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Abstract

While using an algebra that acts on sets of variable bindings for evaluating
XML queries, the problem of constructing XML from these bindings arises. One
approach is to define a powerful operator that is able to perform a complex con-
struction of a representation of the XML result document. The drawback is that
such an operator in its generality is hard to implement and disables algebraic op-
timization since it has to be executed last in the plan. Therefore we suggest to
construct XML documents by special query execution plans called construction
plans built from simple, easy to implement and efficient operators.

The paper proposes four simple algebraic operators needed for XML docu-
ment construction. Further, we introduce an optimizing translation algorithm
of construction clauses into algebraic expressions and briefly point out algebraic
optimizations enabled by our approach.

Keywords: XML, database management systems, algebraic query evaluation,
query optimization



1 Introduction

The success of the eXtensible Markup Language (XML) [5] as a representation format
for Web data has motivated a lot of current research work targeting the development
of efficient methods for the management of XML data. Quite an active subarea is the
development of declarative XML query languages and the efficient evaluation.

There are numerous proposals for XML query languages [3, 7, 8, 11, 21, 24, 25]. The
most well-known query languages are XML-QL [11], Lorel [3], YATL [8], XQL [25] and
XQuery [7]. Most of the cited candidates structure a query into three parts: a binding
(or pattern) clause, a filter clause and a constructor clause. The binding clauses provide
path or tree patterns that are matched against a given set of XML documents. Every
match results in bindings for a given set of (named) variables. Thus the result of a single
match can be seen as a tuple that is not necessarily in first normal form. The result
of the binding clause is a bag or set of sets of variable bindings, i.e. a relation. Out
of these variable bindings some are selected by means of a filter predicate given in the
filter clause. Finally, the constructor clause specifies how the remaining variable bind-
ings are transformed back into XML data. The specification of the constructor clause
differs slightly among the different query languages. For example, YATL utilizes a tree
structured specification and in XML-QL and XQuery XML templates with embedded
subqueries are used.

The development of declarative XML query languages has motivated research con-
cerning the evaluation of XML queries [4, 8, 20, 22, 28]. Lorel queries are evaluated by
an extended relational algebra [22] and the evaluation of YATL queries is based on an
object algebra [8]. Since both approaches propose the management of variable bindings
in table structures, the final step of query evaluation is the construction of XML data
from relational data according to the given construction specification. This problem
not only arises while evaluating declarative XML query languages against XML data
[8, 22] but also while managing XML data in relational or object relational databases
[27, 29, 6, 13]. The construction specifications of the query languages provide a variety
of constructs like nested queries, skolem functions and explicit grouping operations to
achieve high restructuring capabilities. In any case, the grouping of variable bindings
becomes the most important issue in constructing the resulting XML data.

As we will see, a result construction may require a combination of several grouping
operations which may have to be combined in different ways. We distinguish two different
combination types, the serial and the parallel combination of grouping operations. A
serial combination of two grouping operations is given if the second grouping operation
is performed on the result of the first grouping operation. A parallel combination of two
grouping operations applies them independently on the same input.

Another important issue of XML result construction is the format of the resulting
XML data. Usually the XML result construction produces a text file [1, 2]. If it is
consumed by an XML processing application program, this produces a considerable
overhead of file creation and parsing. This overhead can be avoided by transferring
the XML result directly to the application program via an application programming
interface (API) such as the Document Object Model (DOM) [12] or the Simple API
for XML (SAX) [23]. In [18] it is shown how a result of an SQL query can be passed



to an XML application via the DOM or the SAX interface without creating an XML
document. Our approach goes a step further by pushing the calling of the DOM and
the SAX functions inside the query engine.

In this paper we propose the construction of XML data from variable bindings by
special query execution plans called construction plans. These are built from simple, easy
to implement algebraic operators which are designed to support different XML result
formats. By introducing construction plans we transform the optimization of the result
construction into the problem of optimizing algebraic expressions. Hence, we are able
to apply well-known optimization techniques for order optimization [28]. We also give
an algorithm that compiles a declarative construction specification into a construction
plan.

