp. 109–127, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

110 D. Olteanu et al.

being distributed to the subscribers [10,11]. The routing of data to selected
receivers is also becoming increasingly important in the context of web ser-
vice architectures.

– To integrate data over the Internet, in particular from slow sources, it is
desirable to progressively process the input before the full data is retrieved
[12,13].

– As a general processing scheme for XML, several solutions for pipelined
processing have been suggested, where the input is sent through a chain of
processors each of which taking the output of the preceding processor as
input, e.g. Apache Cocoon [14].

– For progressive rendering of large documents, e.g. by means of XSL(T), cf.
Requirement 19 of [5]. There have been attempts to solve this problem [15].

There is a great interest in the identification of a subset of XPath that allows
efficient streamed and progressive processing, cf. [4] and Requirement 19 of [5].

For stream-based processing of XML data, the Simple API for XML (SAX)
[16] has been specified. Of particular concern for progressive SAX-like processing
are the reverse axes of XPath, i.e. those navigational axes (e.g. par, prec) that
select nodes occuring before the context node in document order. A restriction
to forward axes (i.e. axes selecting only nodes after the context node) in location
paths is a straightforward consideration for an efficient stream-based evaluation
of XPath queries [4].

There are three principal options how to evaluate reverse axes in a stream-
based context:

– Storing in memory sufficient information that allows to access past events
when evaluating a reverse axis. This amounts to keeping in memory a (pos-
sibly pruned) DOM representation of the data [15].

– Evaluating an XPath expression in more than one run. With this approach,
it is also necessary to store additional information to be used in successive
runs. This information can be considerably smaller than what is needed in
the first approach.

– Replacing XPath expressions by equivalent ones without reverse axes.

In this paper it is shown that the third approach is possible. It is less time
consuming than the second approach and does not require the in-memory stor-
age of fragments of the input as the first approach does. Hence, XPath can be
evaluated without restriction on the use of reverse axes.

Section 2 specifies the location path language considered in the rest of the
paper. Then, the notion of equivalence between location paths is defined in
Section 3 using a formal model and a denotational semantics for XPath based
on [17,18]. Furthermore, two sets of equivalences with rather different properties
are established. These equivalences are used as rewriting rules in an algorithm,
called “rare”, for transforming absolute XPath location paths with reverse axes
into equivalent reverse-axis-free ones, as presented in Section 4. Two rewritings,
based on the two rule sets, are considered. In Section 5, related work is discussed
and Section 6 concludes the paper.

XPath: Looking Forward 111

<journal>
 <title>databases</title>
 <editor>anna</editor>
 <authors>
 <name>anna</name>
 <name>bob</name>
 </authors>
 <price />
</journal>

root

journal

title editor authors price

"anna""databases"
name name

"anna" "bob"

Fig. 1. Tree and XML data it represents

Due to space limitations, parts of this work have been omitted, most notably
the equivalence proofs. They can be found in the full version [19] of this paper.

2 Preliminaries

In this paper, specificities of XML that are irrelevant to the issue of concern
are left out. Thus, namespaces, comments, processing instructions, attributes,
schema types, and references are not considered. The results given in this paper
extend straightforwardly to unrestricted XML documents.

The root node of a document corresponds to the document node of DOM
and of the XQuery 1.0 and XPath 2.0 Data Model [20] – i.e. it is none of the
document elements. A leaf is an empty element or a text node – cf. Figure 1.

The mathematical model used in this paper is adapted from [17,18]. The
full formal model as well as the denotational semantics can be found in the full
version [19] of this paper. It consists of mathematical functions that can be seen
as (formal specifications of) elementary procedures.

2.1 Location Path Language

The location path language considered in the following is XPath without con-
structs, such as attribute selection and functions, irrelevant to the issue of con-
cern. Note that while functions are not considered in the following sections, the
results almost immediately apply to XPath 1.0 [3] location paths with func-
tions. The only class of functions that needs special treatment are functions for
accessing the context position or size of a node.

For convenience, this language will be referred to as xPath, as defined in
Figure 2. Note that the axes specified in xPath are shorthands of XPath axes.

⊥ is used as a canonical equivalent path to the xPath expressions that select
no nodes whatever the context node and document are, e.g. /par::*.

p1 == p2 expresses node equality based on identity. Thus, if p1 and p2 are
two paths, then p1 == p2 holds if there is a node selected by p1 which is iden-
tical to a node selected by p2. == corresponds to built-in node equality opera-
tor (==) in XPath 2.0 and XQuery 1.0, but it can also be used for comparing

112 D. Olteanu et al.

path ::= path | path | / path | path / path | path [qualif] | axis ::nodetest | ⊥ .

qualif ::= qualif and qualif | qualif or qualif | (qualif) |
path = path | path == path | path .

axis ::= reverse axis | forward axis .

reverse axis ::= par | anc | anc-or-self | prec | prec-sibl .

forward axis ::= self | child | desc | desc-or-self | foll | foll-sibl .

nodetest ::= tagname | * | text() | node() .

