Efficient Algorithms for Minimizing Tree Pattern Queries

Prakash Ramanan
Department of Computer Science
Wichita State University
Wichita, KS 67260-0083

ramanan@cs.twsu.edu

ABSTRACT

We consider the problem of minimizing tree pattern queries
(TPQ) that arise in XML and in LDAP-style network di-
rectories. In [Minimization of Tree Pattern Queries, Proc.
ACM SIGMOD Intl. Conf. Management of Data, 2001, pp.
497-508], Amer-Yahia, Cho, Lakshmanan and Srivastava
presented an O(n*) algorithm for minimizing TPQs in the
absence of integrity constraints (Case 1); n is the number
of nodes in the query. Then they considered the problem
of minimizing TPQs in the presence of three kinds of in-
tegrity constraints: required-child, required-descendant and
subtype (Case 2). They presented an O(n®) algorithm for
minimizing TPQs in the presence of only required-child and
required-descendant constraints (i.e., no subtypes allowed;
Case 3). We present O(n?), O(n*) and O(n?) algorithms for
minimizing TPQs in these three cases, respectively, based on
the concept of graph simulation. We believe that our O(n?)
algorithms for Cases 1 and 3 are runtime optimal.

Keywords

XML queries, LDAP queries, tree pattern queries, integrity
constraints, query minimization, graph simulation

1. INTRODUCTION

In XML and in LDAP-style network directories, data is
represented as a tree; associated with each node of the tree
is an element type from a finite alphabet X. In XML (see
[1]), each node corresponds to an XML element; the children
of a node are ordered from left to right, and represent the
content (i.e., list of subelements) of that element. In LDAP
directories (see [13]), the children of a node are not ordered;
the parent-child edges represent hierarchical information.

XML queries in languages such as XPath [24], XQuery
[25], XML-QL [8] and Quilt [6] use tree patterns to extract
relevant portions from the input database. LDAP directory
queries [14] use tree patterns to specify certain structural
relationships (child, descendant, etc.) between the desired
entries. A tree pattern query that we consider in this paper,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGMOD 2002 June 4-6, Madison, Wisconsin, USA

Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00.

denoted by T PQ from now on, was defined in [2] as follows
(see Figure 1 for examples). The nodes of a TPQ Q are
labeled by element types from X; let 7(u) denote the type
of node u. One node of @ is called the output node, and it
corresponds to the output of @Q; it is denoted by op(Q) and
is indicated by « in the figures. There are two kinds of edges:
child edges (c-edges) and descendant edges (d-edges). A c-
edge from node u to node v is denoted by u — v in the text,
and by a single edge in the figures; v is called a c-child of u.
A d-edge is denoted by u = v in the text, and by a double
edge in the figures; v is called a d-child of u. A c-child or
d-child of u is called a child of u.

In any directed acyclic graph (dag), a node v is said to be
a descendant of a node w if there exists a path (sequence of
edges) from u to v. In the case of a TPQ, this path could
consist of any sequence of c-edges and/or d-edges.

An embedding of a TPQ @ into a tree database db is a
mapping S : @ — db, from the nodes of @ to the nodes of
db, that satisfies the following conditions:

1. Preserve node types: For each node u € @, v and 3(u)
are of the same type.

2. Preserve c/d-edge relationships: If w — v in @, then
B(v) is a child of B(u) in db; if v = v in @, then B(v)
is a descendant of 3(u) in db.

Note that an embedding could map several nodes of the
query (of the same type) to the same node of the database.
Answering @ for a given tree database db requires finding all
possible embeddings of @ in db. The answer to @ is formed
from the set of database nodes B(op(Q)), obtained over all
possible embeddings. For LDAP applications, the output
consists simply of this set of nodes; for XML applications,
the output consists of the subtrees rooted at each of these
nodes, placed under one new root labeled result.

Let us consider some examples of TPQs. The query shown
in Figure 1b asks for those nodes (in the case of XML, sub-
trees rooted at those nodes) of type b in db that are chil-
dren of a node of type a, and have a child of type ¢ which
in turn has a descendant of type d. It corresponds to the
XPath expression a/b[c//d]. The queries shown in Figure
la and 1c correspond to the expressions a[b//d]/blc//d] and
alble and //d]]/b[c//d], respectively.

In general, the efficiency of finding the result of a query
on a given input database depends on the size of the query.
So, it is important to minimize the query before attempting
to compute the result of the query. [2] pointed out that a
TPQ @ may fail to be minimal for one of two reasons:

b* b*
d c Cc
sd sd
@ (b)
a a
b* b’ b*
C C’ S C
(d) (e

a
b b*
e d c
sd
©
a
-
d c
()

Figure 1: Examples of TPQs and Minimization

1. @ might contain redundant branches that can be re-
moved, independent of any integrity constraints.

2. Some integrity constraints might be known to hold
on the input databases; these constraints might make
some branches of) redundant.

They considered three kinds of integrity constraints (de-
noted by IC's from now on):

1. Required child: Every database node of type 71 has a
child of type 72, denoted by 71 — 7.

2. Required descendant: Every database node of type 71
has a descendant of type 72, denoted by 1 = 7.

3. Subtype: Every database node of type 71 is also of
type 72, denoted by 71 < 72. We follow the convention
that 7 < 7, for all types 7.

Let us consider some examples of TPQ minimization. In
the TPQ shown in Figure 1a, the left branch is made redun-
dant by the right branch; so the TPQ is equivalent to the
one shown in Figure 1b. In the absence of ICs, the latter
TPQ is minimal. In Figure 1a, if the output node is the left
child (instead of the right child) of the root, then the TPQ
is minimal in the absence of ICs.

The TPQ shown in Figure 1c is minimal in the absence
of ICs. In the presence of the IC b — e, the TPQ is equiv-
alent to the one shown in Figure 1a; as discussed above, its
minimal equivalent is shown in Figure 1b.

The TPQ shown in Figure 1d is minimal in the absence of
ICs; it is also minimal in the presence of ICs {' < b,¢’ < c}.

In the presence of ICs {b < b, ¢ < ¢'}, its minimal equivalent
is the one shown in Figure le.

The TPQ shown in Figure 1f is minimal in the absence of
ICs. In the presence of the IC ¢ = d, its minimal equivalent
is the one shown in Figure le.

Query minimization is a well-studied area of database sys-
tems. One of the first results in this area was that of Chan-
dra and Merlin [7] who showed that for a class of relational
database queries, called conjunctive queries, the minimiza-
tion problem is NP-Complete [11]. Amer-Yahia et al. [2]
pointed out that TPQs are essentially a special kind of con-
junctive queries on a tree-structured domain. Florescu et
al. [10] showed that containment of conjunctive queries with
regular path expressions, over semistructured data, is decid-
able; for some special cases, they showed that the problem is
NP-Complete. Query minimization in the presence of con-
straints has also been studied by several authors. Calvanese
et al. [5] studied the problem of conjunctive query contain-
ment in the presence of a special class of inclusion dependen-
cies, and established some decidability/undecidability re-
sults.

