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ABSTRACT
Estimating the selectivity of queries is a crucial problem in
database systems. Virtually all database systems rely on
the use of selectivity estimates to choose amongst the many
possible execution plans for a particular query. In terms
of XML databases, the problem of selectivity estimation of
queries presents new challenges: many evaluation operators
are possible, such as simple navigation, structural joins, or
twig joins, and many different indexes are possible ranging
from traditional B-trees to complicated XML-specific graph
indexes. A new synopsis for XML documents is introduced
which can be effectively used to estimate the selectivity of
complex path queries. The synopsis is based on a lossy com-
pression of the document tree that underlies the XML docu-
ment, and can be computed in one pass from the document.
It has several advantages over existing approaches: (1) it
allows one to estimate the selectivity of queries containing
all XPath axes, including the order-sensitive ones, (2) the
estimator returns a range within which the actual selectiv-
ity is guaranteed to lie, with the size of this range implicitly
providing a confidence measure of the estimate, and (3) the
synopsis can be incrementally updated to reflect changes in
the XML database.

1. INTRODUCTION
The Extensible Markup Language (XML) has found prac-

tical application in numerous domains, including data in-
terchange, streaming data, and data storage. The semi-
structured nature of XML allows data to be represented in
a considerably more flexible nature than in the traditional
relational paradigm. The tree-based data model underlying
XML poses many challenges to efficient query evaluation.

An important component of any XML database system
is effective selectivity estimation: given a query Q over a
database D, what is the approximate result size of Q over
D? This problem arises in several domains. Firstly, a rough
estimate of the result size of a query can indicate to the user
whether or not a query is appropriately framed before run-
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ning a potentially expensive query. Selectivity estimation
also has natural applications to approximate query answer-
ing. However, the most significant application of selectivity
estimation is in query plan selection.

For example, suppose we have the sets A, B, and C of all
a, b, and c elements in a document, and we wish to evaluate
the query //a[.//b]//c. We could do this by performing a
structural join on A and B, and joining this result with C.
Alternatively, we could first join A and C, and then join the
intermediate result with B. The relative speed of these two
queries is highly dependent on the selectivity of the initial
structural joins. While for these kinds of queries a twig
join is more appropriate, similar issues arise involving the
relative result sizes for two or more twig queries, particularly
in more sophisticated query languages such as XQuery.

Thus, in any database system, being able to accurately
estimate the result size of the sub-expressions in a query is
of great practical importance. There has been a lot of work
on this problem in the context of XML databases [1, 6, 8,
12, 15–18, 24, 25, 27]. All previous work suffers from some
combination of the following problems:

• Expensive construction: A problem with many tech-
niques is that synopsis construction is extremely ex-
pensive. Any algorithm which requires more than one
pass of the database is likely to be too expensive to
run on very large databases.

• Non-updateability : Almost every selectivity estimation
technique to date fails to handle updates to the under-
lying database. As they are static, their accuracy de-
teriorates as the database changes. The only realistic
solution is to periodically rebuild them from scratch,
which is obviously expensive.

• Limited utility : Selectivity estimation techniques gen-
erally consider only a limited subset of a query lan-
guage. Most previous XML techniques consider ex-
tremely limited languages, such as simple path expres-
sions. For example, no previous XML selectivity esti-
mation technique can handle the order-sensitive axes
of XPath, such as following.

• No guarantee on accuracy : All existing techniques use
heuristics to generate their selectivity estimates. These
heuristics, while based on well-justified assumptions in
many cases, do not provide any guarantee of accuracy,
and hence the computed estimate can be wildly inaccu-
rate. With the exception of [25], no previous technique



gives the user any sort of confidence measure on the
result.

In this work, we extend recent work on the lossless com-
pression of XML [5] to the problem of selectivity estimation.
Our work has the following advantages over previous work:

• Our synopsis can be constructed in a single pass of the
underlying document. As we shall see in our experi-
ments, our construction cost is between 50 and 100
times faster than for other synopses.

• Our synopsis can give selectivity estimates for any
Core XPath [9] query, including those which make use
of order-sensitive axes.

• Unlike other selectivity estimation strategies, our ap-
proach returns a range within which the exact selectiv-
ity is guaranteed to lie. The confidence of the estimate
is reflected in the size of the range: a smaller range
naturally implies a greater degree of confidence in the
answer. This is especially useful for query plan selec-
tion, as the query engine can take into account the
confidence of the estimate when selecting plans.

• Our structure is efficiently updateable. While other
structures require scans of the database to handle up-
dates, we can handle updates in time linear in the size
of the synopsis.

We demonstrate in our experimental section that even
though our structure provides all these additional features,
it returns answers that are competitive with the best existing
techniques, while using an extremely small amount of space.
Thus, our synopsis provides the first complete solution to the
problem of selectivity estimation for structural queries.

The rest of the paper is organized as follows. In Section 4
we discuss our synopsis structure: straight-line tree gram-
mars. In Section 5, we introduce the use of tree automata
over these grammars as an effective means of computing
selectivity. We then discuss how to efficiently update our
synopsis in Section 6, as well as how to efficiently store it
in Section 7. Section 8 presents an experimental analysis of
our techniques, and Section 9 concludes the paper.

2. RELATED WORK
Aboulnaga et al [1] were the first to consider the selectivity

estimation problem for simple path queries. They propose
two different synopsis structures: pruned path trees and
“Markov tables”, which take advantage of the apparently
Markovian nature of path selectivity in real-world XML
data. The disadvantage of both approaches is that large
structures must be constructed before they are pruned, which
can be very space intensive; their experiments also demon-
strate that their schemes have inconsistent performance. The
idea of using a Markov table is extended to adaptive selec-
tivity estimation by the XPathLearner system [12], which
uses feedback from the query processor.

The first paper to study the problem of selectivity es-
timation for more complicated queries is that of Chen et
al [6]; they use pruned suffix trees to estimate the selectiv-
ity of twig queries. The disadvantages of their approach are
that, again, the whole suffix tree must be constructed before
it is pruned, and also that their method does not general-
ize to handle the descendant operator of XPath. Freire et

al [8] present a system, StatiX, which handles selectivity es-
timation in the presence of an XML Schema. Their work
builds a histogram of data values for each element type in
the schema; however, these histograms are built over the ob-
ject identifiers of the nodes, which means that the quality of
their estimation is highly dependent on the distribution of
these identifiers. Ramanath et al [19] extended StatiX with
updates, but their work still suffers from the same limita-
tions.