Fig. 2. Grammar for xPath

node sets similar to general comparisons in XPath 2.0. As XPath 1.0 has built-
in support only for equality based on node values, the XPath 1.0 expression
count(p1 | p2) < count(p1) + count(p2) can be used for expressing ==.

A path expression will be called a “location path”, or “path” for short. A
qualif expression is a “qualifier” (or condition). Expressions axis::nodetest and
axis::nodetest[qualif] are “location steps”, or “steps”. The length of a location
path is the number of location steps it contains outside and inside qualifiers.
Note that every location path is a qualifier, but the converse is false.

Absolute location paths are recursively defined as follows: A disjunctive path,
i.e. a path of the form p1 | . . . | pi | . . . | pk, is an absolute path if for all
i = 1, . . . , k, pi is an absolute path. A non-disjunctive path is an absolute path
if it is of the form /p, where p is a path. A location path, which is not an absolute
path, is a “relative path”. A step is a “forward step”, if its axis is a forward axis,
or a “reverse step”, if its axis is a reverse axis.

The axes of the following pairs are “symmetrical” of each other: par –
child, anc – desc, desc-or-self – anc-or-self, prec – foll, prec-sibl
– foll-sibl, and (useful in proofs) self – self.

[17] and [18] give a denotational semantics for XPath, which is slightly mod-
ified for our purpose in [19]. The semantics defines a function S that assigns a
set of nodes to a location path and a context node: S�p�x is the set of nodes
selected by p from node x.

3 Location Path Equivalences

A set of simple equivalences is first established. These are then used to prove
equivalences of paths with reverse axes. We distinguish between general equiva-
lences that can be applied to remove any reverse axis, and specific equivalences,
each of them being applicable to a certain case. Making use of the semantics
of xPath given in the full version [19] of this paper, the equivalence of location
paths can be formally defined as follows.

XPath: Looking Forward 113

Definition 1 (Path equivalence). Two location paths p1 and p2 are equiva-
lent, noted p1 ≡ p2, if S�p1� = S�p2�, i.e. if S�p1�x = S�p2�x for all nodes x
(from any document).

Intuitively, two location paths are equivalent if they select the same set of
nodes for every document and every context node in this document.

Lemma 1. Let p, p1, and p2 be location paths, q, q1, and q2 qualifiers, n a node
test, and θ ∈ {==, =}.
1. Right step adjunction: If p1 ≡ p2 and p relative, then p1/p ≡ p2/p.
2. Left step adjunction: If p1 ≡ p2 and p1, p2 relative, then p/p1 ≡ p/p2.
3. Qualifier adjunction: If p1 ≡ p2, then p1[q] ≡ p2[q] and p[p1] ≡ p[p2].
4. Relative/absolute path conversion: If p1 ≡ p2, then /p1 ≡ /p2.
5. Qualifier flattening: p[p1/p2] ≡ p[p1[p2]].
6. anc-or-self decomposition: anc-or-self::n ≡ anc::n | self::n.
7. desc-or-self decomposition: desc-or-self::n ≡ desc::n | self::n.
8. Qualifiers with joins: p[p1 θ /p2] ≡ p[p1[self::node() θ /p2]].

Recall that ⊥ is a location path never selecting any node whatever the context
node and document are. Since the root node has no parents and no siblings, the
following holds:

Lemma 2. Let m and n be node tests, i.e. m and n are tag names or one of
the xPath constructs *, node(), or text().

– Let a be one of the axes par, anc, prec, prec-sibl, self, foll, or
foll-sibl. The following holds:

/a::n ≡
{
/ if a = self, n = node()

⊥ otherwise
(1)

– Let a be the prec or anc axis. The following holds:

/child::m/a::n ≡
{
/self::node()[child::m] if a = anc, n = node()

⊥ otherwise
(2)

/child::m[a::n] ≡
{
/child::m if a = anc, n = node()

⊥ otherwise
(3)

3.1 General Equivalences

The nodes selected by a reverse step within a location path are necessarily de-
scendants of the document root. The following equivalences show how for any
reverse axis only those descendants of the root can be selected that are also
matched by the original reverse step.

114 D. Olteanu et al.

self

de
sc
en
da
nt

navigation in left−hand side

navigation in right−hand side

root node

context node

selected nodes

s

m

s

am

bm

p p

node()

Fig. 3. Tree navigation used in Equivalence (4)

Proposition 1. Let p and s be relative location paths, n and m node tests, am

a reverse axis, an a forward axis, and bm the symmetrical axis of am. Then the
following holds

p[am::m/s] ≡ p[/desc::m[s]/bm::node() == self::node()] (4)

/p/an::n/am::m ≡ /desc::m[bm::n == /p/an::n] (5)

/an::n/am::m ≡ /desc::m[bm::n == /an::n] (5a)

Equivalence (4) shows that it is possible to remove the first step in a location
path within a qualifier. With help of Lemma 1.5 this result is generalized to
reverse steps having an arbitrary position within a qualifier.