Amer-Yahia et al. [2] presented an O(n*) algorithm for
minimizing TPQs in the absence of ICs, and an O(n®) al-
gorithm in the presence of ICs; n is the number of nodes of
the TPQ. We show (Section 5) that the latter algorithm is
incorrect: It might not produce a minimal TPQ when sub-
type ICs are present. In Section 3, we present an efficient
O(n?) algorithm for minimizing TPQs in the absence of ICs.
In Section 4, we present an O(n*) algorithm in the presence
of the three kinds of ICs discussed above. In Section 5, we
present an O(n?) algorithm in the presence of only required-
child and required-descendant ICs (i.e., no subtypes). We

believe that our O(n?) algorithms in Sections 3 and 5 are
runtime optimal. The main idea behind our improvement in
runtime is the following: Amer-Yahia et al. use a function
(called an endomorphism) to identify and remove one re-
dundant TPQ node at a time, bottom up; we use a relation
(called a simulation) to identify all the redundant nodes in
one shot. In Section 6, we present our conclusions and some
extensions of our algorithms. In Section 2, we discuss some
of the limitations of TPQs and ICs; we also discuss why
these limitations are somewhat necessary in order to have
an efficient (polynomial time) algorithm for query minimiza-
tion.

Apart from the results of Amer-Yahia et al., the results

that most closely relate to ours are those of Wood [20, 21,
22, 23]). He studied the minimization of a special class of
XPath queries [24] that he called simple XPath queries.
Simple XPath queries are TPQs without d-edges, but with
the added flexibility that the label of a node could be —;
— stands for “any” type, and in any embedding of the query
in a database, the image of a node labeled — could be of any
type in ¥. Wood showed that, in the absence of constraints,
the minimal query equivalent to a simple XPath query can
be found in polynomial time. In Section 6 (Conclusions), we
show how our O(n?) algorithm in Section 3 can be extended
to simple XPath queries (no d-edges). Miklau and Suciu [16]
show that the problem of minimizing TPQs that contain c-
edges, d-edges and nodes labeled — is co-NP complete. In
Section 2, we discuss required-sibling constraints studied by
Wood.

2. LIMITATIONSOF TPQ'SAND IC’S

Papakonstantinou and Vianu [17] introduced a very gen-
eral tree pattern query language for XML called loto-gl (also
see [18]). Loto-gl queries contain regular expressions over ¥
on the edges and nodes; they allow for vertical and hori-
zontal navigation in the input database, respectively. Com-
pared to loto-ql queries, TPQs are limited as follows:

1. The horizontal navigation allowed in TPQs (by having
multiple children at a node) is very limited compared
to the ones in loto-ql queries. In particular, TPQs
ignore the order of children of a node in the database;
in an embedding, this allows for different nodes of the
query (of the same type) to be mapped to the same
node of the database.

2. The vertical navigation in loto-gl queries can be spec-
ified by arbitrary regular expressions. TPQs only al-
low vertical navigation using c-edges and d-edges. A
c-edge corresponds to the regular expression a for some
a € X; a d-edge corresponds to the regular expression
¥*a, for some a € 3; here, a is the element type of the
destination node of the c¢/d-edge.

This simplicity of TPQs is necessary in order to have efficient
algorithms for query minimization. If arbitrary regular ex-
pressions are allowed for vertical navigation, then query min-
imization becomes PSPACE-Hard: Testing if an edge with
regular expression ry is subsumed by another edge with reg-
ular expression 7 is equivalent to testing if L(r2) C L(r1);
this is known to be PSPACE-Complete [11].

The ICs defined in Section 1 are also somewhat limited.
Document Type Definitions (DTD) are usually used to spec-
ify a schema for a class of XML documents. A DTD spec-

ifies, for each type a € 3, a regular language R(a) over X
consisting of those strings w that could form the sequence
of types of the children of a node of type a. Even ignor-
ing the order, this specifies which element types can appear
together as children of a particular node type; this can not
be specified using the ICs we consider. This simplicity of
the ICs also seems to be an important factor in designing
efficient minimization algorithms for TPQs. In fact, in the
presence of a DTD, there need not be a unique minimal
TPQ equivalent to a given TPQ, as seen from the follow-
ing example: Let ¥ = {a,b,c,d}, and let the DTD D be
R(a) = bc +d, R(b) = R(c) = R(d) = e. Consider the
3-node TPQ @ = a * (bc), where the root of type a is the
output node, and it has two children of types b and c. @ has
two minimal equivalent TPQs (in the presence of D): ax*(b)
and a* (¢).

The above example contradicts a claim of Wood [23]. He
considered modeling the effects of a DTD using required-
sibling constraints, and studied the minimization of sim-
ple XPath queries in the presence of such constraints. A
required-sibling constraint of the form 71 : T' — 72, where
71,72 € ¥ and T C ¥, means that every database node
of type 71 that has children of each type in T also has a
child of type 72. The DTD D above implies the following
set of required-sibling constraints: S = {a : {b} — c¢,a :
{c} — b}. Wood [23] claimed that, in the presence of a
DTD or required-sibling constraints, there is a unique mini-
mal XPath query equivalent to a given simple XPath query
without — label. The above example serves as a counterex-
ample to this claim.

While the TPQs and ICs we consider seem to be somewhat
limited (as explained above), TPQs do capture a significant
part of current XML query languages such as XPath and
XQuery. Also, we feel that our algorithms form the basis
of an important first step towards efficient algorithms for
minimizing more complex XML and LDAP queries, in the
presence of more complex integrity constraints.

3. on?*) MINIMIZATION ALGORITHM IN
THE ABSENCE OF IC’S

Let Q(D) denote the result of a query @ on a database D.
Following [7, 19], we say that Q1 C Q2 for queries @1 and
Q2, if Q1(D) C Q2(D) for all databases D; @1 and Q2 are
equivalent (denoted by Q1 = @Q2), if @1 C Q2 and Q2 C Q1.
A query @ is said to be minimal if no query of smaller size
is equivalent to). For TPQs, size is the number of nodes.

Q1 C Q2 if there exists a query homomorphism (also
called a containment mapping in the literature) from Q-
to Q1 (see [7, 19]). When specialized to TPQs [2], a homo-
morphism h : Q2 — @1 is a mapping from @Q2’s nodes to
Q1’s nodes that satisfies the following conditions:

1. Preserve node types: For each node u € @2, v and
h(u) are of the same type; also, h(op(Q2)) = op(Q1).

2. Preserve c/d-edge relationships: If u — v in @32, then
h(u) = h(v) in @Q1; if w = v in @2, then h(v) is a
descendant of h(u) in Q1.