Summarized, our contributions are as follows:

e Special grouping operation primitives well suitable for implementation in a physical
algebra are introduced.

e A result construction approach that supports various XML output formats is de-
veloped.

e An optimized translation procedure from construction clauses into the algebra is
specified.

e Sample optimizations on the resulting plan are given.

Due to space restrictions we only give some optimizations that can be derived on XML
construction without considering the process of binding generation.

1.1 Related Work

There has been a lot of work developing special algebras for the evaluation of XML
queries [4, 8, 22] and for their optimization [4, 20]. The YATL algebra [8] introduces
a Bind operator for the creation of variable bindings and a Tree operator [8, 10] for
the result construction. The Tree operator creates XML data according to a given tree
structured construction specification. The difference to our approach is that the Tree
operator is quite complex which makes it hard to implement. Moreover optimizations
are not possible as the Tree operator is always executed last in the plan. The description
of the evaluation of Lorel queries [22] does not include the result construction.

In contrast to the algebras described in [8, 22], the SAL query algebra [4] performs the
whole query evaluation on graph structured XML data. This means variable bindings
are not maintained explicitly. So the result of a SAL expression is always XML and a
special result construction is not needed.

There are strong relations between our work and the construction of XML data from
relational or object relational data [27]. The cited work concentrates on managing XML
data within non-XML database systems. The problem of converting relational or object-
relational data is done outside the database management system, which results in severe
inefficiencies [26].



A recent paper that thoroughly investigates several approaches to construct XML
data out of relational data is described in [26]. For the specification of XML data con-
struction nested SQL queries with user-defined functions are suggested. The proposed
evaluation works in two steps. The first step is the content creation, that means the
creation of a relation that holds the data for the XML document. For the efficient
content creation nested queries are de-correlated. To avoid data redundancy caused by
multi-valued dependencies, an outer union operator is introduced. The second step is
the construction of XML data from the relational content. Opposed to our approach,
this is not done by the application of algebraic operators. So there is no way of optimiz-
ing the so-called tagging process by algebraic rewriting. Another major difference to our
approach is that the result of a query is still a relation. Therein, attributes hold XML
data as (large) strings. As the authors of [26] point out, this is a severe performance
problem. In contrast we suppose that the XML result is created as a “side effect”, which
provides more flexibility for algebraic optimizations.

1.2 Outline

The remainder of this paper is structured as follows. To illustrate the problem of con-
structing XML from variable bindings, we start by giving some YATL queries [8]. In
section 3 we describe the algebraic result construction by introducing several construc-
tion operators and giving some construction plans for the example queries. We continue
by describing an algorithm that translates a result construction specification into a con-
struction plan. Based on this algorithm, we investigate techniques for the optimization
of construction plans in section 5. Section 6 provides some preliminary performance
results. Finally, section 7 concludes the paper.

2 Result Construction in XML Query Languages

In this section we review the construction specification in declarative XML query lan-
guages. As a representative XML query language we have chosen YATL, but the results
of the paper apply to any other XML query language which allows to construct XML
data. Indeed, we use it in Natix, a native XML database system [17], to evaluate NQL
(Natix Query Language) queries. Since we only give a very brief introduction to YATL,
we refer to [8] for a detailed description.

We discuss result construction by means of three examples. The first example con-
tains a very simple result construction, the second illustrates serial grouping, and the
third parallel grouping. These examples will be used throughout the rest of the paper.

To simplify the exposition we have restricted ourselves to a subset of the YATL
query language. The restriction includes that we consider neither subqueries in the
construction clause nor list-valued variable bindings.

Our examples will be based on the example Document Type Definition(DTD) shown
in Figure 1. It describes a simplification of the bibliographic entries that can be found
in the TOC_OUT file available on the DBLP server [19]. A bibliographic entry contains
certain informations like the type of the publication, authors, title and so on. We con-



<!ELEMENT bib

(conference| journal)*>
<!ELEMENT conference

(title,year,article+)>
<!ELEMENT journal

(title,volume,no?,article+)
<!ELEMENT article (title,author+)>
<!ELEMENT author (last,first)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>

Figure 1: DTD that specifies the structure of bibliographic entries on the DBLP server.