Figure 3 illustrates the key idea of Equivalence (4), where solid arrows are
used for the navigation in the left-hand side of the equivalence, and dashed for
the right-hand side: Instead of looking back from the context node specified by
path p for matching a certain node (am::m), one can look forward from the
beginning of the document for matching the node (/desc::m) and then, still
forward, for reaching the initial context node (bm::node()). Hence, e.g. instead
of checking whether the context node specified by path p has a preceding m
(p[prec::m]), one rather looks for an m node and then for a following node
that is identical to the context node:

p[/desc::m/foll::node() == self::node()] .

Equivalence (5) removes the first reverse step from an absolute location path
using the same underlying idea.

Note that the equality occurring in these equivalences is based on node iden-
tity. The equivalent paths might remain expensive to evaluate, but no evaluation
of the am::m reverse step is needed anymore.

XPath: Looking Forward 115

Example 1. Consider the example of Figure 1 and a query asking for all names
that appear before a price. A way to select these nodes is using the following
location path:

/desc::price/prec::name .

By Equivalence (5a), the previous path can be translated into the following
equivalent location path:

/desc::name[foll::price == /desc::price] .

While the initial location path selects all name nodes preceding a price
node, the equivalent location path selects all name nodes, that have a following
price node, if that node is also a descendant of the root. It is obvious, that
there is a considerably simpler equivalent location path (dropping the join),
/desc::name[foll::price]. The need for the join arises, as the location path
selecting the context nodes, relative to which the reverse step is evaluated (in
this case the price nodes), can be arbitrarily complex:

Consider a slightly modified case of the previous one, where only prices that
are inside a journal with a title should be considered. A possible location path
for this query with reverse axis is:

/desc::journal[child::title]/desc::price/prec::name .

Again, by Equivalence (5) this is equivalent to

/desc::name[foll::price == /desc::journal[child::title]/desc::price] .

In this case it is impossible to remove the introduced join. Note that the
join in the first example can be removed by additional equivalence rules for
simplifying location paths, rules that are outside the scope of this paper.

Using the equivalences above, it is possible to replace reverse steps in xPath
expressions. Nonetheless, in the following section specific equivalences for reverse
axes are given, that yield to location paths without joins.

3.2 Specific Equivalences

In this section the interaction of the reverse axes (anc, anc-or-self, par, prec,
and prec-sibl) with forward axes is treated, i.e. equivalences are given, that
(if read as rewriting rules from left to right), depending on the location step Lf

before a reverse location step Lr, either replace the reverse location step Lr or
rewrite the location path into one, where the reverse step Lr is “pushed leftwise”.
For every reverse step the interaction with every forward step is shown.

In general, the equivalences have the following structure

p/Lf/Lr ≡ p′ or p/Lf[Lr] ≡ p′,

116 D. Olteanu et al.

where p is an absolute path, Lf a forward location step, Lr a reverse location
step, and p′ the equivalent location path. Sometimes the equivalences can be
formulated without the leading path p.

Note that interaction with reverse axes, e.g. interaction of par with
prec-sibl, is not necessary to investigate in these equivalences due to the way
our algorithm works (removing reverse steps from left to right of the location
path in question). Also, equivalences involving anc-or-self and desc-or-self
are not necessary since these location steps can be replaced using Equivalences
(1.6) and (1.7).

Some of the following equivalences do still contain reverse steps on the right-
hand side, but these reverse steps are either more on the left of the location path,
or the right-hand side is of a form, where other equivalences can be applied to
fully remove the reverse location steps as elaborated in Section 4.

Parent. The equivalences in the following proposition are divided in two sets.
The first set (Equivalences (6) to (10)) covers the case of par location steps
outside, the second inside a qualifier. Note that there is a strong structural
similarity between the equivalences of the two sets.

Proposition 2 (par axis). Let m and n be node tests and p a location path.
Then the following holds:

desc::n/par::m ≡ desc-or-self::m[child::n] (6)

child::n/par::m ≡ self::m[child::n] (7)

p/self::n/par::m ≡ p[self::n]/par::m (8)

p/foll-sibl::n/par::m ≡ p[foll-sibl::n]/par::m (9)

p/foll::n/par::m ≡ p/foll::m[child::n] (10)

| p/anc-or-self::*[foll-sibl::n]/par::m

desc::n [par::m] ≡ desc-or-self::m/child::n (11)

child::n[par::m] ≡ self::m/child::n (12)

p/self::n[par::m] ≡ p[par::m]/self::n (13)

p/foll-sibl::n[par::m] ≡ p[par::m]/foll-sibl::n (14)

p/foll::n[par::m] ≡ p/foll::m/child::n (15)

| p/anc-or-self::*[par::m]/foll-sibl::n

Example 2. Consider the data of Figure 1. The following location path selects
all editors of journals:

/desc::editor[par::journal].