A homomorphism from a TPQ @ into itself is called an
endomorphism. A node u € @ is said to be redundant if the
query obtained from @ by deleting u and all its descendants
is equivalent to). Amer-Yahia et al. [2] stated the following.

Figure 2: Examples of Simulation

PROPOSITION 3.1. [2] A node u of a TPQ Q is re-
dundant iff there exists an endomorphism h on Q such that

Then they proved the following.

THEOREM 3.2. [2] For a given TPQ Q, there exists a
unique minimal equivalent TPQ Q'. Q' can be obtained from
Q by repeatedly removing a redundant leaf node, until no leaf
is redundant (note that a leaf node at some intermediate step
could be an internal node of Q).

They presented an O(n?) algorithm (based on Proposition
3.1) to determine if a given leaf is redundant. This leads to
an O(n*) algorithm (based on Theorem 3.2) for minimizing

We present an efficient O(n?) algorithm using the concept
of simulation. Simulation is a binary relation on the set of
nodes, as opposed to endomorphism which is a function.
Simulation provides one possible notion of dominance be-
tween the nodes of a graph, and has been studied in process
equivalence and in graph models for data. In particular, it
is used in defining schema for semistructured data [1, 4].

Counsider a directed graph G = (V| E) consisting of a set
V of nodes and a set E of directed edges; each node v € V
has a type 7(u) associated with it. For u € V, let post(u)
denote the set of nodes to which there is an edge from u.
Stmulation is the largest binary relation < on V such that
the following holds: If u < v, then 7(u) = 7(v) and for each
u' € post(u), there exists v € post(v) such that v’ < o'. If
u <X v, we say that u is simulated by v, v stmulates u, or v is
a stmulator of u; let sim(u) denote the set of all simulators
of u. It is well-known that the simulation relation is reflexive
and transitive, but it may not be symmetric. Vertices v and
v are said to be similar, denoted by u = v, if v < v and
v X u; clearly, similarity is an equivalence relation.

Consider the example tree shown in Figure 2a. We have
sim(vs) = sim(vs) = {va,vs}, sim(v2) = {v2,vs}, and
sim(v;) = {v;} for all other nodes v;. So, the only non-
trivial relational pairs are v4 = vs and v2 < vs.

Let |V| = n and |E| = m. Bloom and Paige [3] and Hen-
zinger et al. [12] presented O(mn) algorithms for computing
the simulation relation of arbitrary graphs. If the graph is
a tree, then m = n — 1; in this case, their algorithms run in
O(n?) time. Unfortunately, these algorithms will not work
when there are d-edges, as in a TPQ. First, we need to re-

define the concept of simulation to account for the presence
of d-edges. We define the simulation relation for a TPQ @
as follows. It is the largest binary relation < on the nodes of
Q@ such that, whenever u < v, the following conditions hold:

1. Preserve node types: 7(u) = 7(v); also, if u = op(Q)
then v = op(Q)-

2. Preserve c-edge relationships: If — u', then v has a
c-child v" such that v’ < v'.

3. Preserve d-edge relationships: If u = 4", then v has a
descendant v such that «"’ < 2.

Consider the example TPQ shown in Figure 2b. We have
sim(vs) = sim(ve) = {va,v6}, sim(vs) = sim(vs) = {vs,vs},
sim(v2) = {v2,v3}; sim(v;) = {v;} for all other nodes v;.

For the sake of completeness, let us consider the connec-
tion between simulation and endomorphism. For any node
u in a TPQ @, let

endo(u) = {v| there exists an endomorphism f on @
such that f(u) = v}.

If v € endo(u), then v € sim(u); so sim(u) D endo(u). The
containment could be strict because whether v € sim(u) de-
pends only on the descendants of v and v, whereas whether
v € endo(u) depends also on the ancestors of u and v, and
their descendants. Also, by Proposition 3.1, u is redundant
iff there exists v € endo(u), v # u. In contrast, the condi-
tion that there exist v € sim(u), v # u, is necessary, but not
sufficient, for u to be redundant. For example, if u is a leaf
and v is any other node with 7(v) = 7(u), then v € sim(u);
this certainly does not imply that u is redundant.

The simulation relation on TPQs is reflexive and tran-
sitive, but it may not be symmetric. Also note that, by
condition 1) above, sim(op(Q@)) = {op(Q)}. The algorithms
of Bloom and Paige [3] and Henzinger et al. [12] referred to
above for computing the simulation relation on graphs will
not work for TPQs because of condition 3) above. In fact, it
is unlikely that there exists an O(mn) algorithm for comput-
ing the simulation relation of arbitrary graphs that contain
d-edges. We will present an O(n?) algorithm for TPQs; it
can be easily extended to an O(mn) algorithm for acyclic
graphs. Before we present our algorithm, let us consider the
connection between simulation and minimization of TPQs.
We have the following result.

Algorithm TPQSimulation
V < set of nodes of @ in some bottom-up order

for each uw € V in order do

if w=op(Q) then sim(u) = {u}
else if u is a leaf then sim(u) = {v € V| 7(v) = 7(u)}

else sim(u) = {v € V| 7(v) = 7(u),v € cpar(sim(u')) for each c-child v’ of wu,
and v € anc(sim(u")) for each d-child u” of u}

compute cpar(sim(u)) and anc(sim(u))

Figure 3: The Simulation Algorithm

Algorithm TPQMinimization(u)

for each child v of u do

if v is a c-child then

/* w is a nonredundant node of a TPQ

if w has another c-child w € sim(v) that has not been deleted

then delete v
else TPQMinimization(v)

if v is a d-child then

/* the entire subtree rooted at v is deleted
/* node v is nonredundant

if w has another child w € sim(v) U anc(sim(v)) that has not been deleted

then delete v
else TPQ Minimization(v)

/* the entire subtree rooted at v is deleted
/* node v is nonredundant

Figure 4: The Minimization Algorithm

LEMMA 3.3. Let u be a nonredundant node of a TPQ Q.

1. A c-child v of u is redundant in Q iff v has another
c-child w € sim(v).

2. A d-child v of u is redundant in Q iff v has another
descendant w € sim(v).

PRrROOF. Let u be a nonredundant node of a TPQ @, and
let v be a child of u. Consider any embedding 8 of @ into
a tree database db. The presence of v in ¢ imposes the
following restriction on 3: If v is a c-child (resp. d-child) of
u, then B(v) should be a child (resp. descendant) of S(u)
in db. The descendants of v in @) translate to corresponding
restrictions on 3(v) in db.