Research upon the estimation of result sizes for the struc-
tural join operator, such as [24,27], is also relevant to selec-
tivity estimation for path expressions of the form //p1//p2.
Unfortunately, these results cannot be easily generalized to
other path expressions.

Polyzotis and Garofalakis [15–18] develop a general frame-
work, XSketch, which provides good estimates for twig
queries using graph synopses. The primary shortcoming of
this method is that the construction process for the synop-
sis is expensive, and also relies on generating a set of test
queries upon which the resultant synopsis is dependent.

All methods described above fail to handle updates on the
underlying database. The only paper to consider selectivity
estimation in a dynamic context is that of Wang et al [25],
which makes use of Bloom filters to give provable guaran-
tees on the quality of the results. However, these results only
hold for simple path expressions of the form /a/b or //a/b,
and hence are of limited use in practice. Also, while the au-
thors demonstrate the effectiveness of their approach, their
technique requires the combination of two separate sketch
structures, and the effect of the interaction of these struc-
tures on the estimation error is unclear.

Sartiani [20,21] has developed a general framework which
can extend existing work on selectivity estimation to the
problem of estimation for XQuery. As his technique is quite
general, it can be applied to the work of this paper as well
as existing work.

3. BASIC DEFINITIONS
Documents Let D be the ordered, rooted, labeled, un-

ranked tree corresponding to an XML document; for our
purposes we can safely ignore attributes, node values, names-
paces, processing instructions, and other features of XML
(many of these can be handled by our results in a straight-
forward fashion). By Σ we denote the alphabet of elements
present in D; while in its full generality XML allows Σ to
be countably infinite in size, we restrict it for convenience
so that it is finite and |Σ| = O(1) (with respect to |D|).
Figure 1 gives an example of the structure of an XML doc-
ument.

Throughout this paper we shall represent XML documents
using a binary, ranked representation bin(D) of D. The
transformation into this representation is simple: the left
edge of the binary tree represents the “first child” relation-
ship, while the right edge represents the “next sibling” rela-
tionship. We use ⊥ to denote the empty tree, and write VD
for the vertices of the document (in the ranked representa-
tion), and λ : VD → Σ for the mapping from vertices of the
document to their labels. Figure 2 gives an example of the
transformation of an XML document from the unranked to
ranked representation.

Queries Core XPath [9] is a powerful fragment of XPath
that can be seen as the structural portion of XPath. It con-
sists of queries satisfying the following grammar:



dblp

article

title author journal

inproceedings

title author booktitle

(a) An XML document tree D

dblp

article

title

⊥ author

⊥ journal

inproceedings

title

⊥ author

⊥ booktitle

⊥

⊥

(b) The binary representation bin(D)

A0 → ⊥
A1 → title(⊥, author(⊥, y1))

Start = A2 → dblp(article(A1(journal),

inproceedings(A1(booktitle),

⊥)),⊥)

(c) SLT grammar for bin(D)

Figure 1: A sample XML document.

path ::= location path | / location path

location path ::= location step ( / location step )∗

location step ::= χ :: t | χ :: t [pred]

pred ::= (pred ∨ pred) | (pred ∧ pred)

(¬pred) | location path

In this grammar, χ is an XPath axis (e.g., descendant,
descendant-or-self, or child), and t is a node test (i.e.,
either t ∈ Σ or t = ∗). Note that the above grammar al-
lows arbitrarily Boolean combinations of location paths as
predicates in the query; for ease of presentation we will only
consider conjunction in this paper (our results are easily
generalized to handle other Boolean functions).

We will represent a core XPath query Q as a tree with
root rQ, vertices VQ and edges EQ, along with label func-
tions λV : VQ → Σ ∪ {∗} and λE : EQ → A, where A is
the set of XPath axes. Since Q is a tree, each node q in
Q has at most one parent – therefore, for convenience we
write λE(q) = λE(〈Parent(q), q〉). One of the vertices of
Q, mQ ∈ VQ, is the match node. The semantics of an XPath
query are well-known [7], and so we only briefly summarize
them here. An embedding of a query Q in a document D is
a tree homomorphism h : VQ → VD satisfying:

• (∀v ∈ VQ) λV (v) = ∗ or λ(h(v)) = λV (v).

• (∀〈v1, v2〉 ∈ EQ) 〈h(v1), h(v2)〉 satisfies the constraint
specified by λE(〈v1, v2〉).

The constraints specified by λE depend on the axis, but
are straightforward. For instance, if λE(〈v1, v2〉) = child,
then we require h(v1) to be the parent of h(v2) in D. The
result of the query Q over D is then:

Q(D) = {h(mQ) | ∃ an embedding h of Q in D}
The problem of selectivity estimation is to estimate |Q(D)|
for arbitrary queries Q.

While there are thirteen axes in XPath, several of these
(e.g., namespace) are uninteresting as they can be handled
in an analogous fashion to the others. The remaining axes
can be divided into forward and reverse axes: in this paper,
we only need to consider only the forward axes, as Olteanu
et al [14] have demonstrated that any query involving re-
verse axes can be rewritten into one using only forward
axes. Additionally, it is trivial to rewrite the descendant

axis in terms of the descendant-or-self and child axes.

Hence, we consider the axes child, following-sibling,
following, self, and descendant-or-self. Note that this
is purely a matter of convenience, as it is possible to extend
our techniques to handle reverse axes more directly.

4. THE SYNOPSIS
The idea of our synopsis is to use a tree compression algo-

rithm to generate a small pointer-based representation of the
(ranked) tree bin(D), called an “SLT grammar” (straight-
line tree grammar). For common XML documents the size
of the obtained grammar, in terms of the number of edges,
is approximately 5% of the size of D. We then decrease
the size of this grammar further, by removing and replac-
ing certain parts of it, according to a statistical measure of
multiplicity of tree patterns. This results in a new gram-
mar which contains size and height information about the
removed patterns (this information will later be used to esti-
mate selectivity). The two big advantages of SLT grammars
over other compressed structures are: (1) they can be repre-
sented in a highly succinct way (see Section 7), and (2) they
can be queried in a direct and natural way without prior
decompression [13]. In particular, it is shown in Section 5
how to translate XPath queries into certain tree automata
which can be executed on SLT grammars.