According to Equivalence (11), this path is equivalent to:

/desc-or-self::journal/child::editor.

XPath: Looking Forward 117

Ancestor. The following proposition gives equivalences that either move an
anc step to the left of a path or remove it completely. Equivalences (16a) and
(21a) are special cases of Equivalences (16) and (21), respectively.

Proposition 3 (anc axis). Let m and n be node tests and p a location path.
Then the following holds:

p/desc::n/anc::m ≡ p[desc::n]/anc::m (16)

| p/desc-or-self::m[desc::n]

/desc::n/anc::m ≡ /desc-or-self::m[desc::n] (16a)

p/child::n/anc::m ≡ p[child::n]/anc-or-self::m (17)

p/self::n/anc::m ≡ p[self::n]/anc::m (18)

p/foll-sibl::n/anc::m ≡ p[foll-sibl::n]/anc::m (19)

p/foll::n/anc::m ≡ p/foll::m[desc::n] (20)

| p/anc-or-self::*[foll-sibl::*/desc-or-self::n]

/anc::m

p/desc::n[anc::m] ≡ p[anc::m]/desc::n (21)

| p/desc-or-self::m/desc::n

/desc::n[anc::m] ≡ /desc-or-self::m/desc::n (21a)

p/child::n[anc::m] ≡ p[anc-or-self::m]/child::n (22)

p/self::n[anc::m] ≡ p[anc::m]/self::n (23)

p/foll-sibl::n[anc::m] ≡ p[anc::m]/foll-sibl::n (24)

p/foll::n[anc::m] ≡ p/foll::m/desc::n (25)

| p/anc-or-self::*[anc::m]

/foll-sibl::*/desc-or-self::n

Preceding-sibling. In the following proposition the prec-sibl axis is treated.
Note that the right-hand side of equivalences for prec-sibl (and prec) contains
more union terms than the other equivalences, since there is no -or-self variant
of these axes.

Proposition 4 (prec-sibl axis). Let m and n be node tests and p a location
path. Then the following holds:

118 D. Olteanu et al.

desc::n/prec-sibl::m ≡ desc::m[foll-sibl::n] (26)

child::n/prec-sibl::m ≡ child::m[foll-sibl::n] (27)

p/self::n/prec-sibl::m ≡ p[self::n]/prec-sibl::m (28)

p/foll-sibl::n/prec-sibl::m ≡ p[self::m/foll-sibl::n] (29)

| p[foll-sibl::n]/prec-sibl::m

| p/foll-sibl::m[foll-sibl::n]

p/foll::n/prec-sibl::m ≡ p/foll::m[foll-sibl::n] (30)

| p/anc-or-self::*[foll-sibl::n]

/prec-sibl::m

| p/anc-or-self::m[foll-sibl::n]

desc::n[prec-sibl::m] ≡ desc::m/foll-sibl::n (31)

child::n[prec-sibl::m] ≡ child::m/foll-sibl::n (32)

p/self::n[prec-sibl::m] ≡ p[self::n]/foll-sibl::m (33)

p/foll-sibl::n[prec-sibl::m] ≡ p[self::m]/foll-sibl::n (34)

| p/foll-sibl::m/foll-sibl::n

| p[prec-sibl::m]/foll-sibl::n

p/foll::n[prec-sibl::m] ≡ p/foll::m/foll-sibl::n (35)

| p/anc-or-self::*[prec-sibl::m]

/foll-sibl::n

| p/anc-or-self::/foll-sibl::n

Preceding. The following proposition describes the interaction of prec with
other axes.

Proposition 5 (prec axis). Let m and n be node tests and p a location path.
Then the following holds:

p/desc::n/prec::m ≡ p[desc::n]/prec::m (36)

| p/child::*[foll-sibl::*/desc-or-self::n]

/desc-or-self::m
/desc::n/prec::m ≡ /desc::m[foll::n] (36a)
p/child::n/prec::m ≡ p[child::n]/prec::m (37)

| p/child::*[foll-sibl::n]/desc-or-self::m

p/self::n/prec::m ≡ p[self::n]/prec::m (38)

p/foll-sibl::n/prec::m ≡ p[foll-sibl::n]/prec::m (39)

| p/foll-sibl::*[foll-sibl::n]/desc-or-self::m

| p[foll-sibl::n]/desc-or-self::m

p/foll::n/prec::m ≡ p[foll::n]/prec::m (40)

| p/foll::m[foll::n]

| p[foll::n]/desc-or-self::m

XPath: Looking Forward 119

p/desc::n[prec::m] ≡ p[prec::m]/desc::n (41)

| p/child::*[desc-or-self::m]

/foll-sibl::*/desc-or-self::n

/desc::n[prec::m] ≡ /desc::m/foll::n (41a)

p/child::n[prec::m] ≡ p[prec::m]/child::n (42)

| p/child::*[desc-or-self::m]/foll-sibl::n

p/self::n[prec::m] ≡ p[prec::m]/self::n (43)

p/foll-sibl::n[prec::m] ≡ p[prec::m]/foll-sibl::n (44)

| p/foll-sibl::*[desc-or-self::m]/foll-sibl::n

| p[desc-or-self::m]/foll-sibl::n

p/foll::n[prec::m] ≡ p[prec::m]/foll::n (45)

| p/foll::m/foll::n

| p[desc-or-self::m]/foll::n

Example 3. Consider the location path

/desc::price/prec::name

of Example (1). With Rule 36a it can be rewritten to

/desc::name[foll::price].