Now consider the “if” parts of conditions 1) and 2) in the
lemma. If there exists a w as specified, then the conditions
imposed on 3 (specifically, on 3(u) and its descendants) by
w and its descendants subsume the conditions imposed by
v and its descendants. Hence v is redundant.

Now, consider the “only if” part. Since u is nonredundant,
all its ancestors are nonredundant. A nonredundant node
is unique in the sense that no other node can play its role.
Since w is unique, the restrictions imposed on 3 (specifically,
on [(u) and its descendants) by a c-child (resp. d-child) v of
u can be subsumed only by the restrictions imposed by an-
other c-child (resp. descendant) w of u; also, the restrictions
imposed on 8 by w and its descendants must subsume those
imposed by v and its descendants, i.e., w € sim(v). O

Our algorithm for minimizing () consists of two parts.
First, algorithm TPQSimulation (Figure 3) computes the
simulation relation on @, in bottom-up order. Then, algo-
rithm TPQMinimization (Figure 4) finds the minimal TPQ
equivalent to @Q; it deletes maximal redundant subtrees,

in top-down order, using Lemma 3.3 (In contrast, the al-
gorithm in [2] eliminates redundant nodes one at a time,
bottom-up, as specified in Theorem 3.2). The phrase “in
Q" in items 1) and 2) of Lemma 3.3 requires us to check for
the redundancy of the children of u, one child at a time. If a
child v is found to be redundant and deleted along with all
its descendants (resulting in a new TPQ Q'), then checking

for the redundancy of the next child v’ should be done in
/

Q.

For a set S of some nodes of Q, let cparents of S (denoted
by cpar(S)) be the set of nodes of @ that have a c-child in S;
let ancestors of S (denoted by anc(S)) be the set of nodes
that have a proper descendant in S. Clearly, cpar(S) can
be computed in O(n) time; anc(S) can also be computed
in O(n) time bottom-up, in the order of decreasing depth
(distance from the root). Note that conditions 2) and 3) in
the above definition of simulation can be restated as follows:

2. Preserve c-edge relationships: If w — ', then v €
cpar(sim(u')).

3. Preserve d-edge relationships: If w = ", then v €
anc(sim(u")).

Using this restatement, algorithm TPQSimulation com-
putes the simulation relation on). First, it orders the nodes
of @ bottom-up: all the children of a node v must appear be-
fore node u. This can be done, for example, according to the
post order traversal of @, in linear time. For each node w,
in order, the algorithm computes sim(u), cpar(sim(u)) and
anc(sim(u)); each of them will be represented as a boolean
array of n elements, indexed by the nodes v € V. For each
node u, the algorithm first computes sim(u). For a leaf node
u, computing sim(u) takes O(n) time. Now consider an in-
ternal node u. For each v € V, determining if v € sim(u)

Algorithm MinimizeChase
compute chase(Q)

compute sim(u) for the original nodes u of chase(Q) using ChaseSimulation

ChaseMinimization(root(chase(Q)))
drop the remaining chase nodes

Figure 5: The Overall Algorithm with Constraints

takes time proportional to the number of children of w.
Hence, the total time to find sim(u) is O(n * |children(u)|).
As pointed out above, cpar(sim(u)) and anc(sim(u)) can
be computed in O(n) time. So, a single pass thru the for
loop takes time O(n * (|children(w)| + 1)); hence, the en-
tire for loop takes O(n* 3", .y (|children(u)|+1)) = O(n?)
time. Since the simulation relation could be of size ©(n?),
this algorithm has optimal runtime.

Now consider the recursive algorithm TP QMinimization.
The input node u is a nonredundant node of a TPQ; the
algorithm minimizes the subtree rooted at u, using the sim-
ulation relation computed by TPQSimulation. Recall that
the simulation relation is transitive. So, the order in which
the children v of node u are considered is irrelevant: Let
v1, v2 and vz be three children of u such that v1 < v2 and
v2 = wv3; then v and vz should be deleted in favor of wvs.
It doesn’t matter whether we first delete v1 and then delete
va, or we first delete v2 and then delete vi1 (because, by
transitivity, v1 < wvs3). The correctness of the algorithm
follows from Lemma 3.3. For each child v of u, it takes
O(|children(u)|) time to check if v is redundant; so, the call
T PQMinimization(root(Q)) runsin O}, o |children(u)|?)

= O(n?) time.
For an example, let @) be the TPQ shown in Figure 2b.
For the leaves, we have sim(vs) = sim(ve) = {vs,vs},

sim(vs) = sim(vs) = {vs, vs}, cpar(sim(va)) = cpar({va,ve})

= {v2, v3}, and anc(sim(vs)) = anc({vs,vs}) = {v1, v2,v3,v7}.

Then, since vs € cpar(sim(vs)) and vs € anc(sim(vs)),
TPQSimulation concludes that vs € sim(v2). Finally, since
vz € sim(v2), TPQMinimization deletes the subtree rooted
at vg; the resulting TPQ is minimal.

In summary, we have the following.

THEOREM 3.4. Algorithms TPQSimulation and TPQMin-
imization together correctly compute the minimal TPQ equiv-
alent to a given TPQ in O(n?) time.

We believe that our algorithm has optimal runtime.

4. on*)y MINIMIZATION ALGORITHM IN
THE PRESENCE OF IC’S

Let C be a set of ICs of the three kinds described in Sec-
tion 1. Amer-Yahia et al. [2] presented an O(n®) algorithm
for minimizing TPQs, in the presence of C. In Section 5,
we will show that this algorithm is incorrect: It might not
produce a minimal TPQ when subtype ICs are present. In
this section, we present an O(n*) algorithm.

Following [7, 19, 2], we say that Q1 Cc Q2 for queries
@1 and Q2, if Q1(D) C @Q2(D) for all databases D that
satisfy the constraints in C; @1 and Q2 are equivalent in
the presence of C' (denoted by Q1 =¢ Q2), if @1 Cc Q2
and Q2 Cc Q1. A query @ is said to be minimal in the
presence of C, if no query of smaller size is equivalent to Q
in the presence of C'. From now on, we will usually drop the

qualifier “in the presence of C”.

For relational database queries, the classical chase tech-
nique [15, 19] is used to rewrite a query to incorporate
the effects of given integrity constraints. Then, a minimal
query equivalent to the original query, in the presence of
the integrity constraints, can be obtained by minimizing the
rewritten query (without further regard to the integrity con-
straints). In this section, we use the same approach to min-
imize a TPQ @ in the presence of C.

Amer-Yahia et al. [2] specified a procedure to add nodes
to @), one at a time, to incorporate the effects of C, but
cautioned:

“a blind application of chase [their procedure to
add nodes] can make the result of the chase ar-
bitrarily bigger than the original query; in par-
ticular, its depth can increase arbitrarily under
chase.”