4.1 Tree Compression using SLT Grammars
Most XML documents are highly repetitive: the same tags

appear again and again, and larger pieces of tag markup
reappear many times in a document. One well-known idea
of removing repeated patterns in a tree is to remove multiple
occurrences of equal subtrees and to replace them by point-
ers to a single occurrence of the subtree. In this way, the
minimal unique DAG (directed acyclic graph) of a tree can
be computed in linear time. In [4] this idea was applied to
XML document trees, and it was shown that for most doc-
ument trees, the size of the minimal DAG is approximately
10% of the size of the original tree (where size is measured
as the number of edges).

The idea of sharing common subtrees can be extended to
the sharing of connected subgraphs in a tree. For exam-
ple, in the tree c(d(e(u)), c(d(f), c(d(a), a))) only the sub-
tree a appears more than once; however, the tree pattern
“c(d(” appears three times in the tree. The idea of shar-
ing tree patterns gave rise to the notion of sharing graphs,
which were studied in the context of optimal reductions of
lambda-calculus [10]. The problem of finding a smallest
sharing graph for a given tree is NP-complete. The first
approximation algorithm for finding a small sharing graph



is the BPLEX algorithm of [5]. Instead of sharing graphs, it
produces isomorphic structures called Straight-Line context-
free Tree grammars (SLT grammars). In such a grammar, a
pattern is represented by a tree with formal parameters y1,
y2,. . . . For instance, the pattern “c(d(” above is represented
by the tree c(d(y1), y2). Each nonterminal A of the gram-
mar has a fixed number r(A) of formal parameters, called its
rank. We call a finite set N together with a rank mapping
r a ranked alphabet. A rule is of the form A(y1, ..., yk) → t
where t is a tree in which the formal parameters may appear
at leaf nodes. We will only deal with grammars where each
parameter appears exactly once in t.

Definition 1 (SLT Grammar). An SLT Grammar G
(over Σ) is a tuple 〈N, Σ, R〉, where N = {A1, . . . , An} is a
ranked alphabet of nonterminals and R is a set of rules. For
each Ai ∈ N of rank k the set R has exactly one rule of the
form Ai(y1, . . . , yk) → t, where t is a ranked tree over Σ, N ,
and y1, . . . , yk, which are parameters appearing at the leaves
of t, each exactly once, and in order (following the pre-order
of t). Moreover, for any Aj ∈ N , if Aj occurs in t then
j < i.

The rules of G are used as term rewriting rules in the usual
way (inducing a rewrite relation ⇒G). The nonterminal An

is the start nonterminal. An SLT grammar G produces (at
most) one tree, because the indices of non-terminals strictly
decrease (and hence no recursion is possible). For instance,
the SLT grammar with rules:

A1(y1, y2) → c(d(y1), y2)
A2 → A1(e(u), A1(f, A1(a, a)))

generates the aforementioned tree. This can be seen by be-
ginning with the start non-terminal A2, and applying rules
until no non-terminals remain:

A2 ⇒G A1(e(u), A1(f, A1(a, a)))
⇒G A1(e(u), A1(f, c(d(a), a)))
⇒G A1(e(u), c(d(f), c(d(a), a)))
⇒G c(d(e(u)), c(d(f), c(d(a), a)))

The BPLEX algorithm is described in detail in [5]; In or-
der for BPLEX to run in linear time, it is controlled by
three parameters: the maximal rank that it gives to nonter-
minals, the maximal size of a pattern (= right-hand side),
and the window size (= the number of rules that it scans
when looking for existing patterns).

Let us explain how BPLEX works on an example. Every
grammar generated by BPLEX contains the special non-
terminal A0 which generates the empty tree ⊥. Running
BPLEX on the tree c(d(e(u)), c(d(f), c(d(a), a))) produces
this SLT grammar:

A0 → ⊥
A1 → a
A2(y1, y2) → c(d(y1, y2), A0)
A3 → A2(e(u, A0), A2(f, A2(A1, A1)))

Taking the binary encoding into account, this is basically
the grammar that was shown before. BPLEX first looks
for repetitions of subtrees and shares them by introducing
nonterminals; in our example it introduces A1 and replaces
the two occurrences of a by A1. Next, BPLEX traverses
this “DAG grammar” bottom-up searching for the repeti-
tion of a tree pattern consisting of at least two nodes; if it
finds one, it introduces a new nonterminal, adds a corre-
sponding rule, and replaces the occurrences of the pattern
by the new nonterminal. In our case, when the second c

node is visited, coming from below, A2 is introduced, and
we obtain A2(f, A2(A1, A1)). When BPLEX moves further,
it first looks for repetitions of patterns that are already in
the grammar, and then looks for new patterns. At the root,
it finds another occurrence of the c(d( pattern and replaces
that by A2.

4.2 Lossy Compression
Consider an XML document tree D and an SLT grammar

G representing bin(D). We want to reduce the size of G in
such a way that the result can be used for selectivity estima-
tion. The idea is to keep the parts of the document tree that
appear frequently (at many different positions in bin(D)),
and to remove parts that appear infrequently. When we re-
move a part, we replace it by a special new symbol ∗, which
additionally carries information about the height and size
of the removed pattern. As parts we simply take the right-
hand sides of the rules of G. Let κ be a natural number,
which we call the threshold parameter.