This result is more compact and closer to the original than the result of Exam-
ple (1) using Equivalence (5a).

4 Location Path Rewriting

Each Equivalence (i) p1 ≡ p2 of Section 3 gives rise to a rewriting rule: A path
matching with the left-hand side p1 can be rewritten into a path corresponding
to the right-hand side p2. In the following, Rule (i) denotes the rewriting rule
p1 → p2 induced by Equivalence (i) p1 ≡ p2. The equivalences of Lemma 1
induce rewriting rules, denoted Rules (1.1) to (1.8).

The equivalences of Section 3 are split in two sets of rules for use in a rewriting
algorithm:

1. RuleSet1, containing Rules (1) to (3) and the general Rules (4) to (5a).
2. RuleSet2, containing Rules (1) to (3) and the specific Rules (3) to (42).

A rule can be applied to a location path in the following manner:

Definition 2 (Rule application). Let p be a non-disjunctive location path,
and let pl → pr be a rule either from RuleSet1 or RuleSet2. If p is of the form
pl/p′, then let q denote the path pr/p′. If pl is a relative path and if p is of the
form p1/pl/p2, then let q denote the path p1/pr/p2. In both cases q is called the
result of the application of rule pl → pr to p.

120 D. Olteanu et al.

An algorithm, called “rare” (sketched in Figure 4) for computing a reverse-
axis-free path equivalent to an absolute path is considered below. The input for
the algorithm is restricted to paths without qualifiers containing “RR joins”:

Definition 3 (RR join). An RR join is an XPath expression of the form
p1 θ p2 where θ ∈ {==, =}, and both p1 and p2 are Relative paths such that
at least one of them contains a Reverse step.

For the consideration of termination and correctness of the algorithm, some
important properties of the application of the rewriting rules to a location path
are required:

Lemma 3 (Properties of rule application). Let p be an absolute location
path with no qualifier containing RR joins.

1. If p contains a reverse step, then a rule from RuleSet1 and a rule from
RuleSet2 is applicable to p. Possibly, Rules (1.1) to (1.8) have to be applied
first.

2. The result of a rule application to the first reverse step in p is an absolute
path with no qualifiers containing RR joins.

3. If q is the result of a rule application to p, then p ≡ q.

Proof. (1): Let L be the first reverse location step.
First consider RuleSet1: If L occurs outside a qualifier, Rules (5), (5a) or (1)

to (3) can be applied, since p is an absolute location path. If L occurs as the
first location step inside a qualifier, Rule (4) can be applied. If L appears at any
other position inside a qualifier, Rule (1.5) can be applied in order to construct
a qualifier with L as first location step. Rule (4) can be applied now.

RuleSet2 provides rules for interaction between each reverse step and an
arbitrary forward step s, there is always a rule, that can be applied to the first
reverse step in p.
(2) Only Rules (4), (5), and (5a) introduce a binary relation (namely ==), if they
are applied to a location path. But always one of the operands is an absolute
path. Hence, in any case the result of the rule application contains no RR join.
Furthermore, since p is an absolute path, the result of applying a rule to p is
also an absolute path.
(3) This holds due to Lemma 1.1−4.

“rare” Algorithm. The “rare” Algorithm, outlined in Figure 4, can be used
for RuleSet1 as well as for RuleSet2. The algorithm takes as input a location
path which is absolute, since some rules from RuleSet1 and RuleSet2 are only
applicable to absolute location paths.

Theorem 1 (Removal of reverse location steps using RuleSet1). Let
p be an absolute path without qualifiers in which RR joins occur. There exists
an absolute path p′ with no reverse steps such that p ≡ p′. Using “rare” and
RuleSet1, this path p′ has a length and can be computed in a time linear in the
length of p.

XPath: Looking Forward 121

Let ξ = RuleSet1 or RuleSet2.