sider two publication types: conference proceedings and journals. Hence, the content of
the <bib> element is built by <conference> and <journal> elements. A <conference>
element contains the conference name, the conference year and one or more <article>
elements. Each <article> element consists of the article title and the article authors.
A <journal> element consists of the journal name, the publication year, the volume
and one or more <article> elements. Additionally it contains an optional journal num-
ber. For the example queries we assume that the XML data is located at the URL
a.b.c/ley.xml.
Our first example query is:

Query 1

MAKE
result
[ *conference
[ title[$t],
year([$y] 1 ]
MATCH "a.b.c/ley.xml" WITH
bib
[ *conference
[ year[$y],
title[$t] 1 1
WHERE $y > 1991

A YATL query consists of a MAKE, a MATCH and a WHERE clause. The MATCH
clause creates variable bindings by performing pattern matching. Hence, it contains a
textual representation of a tree pattern with labeled nodes and edges. The node labels
are build by XML elements (denoted by the element label), XML attributes (denoted
by ’@’) and variables (denoted by a ’'$’). If a subpattern should occur several times the
incident edge is labeled with a ’*’.

The tree pattern of the MATCH clause describes a <bib> element that contains
several <conference> elements. The content of the <conference> elements is built by



<title> and a <year> element. By matching the pattern with the XML data stored
in a.b.c/ley.xml, the MATCH clause creates bindings for the variables $t and $y for
each <conference> element. $t is bound to the conference title and $y is bound to the
conference year.

Each matching results in a tuple [$y,$t]. These tuples are filtered by the WHERE
clause according to the given predicate that selects those tuples with a $y value greater
then 1991.

The MAKE clause of a YATL query converts the tuples into XML data. In our
example query it creates a <result> element that contains a <conference> element for
each filtered tuple.

In contrast to the MAKE clause of Query 1 that describes only simple structuring, the
construction specification of Query 2 imposes a complex nesting of the variable bindings.
Therefore it exhibits a serial combination of two grouping operations. This means
the variable bindings are grouped by the first operation and each resulting partition is
grouped by the second operation.

Query 2

MAKE
result
[ *($j) journal
[ name[$j],
*($t)article
[ title[$t],
*author[$a] 1 ] 1
MATCH "a.b.c/ley.xml" WITH
bib
[ *journal
[ title[$j]1,
article
[ title[$t],
author[$al] 1 ] ]

The MATCH clause of the query scans for <journal> elements and creates a tuple
[$j,$t,%al for each author of a journal article, where $j is bound to the journal name,
$t is bound to the article title and $a to the author.

The MAKE clause creates a <result> element that contains a <journal> element
for each different journal name. Therefore the variable bindings have to be grouped
according to the $j attribute. So the pattern of the MAKE clause contains an edge
incident from the <result> node that is labeled with the skolem function *($j). The
content of the <journal> consists of the journal name and an <article> element for each
different binding of the variable $t. Therefore the pattern contains an edge incident from
the <journal> node labeled with the skolem function *($t) that describes a grouping
of the variable bindings according to the article title.

The construction specification of Query 3 exhibits a parallel combination of two
grouping operations. That means the variable bindings are independently grouped ac-



cording to the first operation and the second operation. Hence, the construction spec-
ification contains two edges labeled with a skolem function (*($a),*($t)), where the
edges belong to different paths leading from the root to a leaf.

Query 3

MAKE
result
[ *($c)conference
[ title[$c],
authorlist
[ *x($a)author[$al 1,
articlelist
[ *($t)article[$t] 1 1 1]
MATCH "a.b.c/bib.xml" WITH
bib
[ *conference
[ title[$c],
article
[ title[$t],
author[$a] 1 1 ]

The MATCH clause of the query creates a tuple [$c,$t,$a] for each author, where
$c is bound to the conference title, $t to the article title and $a to the author.

The MAKE clause creates a <result> element that contains a <conference> ele-
ment for each conference. It contains the conference title, an <authorlist> and an
<articlelist> element. The <authorlist> element contains an <author> element for
each author who published an article on the regarded conference. The content of the
<articlelist> is a list of <article> elements that contains the title of the represented
article.