They did not show how to add nodes to @, in a systematic
manner, to get a finite query that incorporates the effects of
C (as we will show in Section 5, their procedure, called “aug-
mentation” , might not work when subtype ICs are present).
We show how to construct a finite query chase(Q) from @,
that incorporates the effects of C, while adding only the re-
quired nodes. In general, our chase(Q) is not a tree, but a
directed acyclic graph (dag).

The closure of C, denoted by closure(C), can be obtained
by first initializing it to C, and then repeatedly doing the
following until no more changes occur.

1. If 1 — 72, then add 71 = 7

2. f 1 = 72 and 7» = 73, then add 71 = 73
If 1 <7 and 72 < 73, then add 71 < 73
If m <7 and 7 — 73, then add 71 — 73
If m <7 and 7 = 73, then add 1 = 73

If m = 7 and 72 < 73, then add 1 — 73

N o e w

If m = m and 72 < 73, then add 1 = 73

Note that |closure(C)| = O(|C|?). Also, closure(C) (as well
as C) must be acyclic: If 7 = 12 and 72 = 71, then there
can be no finite database containing an element of type 71
or 2. If C does not contain any subtype constraints (as in
Section 5), then steps 3) thru 7) above can be dropped.

The constraint graph Gc = (Ve, E¢) is the directed graph
defined as follows. The set V¢ of nodes is ¥ (recall that X
is the set of all element types under consideration). The set
E¢ consists of c-edges and d-edges:

1. If 1 — 72 is in closure(C), then there is a c-edge from
T1 to T2.

Algorithm ChaseSimulation

V « set of nodes of chase(Q)

Vo < set of original nodes of chase(®) in some bottom-up order

for each u € V,, in order do
if w = op(Q) then sim(u) = {u}

else if u is originally a leaf then sim(u) = {v € V| r(v) < 7(u)}
else sim(u) = {v € V| 7(v) < 7(u),v € cpar(sim(u')) for each original c-child v’ of u,
and v € anc(sim(u")) for each original d-child u” of u}

compute cpar(sim(u)) and anc(sim(u))

Figure 6: The Simulation Algorithm with Constraints

Algorithm ChaseMinimization(u)

for each original child v of w do

if v is a c-child then

/* u is a nonredundant original node of chase(Q)

if u has another c-child w € sim(v) that has not been deleted

then delete v
else Chase Minimization(v)

if v is a d-child then

/* the entire subgraph rooted at v is deleted
/* node v is nonredundant

if w has another child w € sim(v) U anc(sim(v)) that has not been deleted

then delete v
else ChaseMinimization(v)

/* the entire subgraph rooted at v is deleted
/* node v is nonredundant

Figure 7: The Minimization Algorithm with Constraints

2. If 1 = 72 is in closure(C), but 71 — 7 is not in
closure(C), and there is no type 73 such that both
71 = 73 and 73 = 7 are in closure(C), then there is
a d-edge from 71 to 7.

G represents all the required-child and required-descendant
constraints in closure(C), in a concise manner; the effects of
the subtype constraints on the required-child and required-
descendant constraints are already reflected in closure(C)
(and hence in G¢), due to steps 4) thru 7) above in the
computation of closure(C). Since closure(C) is acyclic, G¢
is a dag. Gc¢ contains |Z| nodes and O(|X|?) edges; we let
the size |Gc| denote V| + |Ec|. For a given X' C X, let

o = (V&, Eg), where V. = X', be the constraint graph
pertaining to the element types in ¥'. G can be obtained
from G¢ in O(|Ge| + |G|) time. For any type 7 € X',
let G (1) denote the subgraph of G that is rooted at .
G4 (7) represents all constraints in closure(C) of the form
T—7 and =17, for 7 € X.

We define chase(Q) to be the dag obtained from @ as
follows: Let X' consist of the element types common to C
and @ (so |¥'| < n); from G¢, construct the constraint
graph G¢ = (V§, Eg) for &' (so |V&| = |¥'| and |Eg| =
O(IZ'|*); at each node of @ of type T, attach a copy of
G¢(7) rooted at that node. The new nodes added in this
process will be called chase nodes; other nodes (i.e., those
from Q) will be called original nodes. Chase(Q) is a dag
with O(n|X'|) nodes and O(n|E¢|) edges; its height is at
most height(Q) + |X'].

Chase(Q) incorporates the effects of all the required-child
and required-descendant constraints in closure(C). So, as
in the case of relational database queries, the minimal TPQ
equivalent to @ can be obtained from chase(Q), using al-
gorithm MinimizeChase (Figure 5). MinimizeChase calls

ChaseSimulation to compute sim(u) for all the original nodes
win chase(Q). It then calls ChaseMinimization to delete the
redundant original nodes (and their descendants) in chase(Q).
Finally, it deletes all the remaining chase nodes, which are
clearly redundant.

The working of algorithms ChaseSimulation and Chase-
Minimization (Figures 6 and 7) parallel those of algorithms
TPQSimulation and TPQMinimization (Figures 3 and 4,
Section 3), respectively. ChaseSimulation is identical to
TPQSimulation, except that it computes sim(u) only for
the original nodes u in chase(Q®), and also incorporates the
effects of the subtype constraints in closure(C). Chase-
Minimization is identical to TPQMinimization, except that
it only deletes redundant original nodes in chase(Q).

The runtime analyses are also partly similar. First con-
sider ChaseSimulation. Let V and V, be the set of nodes and
the set of original nodes of chase(Q), respectively; |V,| =
|Q] = n, and |V| = O(n * |V4]). In V,, the nodes are in
bottom-up order. For each node w € V,, the algorithm
computes sim(u), cpar(sim(u)) and anc(sim(u)); each of
them will be represented as a boolean array of |V| ele-
ments, indexed by the nodes v € V. For each u, the al-
gorithm first computes sim(u). For an original leaf node
u, computing sim(u) takes O(|V]) time. Now consider an
original internal node u. For each v € V, determining if
v € sim(u) takes time proportional to the number of chil-
dren of uin Q. Hence, the total time to find sim(u) is O(|V|*
|childreng(u)|). So, the total time to compute sim(u) for
all the original nodes is O(|V[+3_, c o (|childreng (u)|+1)) =
O(n % |V]). Now consider the computation of cpar(sim(u))
and anc(sim(u)). Note that each chase node in sim(u) could
have O(|V4|) c-parents and/or d-parents, since G¢ is a dag
(not necessarily a tree). In any case, cpar(sim(u)) can be

univ

college, college,
scicollege*
dept . dept
labl lab
Q
@

univ univ

scicollege*
scicollege*

scidept lab

AQ) Q
(0) (©

Figure 8: Counter Example

computed in |chase(Q)| = O(n * |G¢|) time. Anc(sim(u))
can also be computed in O(|chase(Q)|) time bottom-up, in
the order of decreasing depth (distance from the root). So,
cpar(sim(u)) and anc(sim(u)), for all the original nodes
u, can be computed in O(n * |chase(Q)|) time. So, the
overall runtime for ChaseSimulation is O(n * [chase(Q)|) =
O(n® % |Gg|) = O(n*).