Auxiliary functions:

match(p): returns the result of a rule application from ξ to the first reverse location
step in p.

apply-lemmas(p): returns p if Rules (1.1-8) are not applicable to p. Otherwise, it re-
turns the result of the repeated application of Rules (1.1-8) to p.

union-flattening(p): returns a path equivalent to p with unions at top level only.

rare(p)
Input: p {absolute location path without qualifiers containing RR joins}.

p← apply-lemmas(p).
p← union-flattening(p) = U1 | . . . | Un (n ≥ 1).
S ← empty stack.
for i← 1 to n do
push(Ui, S).

end for
p′ ←⊥. {initialization}
while not(empty(S)) do

U ← pop(S).
while U contains a reverse step do

U ← match(U).
U ← apply-lemmas(U).
U ← union-flattening(U) = V1 | . . . | Vn (n ≥ 1).
for i← 2 to n do
push(Vi, S).

end for
U ← V1.

end while
p′ ← p′ | U .

end while
Output: p′ {location path without reverse axes equivalent to p}.

Fig. 4. Algorithm rare (reverse axis removal)

Proof. A path equivalent to p is constructed as sketched in Figure 4. All reverse
location steps are rewritten, one after another. Lemma 3 guarantees that a rule
of RuleSet1 can be applied to any path containing a reverse location step. The
resulting path p′ contains no reverse location steps and is equivalent to p.

The location path p′ is of linear size and constructed in linear time, since each
rule application removes one reverse step, adds at most two forward location
steps and no reverse ones.

Theorem 2 (Removal of reverse location steps using RuleSet2). Let p
be an absolute path with no qualifiers in which RR joins occur. There exists
an absolute path p′ with no reverse steps such that p ≡ p′. Using “rare” and

122 D. Olteanu et al.

RuleSet2, this path p′ has a length and can be computed in a time exponential in
the length of p.

Proof. An application of a rule from RuleSet2 can have three different result
types:

1. removes completely a reverse step, e.g. Rules (1) to (3)) or (6);
2. pushes the reverse step from right to left in the path, e.g. Rule (8);
3. for the interaction between a foll and a reverse step Lr, i.e. foll::n/Lr or

foll::n[Lr], a union of several other paths is obtained, e.g. Rule (10); the
resulting union terms have reverse steps at positions less than or equal in
the original path and they do not contain anymore the interaction between
the initial foll step and a reverse step.

Since the path has a finite length, the procedure of pushing reverse steps leftwise
terminates. Also, the number of interactions between foll and reverse steps is
finite. Hence, the algorithm terminates.

Each rule application having the first result type removes a reverse step and
does not change the number of union terms. Hence, in the best case, i.e. using
only rule applications with the first result type, the algorithm has a linear time
complexity in the length of the input path p.

The last two result types are significant for the worst-case complexity of the
algorithm, since each rule application can produce intermediate rewritten paths
with more than one union term (up to three union terms). Hence, each rule
application can increase the order of the input for the next rule application,
yielding an exponential time complexity in the length of the input path p.

Example runs of the algorithm for both set of rules are presented in Figure 5.

Comparison. Both RuleSet1 and RuleSet2 have advantages and it is still an
open issue which one is preferable. The path rewriting using RuleSet2 has in
the worst case an exponential time complexity and output size in the length of
the input location path. As location paths are in practice small (less than ten
steps), the exponential worst-case complexity of RuleSet2 does not necessarily
generate longer paths than RuleSet1. In addition, since they do not contain
joins, the location paths generated using RuleSet2 are simpler (as can be seen in
the examples), hence more convenient to evaluate, than those generated using
RuleSet1, which contain the same number of joins as there are reverse steps in
the input location path.

For further comparison, practical tests of the rewritten location paths, as
generated by the two rule sets, have been performed using a Java prototype of
a streamed XPath processor [21] against the Mondial geographical database
[22], a highly structured XML document of comparatively small size.

Three types of location paths with reverse steps have been considered for
comparing the efficiency of the rule sets:

Q1: simple location paths without qualifiers, e.g.

/desc::name/anc::country .

XPath: Looking Forward 123

Consider the example of Figure 1 and a query asking for all titles that appear before a name and
are inside journals. This query can be expressed as the following location path:

/desc::name/prec::title[anc::journal]

Note that p is an absolute path without qualifiers containing RR-joins.

RuleSet1

Step 1: p← apply-lemmas(p) = p.
Step 2: U1 ← /desc::name/prec::title[anc::journal].
Step 3: push(U1, S).
Step 4: p′ ←⊥, U ← pop(S).
Step 5: U contains a reverse step (prec::title).
Step 6: U ← match(U) =

/desc::title[anc::journal]
[foll::name == /desc::name] {Rule (5)}

Step 7: U ← apply-lemmas(U) = U .
Step 8: U contains a reverse step (anc::journal).
Step 9: U ← match(U) =

/desc::title[/desc::journal/desc::node() == self::node()]
[foll::name == /desc::name]. {Rule (4)}

Step 10: U ← apply-lemmas(U) = U .
Step 11: U does not contain reverse steps.
Step 12: p′ ← U , S is empty.

Output: p = /desc::title[/desc::journal/desc::node() == self::node()]
[foll::name == /desc::name].