The threshold parameter determines how many produc-
tions will be removed (at most) from the grammar. The A0-
production is never deleted. First the productions with the
lowest multiplicities are deleted, in the order A0, A1, . . . of
the grammar; this process is repeated until κ productions are
deleted (or the grammar only contains the A0-production).
In this way we obtain a (κ-) lossy grammar (for G). The
multiplicity of Ai is the number of times that Ai is generated
during the derivation of bin(D) by G (see below for how to
compute this number). Deleting the nonterminal Ai from
G means removing its rule Ai(y1, . . . , yk) → t, and (recur-
sively) replacing in all other rules any subtree Ai(t1, . . . , tk)
by the tree:j ∗(t1, . . . , tk, h, s) , if right-most leaf of ex(t) is yk

∗(t1, . . . , tk,⊥, h, s) , otherwise

where h and s are the height and size, respectively, of the
unranked tree corresponding to the tree ex(t) generated by
Ai, i.e., the tree u with t ⇒G · · · ⇒G u �⇒G. The numbers
h and s are stored to later give over-estimates of selectiv-
ity. Since we are working on binary trees, u represents a
sequence ω of trees in the unranked representation; if yk is
the right-most leaf of ex(t) then the last parameter tree tk

of Ai(t1, . . . , tk) will be the last tree in ω.

t1

*

t2 t3 s ht1

size = s

h ... t3s1 sn

t2

The (unranked) semantics of a tree ∗(t1, t2, t3, h, s) is de-
picted in the above figure: it represents any sequence s1, . . . ,
sn+1 of trees such that: (1) the sequence s1, . . . , sn has sub-
trees t1 and t2, (2) the last tree sn+1 equals t3, (3) the
height of the sequence is h, and (4) the size of the sequence
is s. As an example, consider the grammar G produced by
BPLEX shown at the end of the previous subsection. Let
us take κ = 1 and construct a κ-lossy grammar for G. The
nonterminal A1 will be deleted because it has the lowest
multiplicity (= 2). Since A1 generates a which has size and
height equal one, we replace occurrences of A1 by the tree
∗(1, 1). In this way we obtain the following grammar:

A0 → ⊥
A2(y1, y2) → c(d(y1, y2), A0)
A3 → A2(e(u, A0), A2(f, A2(∗(1, 1), ∗(1, 1))))

As another example consider a nonterminal A5, with rule
A5(y1, y2) → c(d(y1, e), y2) which is selected to be deleted.



If A7 is not deleted and has the rule A7 → A3(A5(A2, A1)),
then this rule will be changed in the lossy grammar into
A7 → A3(∗(A2, A1, 2, 3)). However, if the A5 rule was
A5(y1, y2) → c(d(y1, y2), e), then the A7 rule would be changed
into A7 → A3(∗(A2, A1,⊥, 2, 3)).

In order to replace nonterminals by stars, according to
the value of κ, we must compute for each nonterminal its
multiplicity, i.e., the number of times that it is generated
during the derivation of the grammar. This can be done
in one pass through the SLT grammar G as follows: The
nonterminal An has multiplicity one. For each nontermi-
nal that occurs m ≥ 1 times in t, we set its multiplicity
counter to m. We now move to the nonterminal An−1. If
its multiplicity counter is c ≥ 1 then for each nonterminal
that appears m′ ≥ 1 times in An−1’s right-hand side we set
the corresponding multiplicity counter to c ·m′. We proceed
with An−2, . . . , A1 in the same way. Similarly, it is possible
to compute the size of the tree that is generated by a given
nonterminal. For computing the height of a right-hand side,
for each occurrence of a nonterminal of rank r ≥ 1 we must
additionally take into account the lengths of the paths from
the root of its right-hand side to the different parameter
leaves.

5. SELECTIVITY ESTIMATION
In this section, we develop our selectivity estimation tech-

nique over SLT grammars. We first consider the conversion
of an XPath query into an equivalent tree automaton, and
describe how to evaluate this tree automaton over a docu-
ment to test whether the query has at least one match in the
document (i.e., whether the query accepts the document).
We then extend the standard tree automaton to also return
the size of the result of the query on a document. Then, the
algorithm is generalized to work over SLT grammars. The
final step is to handle lossy SLT grammars which contain
∗’s in rules.

Definition 2 (Tree Automaton). A deterministic
tree automaton over ranked tree encodings is a tuple 〈P, Σ, δ,
F 〉, where P is a finite set of states, Σ is the alphabet,
δ : P ×P ×Σ → P is the transition function, and F ⊆ P is
the set of final states.

A tree automaton is run on a tree in a bottom-up fashion
as follows: the empty trees (⊥) which appear at the leaves
of the tree are assigned the empty state, ∅. We then move
upwards in the tree, so that a node with label a whose chil-
dren have been assigned states p1 and p2 is assigned the
state δ(p1, p2, a). Once the automaton has reached the root
node, and assigns it state pr, we can determine whether the
automaton accepts the document by testing whether pr ∈ F .

5.1 Converting Queries to Tree Automata
The translation of a core XPath query into a tree automa-

ton is based upon the observation that core XPath queries
can be evaluated in a bottom-up fashion on a document.
For instance, consider the query q = //article[.//title]
[.//author]. This query can be decomposed into three sub-
queries: q itself, q1 = //title, and q2 = //author. Working
in a bottom-up fashion on the document tree in Figure 1,
we can assign to each node in the database the subset of
queries {q, q1, q2} which match the subtree rooted at that
node. This is easy to do, since, for instance, we know that

Algorithm 1 Tree Automaton Transition Function

Following (n)
1: R← ∅
2: for each c ∈ Children(n) do
3: if λE(c) = following then
4: R← R ∪ {c}
5: else
6: R← R ∪ Following(c)
7: return R

Satisfied (p1, p2, p, q, F )
1: for each c ∈ Children(q) do
2: if λE(c) = child ∧ 〈c, F ∩ Following(c)〉 /∈ p1 then
3: return false
4: else if λE(c) = descendant-or-self ∧

〈c, F ∩ Following(c)〉 /∈ p ∪ p1
5: return false
6: else if λE(c) ∈ {following-sibling, following} ∧

〈c, F ∩ Following(c)〉 /∈ p2
7: return false
8: else if λE(c) = self ∧ 〈c, F ∩ Following(c)〉 /∈ p then
9: return false

10: return true

δ (p1, p2, a)
1: F ← {q | 〈q, Following(q)〉 ∈ p2, λE(q) = following}
2: p′

1 ← {〈q, (S ∪ F ) ∩ Following(q)〉 |
〈q, S〉 ∈ p1, λE(q) ∈ {descendant-or-self, following}}

3: p′
2 ← {〈q, (S ∪ F ) ∩ Following(q)〉 |
〈q, S〉 ∈ p2, λE(q) ∈ {following-sibling, following}}