Now consider the recursive algorithm ChaseMinimization.

The input node u is a nonredundant original node of chase(Q).

For each original child v of u, it takes O(|childrencpase(q)(u)])
= O(n) time to check if v is redundant; so, the call
ChaseMinimization(root(chase(Q))) runs in

O(X,cv, Ichildreng (u)] * |childrenchase(q)(uw)]) =

O(n* 32, oy, Ichildreng(u)|) = O(n?) time.

In summary, we have the following.

THEOREM 4.1. Algorithm MinimizeChase correctly com-
putes the minimal TPQ equivalent to a given TPQ, in the
presence of ICs, in O(n*) time.

PRrROOF. First, let us consider the correctness. chase(Q)
correctly incorporates the effects of all the required-child
and required-descendant constraints in closure(C). Then,
ChaseSimulation and ChaseMinimization correctly identify
and remove all the redundant original nodes in chase(Q),
while taking into account all the subtype constraints in
closure(C). The remaining chase nodes are clearly redun-
dant, and can be dropped. So, MinimizeChase correctly
computes the minimal TPQ.

Now, let us consider the runtime of MinimizeChase.
Chase(Q) has O(n?) nodes and O(n®) edges; it can be con-
structed in O(n®) time. As discussed above, ChaseSimula-
tion and ChaseMinimization take O(n*) and O(n?) time, re-
spectively. Dropping the remaining chase nodes takes O(n®)
time. So, MinimizeChase runs in O(n*) time. [J

5. ow?* MINIMIZATION ALGORITHM IN
THE ABSENCE OF SUBTYPES

In this section, let C be a closed set of ICs; i.e., closure(C)
= C. Initially, let C' consist of ICs of the three kinds de-
scribed in Section 1. Amer-Yahia et al. [2] gave the following
procedure to obtain an augmented TPQ A(Q) from a given

TPQ Q. For each node u € Q of type 7i:

1. If 4 — 72 is in C, add a new leaf node u’ of type 7,
and a c-edge u — u'.

2. If ;7 = misin C, but 1 — 7 is not in C, add a new
leaf node 1" of type 72, and a d-edge u = u".

3. If m <7 isin C, also associate type 7 with node wu.

The leaf nodes added during augmentation are called aug-
mentation leaves; there could be ©(n) such leaves for each
node in Q, for a total of ©(n?) leaves. So, A(Q) could have
©(n?) nodes, and can be constructed in O(n?) time.

Then, Amer-Yahia et al. [2, Lemma 5.4] gave the following
procedure to find the minimal equivalent TPQ @’ in the
presence of C.

First construct the augmented TPQ A(Q). Then
minimize A(Q) (without further regard to C)
with the exception that the augmentation leaves
should not be tested for redundancy. Then fi-
nally, remove all the remaining augmentation leaves.

If subtypes are present, this procedure might not produce
the minimal TPQ. This is seen from the following example.
Let

Q = (univ(college(dept(lab)), scicollegex)) (see Figure 8a)
and let C be the closure of

{scicollege < college, scidept < dept, scicollege — scidept,
scidept — lab}.

A(Q) is shown in Figure 8b; one c-edge and one d-edge added
from the scicollege node correspond to the ICs scicollege —
scidept and scicollege = lab in C, respectively; these edges
result from steps 1) and 2) above, respectively. The above
procedure of Amer-Yahia et al. would output @ itself, whereas
the minimal equivalent query is (univ(scicollegex)) (Figure
8c). The only way to obtain the minimal query requires first
appending the chain (scidept(lab)) under the scicollege node
in @, as done in chase(Q) described in the previous section.
When subtypes are present, the only algorithm known is the
one given in the previous section.

Algorithm MinimizeCTPQ
compute R(Q)

compute the simulation relation on R(Q) using CTPQSimulation

CTPQMinimization(root(R(Q)))

Figure 9: The Overall Algorithm in the Absence of Subtypes

Algorithm CTPQSimulation
V « set of nodes of R(Q) in some bottom-up order

for each w € V in order do

if u = op(Q) then
sim(u) = {u}
compute cpar(sim(u))
auganc(sim(u)) < anc(sim(u))
continue

if w is a leaf then
sim(u) ={v e V| 7(v) = 7(u)}
compute cpar(sim(u))

/* Go to the next pass of the for loop

auganc(sim(u)) = anc(sim(u)) U {v € V| 7(v) = 7(u) is in C}
Uanc({v € V| 7(v) = 7(u) is in C})

else

sim(u) = {v € V| 7(v) = 7(u),v € cpar(sim(u’)) for each c-child v’ of u,
and v € auganc(sim(u")) for each d-child u" of u}

compute cpar(sim(u))
auganc(sim(u)) < anc(sim(u))

Figure 10: The Simulation Algorithm in the Absence of Subtypes

From now onwards, we assume that C consists only of
required-child and required-descendant ICs. Then, Amer-
Yahia et al.’s algorithm outlined above correctly finds the
minimal TPQ equivalent to @, in the presence of C. Ap-
plying their original O(n*) minimization algorithm to A(Q)
takes O(n®) time; so, their overall minimization algorithm
runs in O(n®) time. We present an efficient O(n?) algorithm.

Let v be a leaf node of a TPQ, and let u be its parent. We
say that v is redundant due to C if either of the following
holds.

1. v »vand 7(u) = 7(v) is in C, or
2. u=v and 7(u) = 7(v) is in C.

Let R(Q) be the reduced query obtained from @ as follows:
Repeatedly remove a leaf node that is redundant due to C,
until no leaf is redundant due to C' (note that a leaf node
at some intermediate step could be an internal node of Q).
R(Q) can be computed in O(n?) time and has at most n
nodes.

The minimal TPQ equivalent to), in the presence of
C, can be obtained using algorithm MinimizeCTPQ (Fig-
ure 9). It computes the simulation relation on R(Q) using
CTPQSimulation, and then calls CTPQMinimization to re-
move the redundant nodes. The working of algorithms CT-
PQSimulation and CTPQMinimization (Figures 10 and 11)
parallel those of algorithms TPQSimulation and TPQMin-
imization (Figures 3 and 4, Section 3), respectively. The
runtime analyses are also similar: CTPQSimulation and
CTPQMinimization run in O(n?) time. So, MinimizeCTPQ
runs in O(n?) time.