3 Construction Operators

For the algebraic result construction we introduce four new construction operators. Most
of their functionality results from an interaction between the operators that differs from
conventional query execution plans [14, 15]. Here, assuming the iterator principle for
operator implementation, the operators interact via Open, GetNext and Close opera-
tions. The iterator principle is depicted in figure 2(a). The dashed arrows represent
the operation calls to an operator issued by its consumer and the operation calls issued
by the operator to its producers. The solid arrows represent the operator’s input and
output tuple streams.

In this section we first give the main design goals before we introduce the operators
by giving an informal description. Further, we give several example construction plans
to illustrate the application of our construction operators.
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Figure 2: Interfaces of the construction operators.

3.1 Design Goals

The output format of an XML query varies. For example if the result of a query is
stored in a document the query should create a textual representation. In contrast to
that, a DOM tree or sequence of SAX callback function calls might be appropriate, if a
query result is directly passed to an application program.

Therefore, one main design goal of the construction operators was a great flexibil-
ity concerning the output format. To meet this requirement, our operators construct
the result applying construction functions. These functions can either be simple print
statements or XML API function calls. By exchanging the construction functions in a
construction plan the output format can be changed without altering the plan struc-
ture. The results of the construction functions is not added to the output tuples of
construction operators. Hence, applying the construction functions results in an XML
construction by “side effect”.

The advantages are twofold. First, the constructed XML data does not interfere
with the algebraic optimization. In [26] it is shown that adding the XML data as a
string attribute to the output tuples of the construction operators has a considerable
performance impact. Hence a query processor has find a query plan that minimizes the
costs of such string attributes. A good heuristic is to perform the XML data creation
last in plan, but this seems to be a severe restriction on query optimization.

Second, the greater flexibility concerning the output format makes it possible to
choose an optimal way to pass the XML data result to the application. We will show
how the query evaluation time can be reduced by passing the XML result via SAX
callback functions.

The second main design goal was to provide a powerful mechanism for the com-
bination of grouping operations. Conventional grouping operations [14, 15, 16] are a
combination of partitioning and application of aggregate functions. Hence, each parti-
tion is mapped to a single tuple that holds the results of the aggregate functions. A
regrouping of the partitions is not possible. That means conventional grouping oper-
ations cannot be serially combined. So we have separated the partitioning from the



aggregate function. By extending the operator interaction this can be done without
creating non-first normal form relations.

Considering the above ideas we suggest the operators FL-Map, BA-Map, GroupAp-
ply and Groupify for algebraic result construction. But before we start the operator
description we give a brief introduction to the construction functions used for result
construction.

3.2 Construction Functions

We consider three types of construction functions, print statements, DOM and SAX
function, where the print statements simply create a textual representation of an XML
document that can be stored as an XML document.

By applying DOM functions query evaluation results in a main memory represen-
tation of an XML document. The Document Object Model is a W3C recommendation
that defines how to access and update the content, structure and style of documents.
Therefore it provides a set of objects for representing hierarchical documents. Objects
that represent a document build a treelike structure, called DOM tree. Usually a DOM
tree is created by a DOM parser.

SAX is an event-based API for parsing XML documents. That means a SAX con-
forming parser reports events such as start and end of elements to the application via
callback functions while scanning an XML document. The advantage of SAX over the
DOM approach is that no main memory structure is built that holds a complete XML
document. For the result construction it means that even large query results can be
efficiently passed to an XML application.

3.3 The Map Operators

The purpose of the Map operators is the application of construction functions on tuple
sets. To achieve a greater flexibility, we extend the Map operator known from the OO
context [9]. Concerning an input relation we distinguish several possibilities of applying
construction functions. Think of an input relation that builds the content of an XML
element. So we need a construction function that creates the open tag of the element
before the tuples are converted by a second construction function that transforms each
tuple of the input relation to an XML fragment. For the creation of the closing tag we
need a third construction function.

For applying construction functions on relations we propose the FL-Map and BA-
Map operator shown in Figure 2 (b). The subscript of the FL-Map exhibits three
functions first, each and last. During result construction the first function is executed
by the operator on the first tuple, the each function is executed for each tuple and
the last function is executed on the last tuple of the input stream. The subscript of
the BA-Map consists of the functions before, each and after. The before function is
evaluated during the Open operation, where the after function is evaluated during the
Close operation.