RuleSet2

Step 1: p← apply-lemmas(p) = p.
Step 2: U1 ← /desc::name/prec::title[anc::journal].
Step 3: push(U1, S).
Step 4: p′ ←⊥, U ← pop(S).
Step 5: U contains a reverse step (prec::title).
Step 6: U ← match(U) =

/desc-or-self::title[foll::name][anc::journal] {Rule (36a)}
Step 7: U ← apply-lemmas(U) = /desc::title[foll::name][anc::journal]

| /self::title[foll::name][anc::journal].
Step 8: U contains a reverse step (anc::journal).
Step 9: U ← match(U) =

/desc::title[foll::name][anc::journal] | ⊥. {Rules (1) to (3)}
Step 10: U contains a reverse step (anc::journal).
Step 11: U ← match(U) =

/desc::journal/desc::title[foll::name]. {Rule (21a)}
Step 12: U ← apply-lemmas(U) = U .
Step 13: U does not contain reverse steps.
Step 14: p′ ← U , S is empty.

Output: p′ = /desc::journal/desc::title[foll::name].

Fig. 5. Example runs of rare algorithm

Q2: location paths with a single qualifier, e.g.

/desc::name/par::city[anc::country] .

Q3: complex location paths with several qualifiers, potentially rewritten by the
second RuleSet2 to location paths with exponential size, e.g.

/desc::province[par::country]/child::city[anc::mondial] .

124 D. Olteanu et al.

The queries are rewritten using RuleSet1 and RuleSet2 respectively. Figure 6
shows the results of processing the given queries against the Mondial database
on a Pentium III 1 GHz, 512 MB system running SuSE Linux 7.3.

Mondial (1.2 MB)

se
c

nr. elems.: 24,184
maximum depth: 5

Q1 Q2 Q3

RuleSet1

RuleSet2

2

2.5

3

Fig. 6. Experimental evaluation of the rule sets

The results show that the two rule sets are very competitive for all three types
of queries. As expected, RuleSet2 generating simpler rewritten queries performs
slightly better than RuleSet1.

Rewriting location paths using variables. There are two classes of location paths
not covered by the rules given so far: relative location paths and location paths
with RR joins (cf. Definition 3), e.g. p[self::* = prec::*]. Any attempt to
remove the reverse location steps in these cases results in losing the context given
by p.

In the full version [19] of this paper an approach is proposed to solve this
problem by remembering the context in a variable. It is based on a for-return
construct for variable binding, as provided by XPath 2.0, XQuery, and XSLT. Us-
ing this approach every location path can be rewritten to an equivalent reverse-
axis-free one.

5 Related Work

Several methods have been proposed for rewriting XPath expressions taking
integrity constraints or schemas into account [23,24], and the equivalence and
containment problems for XPath expressions have been investigated [25,26]. Fur-
thermore, a growing interest in query optimization for XML databases, includ-
ing optimization of XPath expressions, recently emerged. To the best of our
knowledge, however, no other approach has been proposed for removing reverse
steps from XPath expressions relying upon XPath symmetry. Note that using

XPath: Looking Forward 125

equivalence preserving rewriting rules for removing reverse steps from XPath
expressions, as it is proposed in the present paper, is not closely related to the
general equivalence problem for XPath expressions.

In [27] redundancies in XPath expressions based on a “model-oriented”
approach are investigated. Such an approach relies on an abstract model of
XPath that views XPath expressions as tree patterns. [27] shows that redundant
branches of a tree pattern can be eliminated in polynomial time. Tree patterns
are more abstract than XPath expressions in a way which is relevant to the work
described in the present paper: A same tree pattern represents multiple equiva-
lent XPath expressions. In particular, the symmetries in XPath exploited in the
present paper are absent from tree patterns. Tree patterns do not consider the
document order and therefore the concept of forward and reverse steps. In some
sense the present work shows in which cases this simplified view upon an XPath
expression can be justified.

Stream-based query processing has gained considerable interest in the past
few years, e.g. due to its application in data integration [13,12] and in publish-
subscribe architectures [11,10]. They all consider a navigational approach (XML-
QL or XPath) consisting of a restricted subset of forward axes from XPath. This
fact contrasts with the present work, which enables the use of the unrestricted
set of XPath axes in a stream-based context.

6 Conclusion

The main result of this paper consists in two rule sets, RuleSet1 and RuleSet2,
used in an algorithm for transforming XPath 1.0 expressions containing reverse
axes into reverse-axis-free equivalents. Both RuleSet1 and RuleSet2 have advan-
tages and it is still an open issue which one is preferable. The location paths
generated using RuleSet2 do not contain joins, in contrast with those generated
using RuleSet1, which contain the same number of joins as there are reverse steps
in the input location path. However, the path rewriting using RuleSet2 has an
exponential complexity in the length of the input location path, in contrast with
rewriting using RuleSet1 which has only a linear complexity. Preliminary ex-
perimental results show that the rewritten queries generated by RuleSet2 are
evaluated slightly faster than those generated by RuleSet1.