4: p← p′
1 ∪ p′

2
5: for each q ∈ {q | q ∈ Vq, λV (q) ∈ {a, ∗}} in post-order do
6: if Satisfied(p1, p2, p, q, F ) then
7: p← p ∪ {〈q, F ∩ Following(q)〉}
8: return p ∪ p2

q matches the document if both q1 and q2 match the left
child, and if the label of the node is article. Recalling that
we are working on the ranked, not unranked representation,
the full calculation is:

dblp, {q, q1, q2}

article, {q, q1, q2}

title, {q1, q2}

⊥ author, {q2}
⊥ journal, ∅

inproceedings, ∅

title, {q1, q2}

⊥ author, {q2}

⊥ booktitle, ∅

⊥

⊥

The only axis which presents any significant difficulties
is the following axis, as this introduces dependencies on
nodes outside the subtree under consideration. For instance,
consider the (contrived) query q = //author/following ::
title, which has the subquery q′ = //following :: title.
Clearly, in Figure 1 the author node of the article lies in
the result set of this query. In a bottom-up traversal of the
query, however, this can only be determined once we reach
the least common ancestor of this node and the title node
of the inproceedings element (i.e., the root node of the
document).

This problem can be addressed by keeping track not only
of the matching sub-queries at each node, but also whether
or not we have matched, for each of those nodes, any sub-



query which makes use of the following axis. Thus, instead
of keeping track of subsets of Q = {q, q′}, we keep track of
sets of items from Q × 2Q; the query accepts the document
if 〈q, {q′}〉 lies in the set at the root. A run on the ranked
representation of Figure 1 results in:

dblp, {〈q, {q′}〉, 〈q′, ∅〉}

article, {〈q, {q′}〉, 〈q′, ∅〉}

title, {〈q, ∅〉, 〈q′, ∅〉}

⊥ author, {〈q, ∅〉}
⊥ journal, ∅

inproceedings, {〈q, ∅〉, 〈q′, ∅〉}

title, {〈q, ∅〉, 〈q′, ∅〉}

⊥ author, {〈q, ∅〉}

⊥ booktitle, ∅

⊥

⊥

We now formalize this intuitive description. Given a query

Q, our tree automaton has state set P = 2Q×2Q

, final states
F = {p | p ∈ P, 〈rQ,Following(rQ)〉 ∈ p} (see Algorithm 1
for Following), and transition function as given in Algo-
rithm 1. Much of the complexity in Algorithm 1 is simply
due to the differences in handling the semantics of the dif-
ferent axes, especially following.

5.2 Counting with Tree Automata
Once we have a tree automaton for a query Q, testing

whether there is a match for Q in a given document is
straightforward, as we have seen above. However, in the
context of selectivity estimation, we do not want to test ac-
ceptance, but instead want to return the size of result of the
query. Seidl [23] developed a framework for finite tree au-
tomata with cost functions which addresses such problems:
each transition in the automaton is assigned a cost, and the
task is then to find the “cheapest” accepting path. We will
use a similar technique here.

When running our automaton on a document, we must
now keep more information in each state, in order to keep
track of selectivity. To this end, we associate with each state
p in our automaton a set of counters. Our annotated state

〈p, C〉, consists of a normal state, p ∈ 2Q×2Q

, and an array of
counters, so that C[〈q, F 〉] is the counter for each 〈q, F 〉 ∈ p.
We will assume that C[〈q, F 〉] = 0 if 〈q, F 〉 /∈ p. Each
counter represents the number of nodes matching the cor-
responding subquery, that have not already been matched
by that subquery’s parent query. As we move up the query
tree, we can use the counters for the sub-queries to compute
the selectivity of each query node.

In order to maintain selectivity information, we extend the
transition function to handle annotated states, as shown in
Algorithm 2. The counting is relatively straightforward —
we count the number of nodes matching the match node of
the query, and propagate these counts up the query tree as
required. Figure 2 gives an example run of our algorithm
(since there are no following axes present in the query, we
have used the simpler state type).

There are two issues that are worth mentioning. When
we match a new query node, the match count for that query
node is clearly the sum of the counts of its children. How-

Algorithm 2 Count-Automaton Transition Function

Restore-Counts (〈p, C〉, 〈p1, C1〉, p′
1)

1: for each 〈c, F 〉 ∈ p1\p′
1 do

2: if mQ is a descendant of c then
3: Let c→ q1 → . . .→ qn = mQ be the path from

c to mQ

4: for i from 1 to n do
5: if 〈qi, F ∩ Following(qi)〉 ∈ p then
6: C[〈qi, F ∩ Following(qi)]+= C1[〈c, F 〉]
7: break

δ (〈p1, C1〉, 〈p2, C2〉, a)
1: F ← {q | 〈q, Following(q)〉 ∈ p2, λE(q) = following}
2: p′

1 ← {〈q, (S ∪ F ) ∩ Following(q)〉 |
〈q, S〉 ∈ p1, λE(q) ∈ {descendant-or-self, following}}

3: p′
2 ← {〈q, (S ∪ F ) ∩ Following(q)〉 |
〈q, S〉 ∈ p2, λE(q) ∈ {following-sibling, following}}

4: p← p′
1 ∪ p′

2
5: Initialize counter array C for p from p′

1 and p′
2

6: for each q ∈ {q | q ∈ Vq, λV (q) ∈ {a, ∗}} in post-order do
7: if Satisfied(p1, p2, p, q, F ) then
8: p← p ∪ {〈q, F ∩ Following(q)〉}
9: C[〈q, F ∩ Following(q)〉]←P

c∈Children(q) C[〈c, F ∩ Following(c)〉]
10: if q = mQ then
11: C[〈q, F ∩ Following(q)〉]+= 1
12: (∀c ∈ Children(q)) C[〈c, F ∩ Following(c)〉]← 0
13: Restore-Counts(〈p, C〉, 〈p1, C1〉, p′

1)
14: p← p ∪ (p2\p′

2)
15: Update counter array C for p from p2\p′

2
16: return 〈p, C〉

ever, once we have copied over the children counts, we must
zero them out as well. This is to prevent double-counting,
which occurs when multiple embeddings of a query in the
document yield the same match node. For instance, in Fig-
ure 2(b), the node c1 is matched by two embeddings of the
query in Figure 2(a); at node b2, however, we set q4 : 0 in
order to count only one embedding. The second (related)
issue can be seen in the transition from the element b2 to
the element d in the document. Since the parent of b2 does
not have label a, q2 is no longer a matching subquery —
however, its child, the subquery q3, is a matching subquery.
Therefore, when removing q2 from the set of matching sub-
queries, we must transfer its count of matching nodes back
to q3. This is the purpose of the function Restore-Counts

in Algorithm 2.