Obviously the functionality of the BA-Map can be subsumed by the FL-Map func-
tionality. But during evaluation of the FL-Map each tuple of the input relation has to



DOM SAX
before | rootNode := doc.createElement(result); start Element (" result” ,null);
each | nl := doc.createElement(” conference”); start Element (” conference” null);
n2 := doc.createElement(” title”); startElement (" title” ,null);
n2.appendChild(doc.createTextNode($t));| characters($t);
nl.appendChild(n2); endElement(”title”);
n2 := doc.createElement(”year”); startElement (” year” null);
n2.appendChild(doc.createTextNode($y));| characters($y);
nl.appendChild(n2); endElement(”year”);
rootNode.appendChild(nl); endElement(” conference”);
after endElement(”result” );

Table 1: Construction function for the query plan shown in figure 3.

be temporally stored. This may lead to additional costs which can be avoided by the
BA-Map operator.

To illustrate the application of the BA-Map operator, let us consider the construction
plan depicted in Figure 3. It constructs the result of Query 1. The input of the plan is a
relation with the attributes $t and $y. The plan consists of a single BA-Map operator
where the before function generates the open tag of the enclosing <result> element. The
each function creates a <conference> element for each tuple of the input relation. The
after function generates the close tag of the <result> element.

‘ BA-Map ‘
before:<result>
each: <conference>

<title>$t</title>
<year>$y</year

</conference>
after:</result>

1 1
[8t.8y] ]

Figure 3: Construction plan of Query 1.

To simplify the exposition the plans we give in this paper do not show which result
construction functions are applied by the construction operators. Instead, the construc-
tion functions are replaced by XML fragments. To give an idea how this fragments are
created, table 1 shows the DOM and SAX construction functions applied by the BA-Map
operator of the query plan depicted in figure 3.

3.4 The Groupify Operator

A more complex functionality is provided by the Groupify operator depicted in Figure
2(c). Tt partitions an input relation according to a given attribute list. That means all
tuples of a partition have equal values in their grouping attributes. For the partitioning
the Groupify operator informs the caller of the GetNext operation on the occurrence of
a partition limit by returning an end of tuple stream.
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In order to read the tuples of the next partition the caller has to invoke the Get-
NextGroup operation. If there is no next partition the operation returns an end of tuple
stream. The Groupify also enables the evaluation of more than a single subplan by
providing the ResetGroup operation. This operation resets the tuple stream so that the
tuples of the actual partition can be read again.

Finally, the subscript of the operator contains a first function in addition to the
attribute list. This function is executed by the operator on the first tuple of the tuple
input stream. For the Groupify operator we propose a sort-based implementation. That
means we first sort the input tuples according to the attribute list. Hence the partitioning
can be done with constant memory. Further, we separate the sorting from the sort-based
partitioning. So a Groupify only detects partition limits based on the order of the input
relation. Before we can illustrate the Groupify operator by an example we have to
consider the GroupApply operator.

3.5 The GroupApply Operator

In order to evaluate subplans on partitions generated by a Groupify operator we need
the GroupApply operator 2(c). In addition to a reference to a Groupify the operator
gets a list of operators. Each of the list’s elements represent a subplan that has to be
evaluated on the partitions produced by the referenced Groupify.

For result construction the GroupApply sequentially reads the tuple stream of each
subplan. For each tuple stream the GroupApply returns the last tuple via its GetNext
operation. Between reading the tuple stream of two subplans the GroupApply has to
reset the Groupify by calling the ResetGroup operation. After the GroupApply has read
the tuple streams of all subplans it calls the GetNextGroup operation of the Groupify
and starts rereading the tuple streams of the subplans. In order to get terse construction
plans the subscript contains a last function that is evaluated on the last tuple of each
partition.

Figure 4 illustrates the application of GroupApply and Groupify operators by showing
the construction plan of Query 2'. The input of the plan is a relation with the attributes
$j, $t and $a. The before function of the BA-Map operator 1 generates the open tag of
the <result> element, while the BA-Map 3 creates the close tag of the <result> element.