For an example, let () be the TPQ shown in Figure 2b,
and let C = {e = d}. vs is the only node that is redundant
due to C; the reduced query R(Q) is obtained by dropping
this node from Q. In R(Q), we have sim(vs) = sim(ve) =
{v4,v6}, sim(vs) = {vs}, cpar(sim(va)) = cpar({vs, v}) =
{v2,v3}, and anc(sim(vs)) = anc({vs}) = {v1,v2}. Since
e = d is in C, auganc(sim(vs)) contains, in addition to
anc(sim(vs)), vy and its ancestors; so auganc(sim(vs)) =
{v1,v2,vs,vr}. Then, since vz € cpar(sim(vy)) and vs €
auganc(sim(vs)), CTPQSimulation concludes that vs €
stm(vz2). Finally, since vs € sim(v2), CTPQMinimization
deletes the subtree rooted at ve; the resulting TPQ is mini-
mal.

Now consider the correctness of MinimizeCTPQ. The first
step, namely the reduction of @, is certainly harmless; as we
will show below, it is absolutely essential for the correctness
of the whole algorithm. Algorithm CTPQSimulation com-
putes the simulation relation on R(Q) in the presence of C.
It differs from TPQSimulation only due to auganc; the pre-
fix aug in auganc stands for augmented. For an internal
node u in R(Q), auganc(sim(u)) is same as anc(sim(u)).
For a leaf node u, auganc(sim(u)) contains, in addition to
anc(sim(u)), the following: Those nodes v in R(Q) such that
7(v) = 7(u) is in C, and their ancestors. On input R(Q),
the algorithm essentially mimics the computation of algo-
rithm TPQSimulation on the augmented input A(R(Q)).
We will show that CTPQSimulation and ChaseSimulation
(Figure 6, Section 4) compute essentially the same simula-
tion relation, on inputs R(Q) and chase(R(Q)), respectively.
In what follows, let sim(u), cpar(sim(u)), anc(sim(u)) and
auganc(sim(u)) be the sets computed by CTPQSimulation

Algorithm CTPQMinimization(u)

for each child v of u do

if v is a c-child then

/* w is a nonredundant node of a TPQ

if w has another c-child w € sim(v) that has not been deleted

then delete v
else CTPQMinimization(v)

if v is a d-child then

/* the entire subtree rooted at v is deleted
/* node v is nonredundant

if w has another child w € sim(v) U auganc(sim(v)) that has not been deleted

then delete v
else CTPQMinimization(v)

/* the entire subtree rooted at v is deleted
/* node v is nonredundant

Figure 11: The Minimization Algorithm in the Absence of Subtypes

for nodes u € R(Q); let sim.(u), cpar.(sim.(u)) and
ance(simc(u)) be the sets computed by ChaseSimulation for
original nodes u € chase(R(Q)). We have the following re-
sults.

LEMMA 5.1. Let u be a leaf node of R(Q).

1. sim(u) = simc(u) N R(Q)

(i.e., the original nodes in sim.(u))

2. cpar(sim(u)) C cparc(sime(u)) N R(Q)

3. anc(sim(u)) C auganc(sim(u))

= ance(sime(u)) N R(Q)

ProoF. Clearly, sim(u) consists of the original nodes in
sime(u); so 1) holds. Also, cpar(sim(u)) consists of those
(original) nodes in R(Q) that have a c-child in sim(u); so 2)
holds. For 3), the first part anc(sim(u)) C auganc(sim(u))
is obvious; the second part auganc(sim(u)) = ance(sime(u))N
R(Q) follows from the way auganc is computed. [

LEMMA 5.2. Let u be an internal node of R(Q).
1. sim(u) = simc(u)
2. cpar(sim(u)) = cparc(simc(u))

3. auganc(sim(u)) = anc(sim(u)) = ance(sime(u))

PrOOF. The proof is by induction on the height of node
u € R(Q). First note that, by 1), simc(u) consists only
of original nodes; also, in chase(R(Q)), the cparent or an
ancestor of an original node must be an original node. So,
2) and 3) follow from 1). The proof of 1) depends crucially
on the fact that we are dealing with the reduced query R(Q),
and that subtypes are not allowed.

Clearly, sim(u) C sim.(u); we show that sim(u) D sim.(u).
Let v € simc(u); since subtypes are not allowed, 7(v) =
7(u). We show that v € sim(u) by proving that
v € cpar(sim(u')) for each c-child u' of u in R(Q),
and v € auganc(sim(u")) for each d-child «” of u in R(Q)
(refer to algorithm CTPQSimulation in Figure 10).

Let v’ be a c-child of u in R(Q); since R(Q) is reduced, in
chase(R(Q)), v must have an original c-child v' € sim.(u').
By Lemma 5.1 and the inductive hypothesis, v' € sim(u');
s0, v € cpar(sim(u')).

Now, let u” be a d-child of u in R(Q); since R(Q) is re-
duced, in chase(R(Q)), v must have an original child v" €
sime(u") U ance(sime(u")). By Lemma 5.1 and the in-
ductive hypothesis, v" € sim(u") U auganc(sim(u")); so,
v € auganc(sim(v”)). O

Algorithm CTPQMinimization is almost identical to
TPQMinimization; the only difference is that anc(sim(v))
has been replaced by auganc(sim(v)). Lemmas 5.1 and 5.2
lead to the following result.

THEOREM 5.3. Algorithm MinimizeCTPQ correctly com-
putes the minimal TPQ equivalent to a given TPQ, in the

presence of required-child and required-descendant ICs, in
O(n?) time.

6. CONCLUSIONS

In this paper, we considered the problem of minimizing
tree pattern queries (TPQs), in the absence and presence
of three kinds of integrity constraints (ICs: required-child,
required-descendant and subtype). In Section 3, we pre-
sented an efficient O(n?) algorithm for minimizing TPQs in
the absence of ICs. In Section 4, we presented an O(n*)
algorithm in the presence of the three kinds of ICs. In Sec-
tion 5, we presented an O(n?) algorithm in the presence
of only required-child and required-descendant ICs (i.e., no
subtypes). These three algorithms represent substantial im-
provement over the previously known algorithms of Amer-
Yahia et al. [2]. Also, we believe that our O(n?) algorithms
in Sections 3 and 5 are runtime optimal; it might be possible
to improve upon the O(n?) algorithm in Section 4.