5.3 Tree Automata over SLT Grammars
Up till this point we have considered tree automata run-

ning over a document. In this section, we demonstrate how
to evaluate tree automata directly over SLT grammars, so
that we can compute selectivity in time proportional to the
size of the SLT grammar used to represent the document.
Since this is much smaller than the document, it provides a
feasible way of determining selectivity.

Again, we first consider the problem of acceptance, in-
stead of selectivity computation. The main obstacle to run-
ning tree automata over SLT grammars is the handling of
parameters in rules — since these can represent anything,
we do not know what states they will take when evaluating
the automaton on a rule.

The natural solution is to simply compute all possibilities.
If we are considering a rule Ai(y1, . . . yk) → t, then we can
define a function σi(p1, . . . , pk) → P which gives the state
for t, assuming the parameters map to the states p1, . . . pk.
In defining the function σi, we will need to make calls to the



a (q1)

child::b (q2)

descendant-or-self::∗ (q3)

child::c (q4)

(a) Query

a

b1

d

b2

c1

b3

c2

(b) XML doc-
ument

a

b1

d

b2

c1 ⊥
⊥

b3

c2 ⊥

⊥

(c) Ranked representation

{q1 : 2, q2 : 0, q3 : 0, q4 : 0}

{q2 : 2, q3 : 0, q4 : 0}

{q3 : 1, q4 : 0}

{q2 : 1, q3 : 0, q4 : 0}
{q4 : 1} ∅

∅

{q2 : 1, q3 : 0, q4 : 0}
{q4 : 1} ∅

∅

(d) Automaton run

Figure 2: Counting selectivity using tree automata.

functions σj for all rules that the rule for Ai makes use of
— however, at that point we know exactly what states to
pass in as parameters to these functions.

Extending this to selectivity counting poses an additional
problem: when computing the result of a query, one must in-
corporate the selectivity counts from the parameters. This
can be done by manipulating the counters for parameter
states symbolically. As can be seen in Algorithm 2, we
only ever perform additions and the zeroing out of counters.
Thus, if we treat the counters of the states corresponding to
each parameter as unknown variables, then the selectivity
count for the rule will be a linear function over these coun-
ters. This function, fi(p1, . . . pk) → Z, can be determined
by a natural extension to Algorithm 2, and hence it is easy
to extend σi to also compute fi. When we come across a
non-terminal Ai(t1, . . . , tk) in the right hand side of a rule,
we can compute its state by first recursively determining
the states p1, . . . pk corresponding to the input parameters,
and using these and σi to determine the corresponding state
(and selectivity counts) for the non-terminal.

Figure 3 demonstrates the computation and use of the
functions σi when evaluating the query of Figure 2(a) over
an SLT grammar for Figure 2(c). We run through the rules
in a bottom-up fashion (from A0 to A3), using the functions
σj for j < i to compute the state for rule Ai. For rules
with parameters, we do not compute all possible values for
the functions σi, but only those that are actually needed.
This can be most easily seen by considering a top-down run
through the grammar: we begin with rule A3. To compute
the state for the root node, we first need to compute the
states for its two children, which are the two grammar frag-
ments A1(d(A2, A0), A2) (corresponding to the subtree at
b1) and A0 (corresponding to the empty tree). To compute
the state for the first fragment, we must then compute the
value of σ1(d(σ2, σ0), σ2); this computation is deferred until
we know the values of σ2 and σ0. We continue by recursing
top-down, using dynamic programming to ensure that we
do not evaluate the same value twice. As can be seen in
Figure 3(b), the function σ1 only needs to be computed for
two different argument values.

Determining complexity is straightforward. If every rule
has at most k parameters, then we have:

Theorem 3. Selectivity counting over a straight-line
grammar G with k parameters by a deterministic tree au-
tomaton with state set P takes time O(|P |k|G|).

It is worthwhile relating the size of the state set P back to
the size of a query. Clearly, |P | = O(22|Q|), but in practice

|P | is much smaller. If we assume there are no following

axes present in the query, then we can make this observation:
if a node q lies in a state p, then all of q’s descendants in
the query also lie in p. This means that if we have a query
which has at most b branches, then there are only (|Q|/b)b

different possible states. If we also have m following axes
in the query, then these increase the number of states by a
factor of 2m. Therefore we have:

Theorem 4. Determining acceptance of a straight-line
grammar G with k parameters by a query with branching fac-

tor b and m following axes takes time O

„“
|Q|
b

”bk

2mk|G|
«

.

In practice, BPLEX returns very small grammars even
with a very low value for k (such as k ≤ 2), and so we can
ignore this dependency. Also, the branching factor of queries
is usually quite low, and we suspect that the occurrence of
following axes in queries is infrequent. Finally, note that
we do not need to explicitly compute all possible values for
the functions σi, but instead can lazily compute only those
values needed: we find that in practice only a small number
of combinations of states are seen, and so this algorithm runs
quickly. In Figure 3, e.g., only 2 out of 16 possible values for
the function σ1 are computed. Thus, the worst case bounds
are generally not reached in practical situations.

5.4 Tree Automata over Lossy Grammars
Running tree automata over lossy SLT grammars is iden-

tical to running them over SLT grammars, except for the
handling of ∗ nodes. In this case, we provide two alternative
mechanisms for computing selectivity. These two methods
lead to lower and upper bounds on the actual selectivity.