The subplan between the two BA-Maps partitions the input relation according to
the values of the $j attribute. For each partition a <journal> element is created. The
partition is done by the Groupify operator 1. With its first function it creates the open
tag of the <journal> element and the <name> element that contains the journal name.
The close tag of the element is created by the GroupApply operator 1 that controls the
Groupify 1. The content of the <journal> element is created by the subplan between
the Groupify 1 and the GroupApply 1.

By application of Groupify 2 the subplan partitions the input relation according to
the attributes $j and $t. For each partition an <article> element is created. Therefore
the first function of the Groupify 2 generates the open tag of the <article> element
and the <title> element containing the title of the article. The controlling GroupApply

1To simplify the construction plans we leave out the Sort operations.
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2 creates the close tag. For the content the enclosed BA-MAP operator 2 creates an
<author> element for each tuple of the partition.

BA-Map 3

before:
each:

after: </result>

GetNextGroup GroupApply 1

”””””” last: </journal>

| GetNextGroup GroupApply 2

”””” last: </article>

v

BA-Map 2

before:
each: <author>$a</author>
after:

v
Groupify 2

($],$1)
first: <articIe><titIe>$t<lFitIe>
1

Groupify 1

(3))

first: <journal><name>$j</name>
:

BA-Map 1
before: <result>

each:
after:

[$],$t,%a]

Figure 4: Construction plan of Query 2.

A more advanced example is provided by the result construction of Query 3. The
construction plan shown in Figure 5 exhibits a parallel combination of grouping oper-
ations. As in the previous construction plan the root and the leaf of the construction
plan is built by BA-Map operators that create the enclosing <result> element. The
enclosed subplan consists of a GroupApply, Groupify pair that partitions the input re-
lation according to the attribute $c. The pair creates a <conference> element for each
partition.

The content of the <conference> element consists of the elements <authorlist> and
<articlelist>. These elements are created by the two subplans that are applied to each
partition by the GroupApply operator 1. The operator first evaluates the left subplan
and then the right one.

The left subplan performs a partitioning on the input tuple stream according to
the $a attribute. Therefore it contains a GroupApply, Groupify pair that creates an
<author> element for each partition. The pair is followed by the BA-Map operator 2
that finishes the construction of the <authorlist> element.

For the construction of the content of the <articlelist> element the right subplan
partitions its input tuple stream according to the $t attribute. For each partition the
Groupify operator 3 constructs an <article> element.

12



BA-Map 4

before:

each:

after:</result>
GetNextGroup Y
ResetGroup GroupApply 1

[ last:</articlelist></conference>

BA-Map 2 ‘ ( GroupApply 3 W
before: i ast: ),
each: ) ! ) ;
after:</authorlist> ; Groupify 3

| ($c,9t)
[ ( GroupApply 2 W first: <article>$t</article>
[ last: ‘ ) [} ¥
—T BA-Map 3

Groupify 2 ‘ before: <articlelist>
($c,%a) J each:
first: <author>$a</author: after:

T~ S

! ‘ Groupify 1 ‘
fffffffff -
($0) ‘
first:<conference><title>$c</title><authorlist>

BA-Map 1
before: <result>
each:

after:

[$c,$a,$t]

Figure 5: Construction plan of Query 3.

4 Generating Construction Plans

In this section we show how a declarative construction specification can be translated
into a construction plan. Therefore we introduce an algorithm that translates YATL
construction trees. To avoid the generation of plans that contain unnecessary operators
the algorithm applicates operator and plan coalescence during the translation. By the
coalescence of two plans we mean the concatenation of the plans followed by an elimina-
tion of unnecessary operators. By operator coalescence we mean merging two operators
into a single one.

Our algorithm for the translation of a YATL construction tree is based on a depth
first traversal. During the traversal it recursively creates a subplan for each subtree.
Their combination yields the final construction plan. For the translation of a subtree
rooted at node n the algorithm performs four steps. First, it generates a subplan that
initiates the construction of the subtree rooted at n. Second, it generates a subplan for
each subtree rooted at a child of n, which leads to a collection of so-called content plans.
Then the algorithm generates the plan that finalizes the construction of n. In the last
step the algorithm glues together the initiating plan, the content plans and the finalizing
plan to a single plan for the whole subtree.