Now, let us consider extending the applicability of our al-
gorithms. First, consider allowing TPQs to contain multiple
output nodes; i.e., op(Q) is a sequence (an ordered set) of
nodes, instead of being a single node. For example, in Fig-
ure 1c), consider making the rightmost leaf (of type d) as
the second output node. This corresponds to the following
XQuery query:

for $z in a[./b[./e and .//d]] /b return
for 8y in $x/c//d return
output($z, $y)

In general, let op(Q) = (u1,u2,...,ur); we will assume that
the user’s intent is that none of the output nodes should be
deleted as being redundant. The answer to @ is formed from
the set of sequences (B(u1),B(u2),...,B(ur)) of database
nodes, obtained over all possible embeddings 3. Our algo-
rithms in Sections 3, 4 and 5 can be easily modified to han-
dle this extension, without changing the runtime. The only
change needed is to replace the expression “if v = op(Q)”
by the expression “if u € op(Q)”, in TPQSimulation, Chas-
eStmulation and CTPQSimulation (Figures 3, 6 and 10, re-
spectively).

Next, consider allowing TPQs to contain nodes labeled —
(“any” type), as in [20, 21, 22, 23]. Miklau and Suciu [16]
show that the problem of minimizing TPQs that contain
c-edges, d-edges and nodes labeled — is co-NP complete.
Our O(n?) algorithm in Section 3 can be extended to TPQs
with nodes labeled — (but no d-edges). In TPQSimulation
(Figure 3), we allow a node labeled — to be simulated by a
node of any type 7 € XU {—}; but a node of type 7 € ¥ can
be simulated only by a node of type 7.

The minimization algorithm in Section 5 can not be ex-
tended to allow the — label (even in the absence of d-edges),
because the — label induces subtyping: 7 < —, for all 7 € X.
The TPQ obtained from Figure 8a, by replacing the college
and dept labels with —, along with C = {scicollege —
scidept, scidept — lab} proves this point.

Now, let us consider some other kinds of integrity con-
straints. Wood [20, 22] studied required-parent constraints.
A required-parent constraint of the form 71 < 72 means
that every database node of type 7> has a parent of type
71. Amer-Yahia et al. [2] mentioned required-ancestor con-
straints that are analogous to required-parent constraints.
Fan and Simeon [9] studied key, foreign key and inverse
constraints. Further research is needed to study the min-
imization of TPQs in the presence of such constraints.

7. ACKNOWLEDGEMENTS

The author would like to thank the IEEE ICDE reviewers
(who rejected an earlier, half-sized version of this paper) and
the reviewers of this conference for helpful suggestions that
led to improved presentation in this final version.

8. REFERENCES

[1] S. Abiteboul, P. Buneman and D. Suciu. Data on the
Web. Morgan Kaufman, San Francisco, CA, 2000.

[2] S. Amer-Yahia, SR. Cho, L. V. S. Lakshmanan and D.
Srivastava. Minimization of Tree Pattern Queries,
Proc. ACM SIGMOD Intl. Conf. Management of
Data, 2001, pp. 497-508.

[3] B. Bloom and R. Paige. Transformational Design and
Implementation of a New Efficient Solution to the
Ready Simulation Problem, Science of Computer
Programming 24(1995), pp. 189-220.

[4] P. Buneman, S. Davidson, M. Fernandez and D.
Suciu. Adding Structure to Unstructured Data, Proc.
Internat. Conf. Database Theory, 1997, pp. 336-350.

[5] D. Calvanese, G. De Giacomo and M. Lenzerini. On
the Decidability of Query Containment under
Constraints, Proc. 17th ACM Symp. Principles of
Database Systems, 1998, pp. 149-158.

[6] D. D. Chamberlin, J. Robie and D. Florescu. Quilt:
An XML Query Language for Heterogeneous Data
Sources, WebDB 2000.

[7] A. K. Chandra and P. M. Merlin. Optimal
Implementation of Conjunctive Queries in Relational
Databases, Proc. 9th ACM Symp. Theory of
Computing, 1977, pp. 77-90.

[8] A. Deutch, M. Fernandez, D. Florescu, A. Levy and
D. Suciu. A Query Language for XML, Intl. WWW
Conf., 1999.

[9] W. Fan and J. Simeon. Integrity Constraints for XML,
Proc. 19th ACM Symp. Principles of Database
Systems, 2000, pp. 23-34.

[10] D. Florescu, A. Levy and D. Suciu. Query
Containment for Conjunctive Queries with Regular
Expressions, Proc. 17th ACM Symp. Principles of
Database Systems, 1998, pp. 139-148.

[11] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., NY, 1979.

[12] M. R. Henzinger, T. A. Henzinger and P. W. Kopke.
Computing Simulations on Finite and Infinite Graphs,
Proc. IEEE Symp. Foundations of Computer Science,
1995, pp. 453-462.

[13] T. Howes, M. Smith and G. S. Wood. Understanding
and Deploying LDAP Directory Services. MacMillan
Technical Publishing, Indianapolis, 1999.

[14] H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D.
Srivastava and D. Vista. Querying Network
Directories, Proc. ACM SIGMOD Intl. Conf.
Management of Data, 1999.

[15] D. Maier, A. O. Mendelzon and Y. Sagiv. Testing
Implications of Data Dependencies, ACM Trans.
Database Systems 4(1979), pp. 455—469.

[16] G. Miklau and D. Suciu. Containment and
Equivalence for an XPath Fragment, Proc. 21st ACM
Symp. Principles of Database Systems, 2002.

[17] Y. Papakonstantinou and V. Vianu. DTD Inference
for Views of XML Data, Proc. 19th ACM Symp.
Principles of Database Systems, 2000, pp. 35—46.

[18] P. Ramanan. Inferring DTDs for Views of XML Data,
Tech. Rep. WSUCS-01-1, Comp. Sci. Dept, Wichita
State Univ, August 2001.

[19] J. D. Ullman. Principles of Database and Knowledge
Base Systems, Vol. I & II. Computer Science Press,
Maryland, 1989.

[20] P. T. Wood. Optimizing Web Queries Using
Document Type Definitions, Proc. 2nd ACM CIKM
Intl. Workshop on Web Information and Data
Management, 1999, pp. 28-32.

[21] P. T. Wood. On the Equivalence of XML Patterns,
Proc. 1st Intl. Conf. Computational Logic, Lecture
Notes in Artificial Intelligence 1861, pp. 1152-1166,
Springer Verlag, New York, 2000.

[22] P. T. Wood. Rewriting XQL Queries on XML
Repositories, Proc. 17th British National Conf. on
Databases, Lecture Notes in Computer Science 1832,
pp- 209-226, Springer Verlag, New York, 2000.

[23] P. T. Wood. Minimising Simple XPath Expressions,
WebDB 2001.

[24] World Wide Web Consortium. XML Path Language
(XPath), W3C Recommendation, Version 1.0,
November 1999. See http://www.w3.0org/TR/xpath.

[25] World Wide Web Consortium. XQuery 1.0: An XML
Query Language, W3C Recommendation, Version 1.0,
December 2001. See http://www.w3.org/TR/xquery.