Lower Bounds The most straightforward approach
to handling ∗ nodes is to simply ignore them — since this
means we miss some nodes in the underlying database, com-
puting selectivity in this fashion necessarily leads to a lower
bound on the actual selectivity. In this case, the transition
function can be easily given in terms of the function of Al-
gorithm 2. For a ∗ subtree ∗(t1, t2, . . . , tk, h, s), it suffices
to run the transition function already given on a tree of the
form ∗(∗(. . . (∗(∗(t1, t2), t3) . . .), tn−1), tn).

Upper Bounds Estimating upper
bounds is straightforward conceptually, but the details are
quite involved, and hence an exact technical description is
omitted. The basic idea is that when the tree automaton
reaches a ∗ node, it must consider all possible trees that the
∗ node could have replaced, subject to the height and size



A0 → ⊥
A1(y1, y2) → b(y1, y2)

A2 → A1(c(A0, A0), A0)

Start = A3 → a(A1(d(A2, A0), A2), A0)

(a) SLT grammar H for Figure 2(c)

σ0 = ∅
σ1({q4 : c1}, ∅) = {q2 : c1, q3 : 0, q4 : 0}
σ1({q3 : c1, q4 : c2}, {q2 : c3, q3 : c4, q4 : c5})

= {q2 : c1 + c3, q3 : c4, q4 : c2 + c5}
σ2 = σ1(c(σ0, σ0), σ0)

= σ1({q4 : 1}, ∅)
= {q2 : 1, q3 : 0, q4 : 0}

σ3 = a(σ1(d(σ2 , σ0), σ2), σ0)

= a(σ1({q3 : 1, q4 : 0}, {q2 : 1, q3 : 0, q4 : 0}), ∅)
= {q1 : 2, q2 : 0, q3 : 0, q4 : 0}

(b) Computation of state functions on H

Figure 3: Counting selectivity using tree automata over SLT grammars.

constraints. It is possible to do this in time linear in the
height of the replaced tree. Due to the flat nature of real
world XML, the height of the replaced tree is very small,
and this imposes significant constraints on the possibilities.
Even in the event that there are many possible trees, the
total contribution from a ∗ node to the selectivity estimate
is bounded above by the number of nodes in the tree it re-
placed.

There is one optimization which we found boosted the
accuracy of the upper bounds generated by our scheme con-
siderably. For each element label a ∈ Σ, it is trivial to
compute the set of element labels that occur as children of
elements a in the XML document. This information, which
adds very little to the overall space cost of the synopsis, can
be used to prune the number of possibilities in a ∗ node con-
siderably. For instance, if we know that the set of possible
children of an element a are {b, c}, and if we are considering
a ∗ node that is a child of an a element, then the root node
of the tree replaced by the ∗ node must have been labeled
either b or c. We can apply this procedure recursively up
to the height bound h; when combined with the fact that
the query often only involves a handful of unique element
labels, this can have a dramatic effect on the quality of the
upper bound estimates.

6. INCREMENTAL UPDATES
To date, the update problem has not yet been considered

for SLT grammars. In this section, we present an effective
update algorithm for lossless SLT grammars. We then ex-
tend our synopsis structure to a two-layer data structure:

• The lossy synopsis structure we have presented so far
is stored, in a compact form in memory (as described
in Section 7).

• An equivalent lossless SLT grammar is stored on disk.

When updates occur in the database, we update the gram-
mar using the algorithms presented in this section. In order
to minimize disk accesses, we can queue up updates to the
structure, thus letting it get out of date for short periods
of time. Once a sufficient number of updates to the gram-
mar has occurred, we can recompute the in-memory synop-
sis in a single pass over the disk-based grammar. Since the
disk-based grammar is still substantially smaller than the

complete document, we can construct a new lossy synopsis
quickly.

Clearly, we do not want to decompress the grammar into
the document tree, do the update there, and then compress
it back into a grammar. Instead, we would like to have an
incremental way of doing updates directly on the grammar.
As it turns out, incremental updates are surprisingly easy to
support for SLT grammars: the idea is to rewrite the right-
hand side t of the start rule An → t of the grammar, until
the node at which the update shall occur is “terminally”
available; the latter means that the path from the root to
this node does not contain any nonterminals. At this mo-
ment we know that the current node is not shared by other
nonterminals and therefore the update can be carried out at
the node.

The update operations we consider are: the insertion of a
new tree as the first child of a node, as the next sibling of a
node (which means as the right child in our ranked setting),
and the deletion of a subtree (which means the deletion of a
node and its left subtree in the ranked setting). The effect
of an insertion as the first child and as the next sibling of a
node u in a ranked tree is shown in the following figure.

first_child(u,t)

t2

u

t

t1

t1 t2

unext_sibling(u,t)

u

t1

t

t2

After an update has been realized on the (partially rewrit-
ten) right-hand side of the start rule, we run the BPLEX
compression on this tree, replacing patterns that already ap-
pear as right-hand sides in the grammar by corresponding
nonterminals, and possibly introducing new rules for newly
found patterns that appear multiple times. As we will see in
the experimental section, updates done in this way do not
increase the size of the grammar significantly, and the in-
crease in size stays constant even as the number of updates
increases; hence, we never have to go back to the database
and recompute a new grammar from scratch. Obviously,
only linear time is needed for an update.

Theorem 5. The insertion of a tree t into D can be real-
ized on the SLT grammar G (for bin(D)) in time O(|G|+|t|),
and the deletion of a subtree of D in time O(|G|).

More concretely, we use three different update operations.



Clearly they suffice to express any form of update to the
document tree. The operations are:

• first child bindd path tree

• next sibling bindd path tree

• delete bindd path

where bindd path is a node in the ranked document tree in
binary dotted decimal notation (Dewey notation), and tree
must be a tree with right-most leaf ⊥. Note that bin(W ) for
any sequence W of document trees is always of this form.
The set of nodes Dewey(t) in bindd notation of a binary
tree t = c(t1, t2) is {ε} ∪ {i.d | d ∈ Dewey(ti), i ∈ {1, 2}},
and {ε} if t = d for some symbol d of rank zero, where ε
denotes the empty sequence. We use binary Dewey notation
since it can be easily derived from a normal Dewey encoding;
however, it is important to note that this is only one possible
means of linking between nodes in the database and nodes
in the synopsis. An alternate strategy would be to label
each node in the synopsis with a unique identifier and have
nodes in the database point to the node in the synopsis
within which they lie. The method of linking between the
database and any index or synopsis structure is obviously
highly implementation dependent, but such a mechanism is
required for any updateable structure.