13



4.1 Generating the Initiating Subplan

For the construction of the initiating plan for a node n the label of the incident edge is
important. If the edge is not labeled, the initiating subplan is a single FL-Map operator.
Its subscript depends on the format of the result. For the generation of textual XML
data and if n is labeled with an XML element, the first function prints the open tag of
the element. If the incident edge is labeled with a skolem function, the initiating plan
consists of a Groupify operator. The grouping attribute list in the operator subscript
is built by the variable list of the skolem function. The first function depends on the
node label. Since the * label is a special skolem function that describes a grouping
according to all attributes of the input relation, the initiating subplan consists of a
Groupify operator. The attribute list contains all the attributes of the input relation.

For an example generation we assume the YATL construction tree of Query 3 that
is shown in Figure 6.

result
*($c)
conference
title authorlist articlelist
*($a) *($t)
$c author article
$a $t

Figure 6: Construction tree of Query 3.

Suppose that we want to generate the subplan for the subtree rooted at the <conference>
node. The subplan that initiates the construction of the root node is shown in Figure 7.

4.2 Generating the Content Subplans

The creation of the subplans for the children of n results in a collection of subplans, that
is also shown in Figure 7.

Our algorithm tries to coalesce these plans. For the coalescence of two subplans we
have to distinguish four cases. In the first one both subplans do not contain a grouping
operation. In the second only the first subplan contains a grouping operation. In the
third only the second subplan contains a grouping operation. Finally, both subplans
contain a grouping operation. In the latter case the plans cannot be coalesced.

In the first and the second case for plan coalescence the first subplan is prepended
to the second. This concatenation is followed by an operator coalescence.

14



We have three rules for the coalescence of construction operators. First, two FL-
Map operators can be merged into a single operator by combining their subscript func-
tions. Second, a Groupify followed by a FL-Map operator can be substituted by a single
Groupify, if the each and the last function of the FL-Map is empty. Finally, a FL-Map
followed by a GroupApply operator can be merged into a single GroupApply operator if
the first and each function of the FL-Map are empty.

The third case of plan coalescence is more complex. From the fact that the second
subplan does not contain a grouping operation it follows that it consists of a single
FL-Map operator with an empty each and last function. For the coalescence the first
function is moved to the last function. After this transformation the FL-Map operator
can be prepended to the first subplan.

In our example shown in Figure 7 the first two content subplans can be coalesced.
Since the first subplan does not contain a grouping operation, we apply the first case of
plan coalescence. As Figure 7 shows, for operator coalescence the FL-Map operator 1 is
coalesced with the FL-Map operator 3 according to the first operator coalescence rule.

4.3 Generating the Finalizing Subplan

As for the generation of the initiating plan for a node n we have to consider the label
of the edge incident to n. If the edge has no label the finalizing plan is built by a single
FL-Map operator with an empty first and each function. The last function depends
on the node label and the result format. For construction of textual XML data and
assuming that n is labeled with an XML element, it prints the according close tag.

If the incident edge is labeled with a skolem function or with a * the finalizing plan
consists of a GroupApply operator. Its last function is set according to the label of n
and the output format. Since the incident edge in our example is labeled with a skolem
function, the finalizing subplan consists of a GroupApply operator as shown in Figure 7.

4.4 Gluing it Altogether

For the final step the content plans are prepended to the initiating subplan. If there are
several content plans and the last operator of the initiating subplan is not a Groupify, a
Groupify with an empty attribute list and an empty first function is prepended. While
prepending the first content plan its first operator can be coalesced with the last operator
of the initiating plan. Finally the finalizing plan is prepended to the content plans. If
there are several content plans and the finalizing plan does not begin with a GroupApply,
a GroupApply is appended to the finalizing plan. While prepending the finalizing plan
its first operator can be coalesced with the last operator of the last content plan.The
result of the gluing step of our example translation is shown in Figure 7.

If the resulting subplan consists of a single subplan enclosed by a Groupify and a
GroupApply pair where the attribute list of the GroupApply contains all attributes of the
input relation, the whole subplan can be substituted by a single FL-Map operator. Its
each function is built by the combination of the construction functions of the substituted
subplan.
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Further, all FL-Map operators where the first and the [ast function is a constant
expression are substituted by BA-Map operators. Only the root operator of the subplan
is not substituted if it is not the root operator of the whole construction plan. The
reason for this is that a substitution could inhibit an operator coalescence.