Closely related to the comparison of RuleSet1 and RuleSet2 we plan to in-
vestigate the notion of “minimality” or “simplicity” of XPath expressions. We
are focusing on defining a notion of a minimal XPath expression that can be
evaluated more efficiently in a stream-based context than its equivalents. A no-
tion of minimality will allow for well-founded optimization techniques for XPath
expressions.

The equivalences proposed in this paper are drawn from and represent prereq-
uisites for an efficient streamed evaluation of unrestricted XPath, as considered
in [21].

126 D. Olteanu et al.

References

[1] W3C, “XQuery 1.0: An XML query language,” W3C Working Draft, 2002.

[2] W3C, “XSL Transformations (XSLT) Version 1.0,” W3C Recommendation, 1999.

[3] W3C, “XML Path Language (XPath) Version 1.0,” W3C Recommendation, 1999.

[4] A. Desai, “Introduction to Sequential XPath,” in Proc. of IDEAlliance XML
Conference, 2001.

[5] W3C, “XSL Transformations (XSLT) Version 2.0,” W3C Working Draft, 2002.

[6] W3C, “Document Object Model (DOM) Level 2 Core Specification,” W3C Rec-
ommendation, 2000.

[7] N. Ide, P. Bonhomme, and L. Romary, “XCES: An XML-based standard for lin-
guistic corpora,” in Proc. of the Second Annual Conference on Language Resources
and Evaluation, 2000.

[8] F. Bry and P. Kr ger, “A Computational Biology Database Digest: Data, Data
Analysis, and Data Management,” Tech. Rep. PMS-FB-2002-8, University of
Munich, 2002.

[9] “Astronomical Data Center,” homepage http://adc.gsfc.nasa.gov.

[10] C. Chan, P. Felber, M. Garofalakis, and R. Rastogi, “Efficient Filtering of XML
Documents with XPath Expressions,” in Proc. of International Conference on
Data Engineering (ICDE), 2002.

[11] M. Altinel and M. Franklin, “Efficient Filtering of XML Documents for Selec-
tive Dissemination of Information,” in Proc. of 26th Conference on Very Large
Databases (VLDB), 2000.

[12] A. Levy, Z. Ives, and D. Weld, “Efficient Evaluation of Regular Path Expressions
on Streaming XML Data,” Tech. Rep., University of Washington, 2000.

[13] T. J. Green, M. Onizuka, and D. Suciu, “Processing XML Streams with Deter-
ministic Automata and Stream Indexes,” Tech. Rep., University of Washington,
2001.

[14] Apache Project, “Cocoon 2.0: XML publishing framework,” available at
http://xml.apache.org/cocoon/index.html.

[15] Apache Project, “Xalan-Java Version 2.2,” available at
http://xml.apache.org/xalan-j/index.html.

[16] D. Megginson, “SAX: The Simple API for XML,” 1998.

[17] P. Wadler, “A formal semantics of patterns in XSLT,” in Proc. of Conference on
Markup Technologies, 1999.

[18] P. Wadler, “Two semantics of XPath,” Tech. Rep., 2000.

[19] D. Olteanu, H. Meuss, T. Furche, and F. Bry, “XPath: Looking Forward,” Tech.
Rep. PMS-FB-2001-17, University of Munich, 2001.

[20] W3C, “XQuery 1.0 and XPath 2.0 data model,” W3C Working Draft, 2001.

[21] “XPath Evaluation Project,” University of Munich, homepage
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html.

[22] W. May, “Information Extraction and Integration with Florid: The Mondial
Case Study,” Tech. Rep. 131, University of Freiburg, Institut for Computer Sci-
ence, 1999, available at www.informatik.uni-freiburg.de/˜may/Mondial/.

http://adc.gsfc.nasa.gov
http://xml.apache.org/cocoon/index.html
http://xml.apache.org/xalan-j/index.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
www.informatik.uni-freiburg.de/~may/Mondial/

XPath: Looking Forward 127

[23] K. Boehm, K. Gayer, T. Oezsu, and K. Aberer, “Query Optimization for Struc-
tured Documents Based on Knowledge on the Document Type Definition,” in
Proc. of the Advances in Digital Libraries Conference, 1998.

[24] P. T. Wood, “Optimising Web Queries Using Document Type Definitions,” in 2nd
ACM Workshop on Web Information and Data Management (WIDM’99), 1999.

[25] A. Deutsch and V. Tannen, “Containment for Classes of XPath Expressions Under
Integrity Constraints,” in Knowledge Representation meets Databases (KRDB),
2001.

[26] P. T. Wood, “On the Equivalence of XML Patterns,” in Proc. 6th Int. Conf. on
Rules and Objects in Databases (DOOD), 2000.

[27] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava,
“Minimization of Tree Pattern Queries,” in SIGMOD, 2001.

	Introduction
	Preliminaries
	Location Path Language

	Location Path Equivalences
	General Equivalences
	Specific Equivalences

	Location Path Rewriting
	Related Work
	Conclusion