5 Optimization of Construction Plans

Based on our translation algorithm in this section we describe techniques for the op-
timization of construction plans. This includes the optimization of serially combined
grouping operations and the optimization of parallelly combined construction plans.

5.1 Optimizing Serial Combined Construction Plans

Based on a sort-based implementation of the Groupify operator the serial combination
of grouping operators can be optimized by factorizing sort operations. Figure 8 shows
the construction plan of Query 2 with the added Sort operators.

By applying order optimization techniques as described in [28] we are able to push
Sort operators down the construction plan. In [28] a tuple stream in a query execution
plan has an interesting order that is defined by a list of attributes. For two interesting
orders I; and I, I is a cover order of Iy and I, iff I; is a prefix of I>.

Since, the interesting orders resulting from the Sort operations of serial combined
grouping operation exhibits the prefix relationship, the Sort operations can be factorized
by a single Sort operation. Figure 9 shows the result of factorizing the Sort operators.

5.2 Optimizing Parallel Combined Construction Plans

The execution of parallel combined construction plans can be optimized by minimization
of intermediate result storage and the factorization of Sort operations.

An ad-hoc approach for the evaluation of parallel combined subplans would lead into
storing the input tuple stream of the subplans in a temporary file. Since our translation
algorithm guarantees that parallel combined subplans always act on a Groupify this
approach can be optimized by storing just a single partition.

If parallel subplans have interesting orders that can be covered by a third one we are
also able to factorize a single Sort operation for the plans. If there is no such covering
order for all subplans we might still be able to determine a covering order for a subset
of the subplans.

6 Preliminary Performance Results

We ran some preliminary performance experiments to measure the effect of sort factor-
ization and the impact of different types of construction functions. We implemented
the construction operators in C++ and integrated them into the native XML database
system Natix [17], developed at the University of Mannheim. We conducted the exper-
iments on a Sun SPARC Ultra 2 with Solaris 2.6 and 256 Mb main memory. Our data
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‘ Query 1 Query 2 Query 3
Print execution time 3.0s 3.0s 4.4 s
SAX execution time <1ls < 1s < 1s

Table 2: Times spend on the execution of construction functions.

set was the content of the TOC_OUT file from the DBLP server. We extracted from the
file the variable bindings for the construction plans of Query 1, 2 and 3.

Executing the different construction plans revealed the benefit of sort factorization.
The running time for Query 2 without sort factorization was 20.6 seconds. Sort factor-
ization reduced the running time to 17.6 seconds. For Query 3 without sort factorization
we measured a running time of 49 seconds. Considering the construction plan of Query 3,
shown in 5 it follows that there is no cover order for the whole construction plan. Hence,
we considered two alternative factorizations. First, sorting the input variable bindings
according to the attributes $c and $a. The running time was 43.2 seconds. Second, we
sorted the input of the construction plan according to the attributes $c and $t. The
running time was 43.6 seconds.

To investigate the impact of different construction functions we measured the time
that was needed to create text files or a sequence of SAX callback function calls. Table 2

shows that the time spent on the execution of construction functions can be considerably
reduced by applying the SAX API.

7 Conclusions

In this paper we showed how XML can be constructed from table structured variable
bindings by applying algebraic operators. In contrast to powerful operators that can
perform complex result construction, we proposed the XML construction by construction
plans. These are special query execution plans consisting of simple, easy to implement
and efficient operators.

For generating construction plans from constructor clauses we introduced an opti-
mizing translation procedure that reduces the number of operators in a construction
plan by plan and operator coalescence.

Together with the XML construction by “side effect” our approach provides a great
flexibility that can be exploited during query optimization. We sketched some of the
optimization possibilities and provided some preliminary performance results for their
evaluation.
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Figure 7: Plan creation for Query 3.
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BA-Map 3
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Figure 8: Construction plan of Query 2 with Sort operators.
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Figure 9: Construction plan of Query 2 with factorized Sort operators.
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