As an example, consider the grammar previously used:

A0 → ⊥
A1 → a
A2(y1, y2) → c(d(y1, y2), A0)
A3 → A2(e(u, A0), A2(f, A2(A1, A1)))

and the update operation delete 1.2.1. We have to rewrite
the right-hand side of the start rule until the node 1.2.1 has
no nonterminals on its path to the root. We apply the rule
for A2 at the root node and rewrite:

A2(e(u, A0), A2(f, A2(A1, A1))) ⇒G

c(d(e(u, A0), A2(f, A2(A1, A1))), A0).

Since node 1.2 is still nonterminal, we rewrite it and ob-
tain: c(d(e(u, A0), c(d(f, A2(A1, A1)),A0)),A0). Now the
node 1.2.1 is terminally available and can be deleted. We ob-
tain the tree c(d(e(u, A0), c(A2(A1, A1), A0)), A0). Finally,
BPLEX is run on this right-hand side, i.e., it searches for
existing and new patterns. When BPLEX reaches the root
node of the tree, it detects the pattern c(d(y1, y2), A0) which
exists as right-hand side of A2. It replaces it and we obtain
the tree A2(e(u, A0), c(A2(A1, A1), A0)). The final grammar
after the update is:

A0 → ⊥
A1 → a
A2(y1, y2) → c(d(y1, y2), A0)
A3 → A2(e(u, A0), c(A2(A1, A1), A0))

Next, we consider an insertion (on the original grammar).
We want to insert the tree e(u) as first child of the second d
node, i.e., we want to execute first child 1.2.1 e(u). As for
the delete, we first rewrite the start right-hand side until no
nonterminals are on the path to the root node. As before,
we obtain c(d(e(u, A0), c(d(f, A2(A1, A1)), A0)), A0). Now
we insert e(u) as the new first child of the second d node. We
get c(d(e(u, A0), c(d(e(u, f), A2(A1, A1)),A0)),A0). Finally,
we run BPLEX on this tree. This time it discovers a new
pattern e(u, y1) that appears twice; it therefore adds the
new nonterminal A3. The final grammar after update is:

A0 → ⊥
A1 → a
A2(y1, y2) → c(d(y1, y2), A0)
A3(y1) → e(u, y1)
A4 → A2(A3(A0), A2(A3(f), A2(A1, A1)))

The next sibling update works analogously to first child,
and hence an example is omitted.

7. SUCCINCT SYNOPSIS STORAGE
At this point, we have an SLT grammar G, which has

already been made lossy, and hence has ∗ nodes. The natu-
ral in-memory representation of such a structure is to have
a list of rules, with the right-hand side of each rule stored
in a pointer-based tree data structure. However, this rep-
resentation provides substantially more power than we re-
ally need: a pointer-based tree structure allows access to
(child/sibling) nodes in constant time. Since a bottom-up
tree automaton can be easily implemented by a depth-first,
left-to-right tree traversal, we only need to have constant
time access to the root node of the right-hand side of each
rule. Thus, we can compress the synopsis considerably by
using a more sophisticated representation. In this section,
we will first consider the case of a static synopsis, and then
extend this data structure to allow efficient updates.

The Static Case We recall the following properties of
our synopsis and estimation algorithm:

• When evaluating a rule Ri = Ai → t of G, the esti-
mation algorithm only needs to access rules Rj where
j ≤ i.

• When evaluating a rule R, the estimation algorithm
runs through the right-hand side in a single post-order
traversal.

• For a rule R with k parameters, each parameter is used
only once, and the parameters appear sequentially in
a pre-order traversal of the right-hand side of R.

We take advantage of these properties to construct a packed
representation for the synopsis. For each rule R, we con-
struct a packed bit encoding E(R), and then encode the en-
tire synopsis as the concatenation E(R0) ·E(R1) · . . . ·E(Rn).
When running a tree automaton over the synopsis, we start
by decoding the first rule, R0. Once we have decoded rule
R0, we know where rule R1 starts; more generally, once we
have decoded rule Ri, we know where rule Ri+1 starts. Since
the tree automaton runs in a bottom-up fashion, when it has
reached rule Ri it will have all the information necessary to
process this rule, as long as it remembers the start locations
of all the rules it has seen up to that point (needed for the
“lazy computation” described at the end of Section 5.3).

In addition to the packed representation above, we main-
tain a lookup table to further reduce the size of the represen-
tation of ∗ subtrees. Recall that each ∗ node has associated
with it two statistics, the height h of the replaced tree, and
the number s of nodes replaced. We construct an array S[i]
consisting of all unique tuples 〈h, s〉 (since ∗ nodes often re-
place patterns that occur more than once, it is likely that
a fixed 〈h, s〉 will occur more than once in the grammar).
When we reach a ∗ node, we can use the appropriate offset
into this array instead of explicitly listing h and s.

For a rule Ri with k parameters, we construct E(Ri) as
follows: first, add k ones followed by a zero bit to encode the
parameter count. Following this we encode the right-hand
side of the rule as a list of symbols, which give its pre-order
traversal. There are four possibilities for the first symbol:



A2(y1, y2)→ a( A1( b( y1 )), ∗( y2, c( , ) , 5, 10)
110 010 110 011 001 101 000 1001 1100 101 101 0 0

Symbol Table
∗ → 0 a→ 2 A0 → 5
yi → 1 b→ 3 A1 → 6

c→ 4

∗ Statistics
0 h = 5, s = 10

Figure 4: Packed encoding for a rule.

• A call to a rule Rj(t1, t2, . . . , tk), j < i: there are i− 1
possible rules that can be called from Ri.

• A terminal a(t1, t2): there are |Σ| possibilities.

• A star or a parameter: in each case, there is only one
possibility.

Thus, we can encode all possibilities in log(|Σ| + i + 1)
bits. The remaining encoding then depends on each of the
possibilities:

• For a rule Rj(t1, t2, . . . , tk) or terminal a(t1, t2), we
simply recurse the encoding algorithm on each sub-
tree t1, t2, . . . tk, and store the concatenation of these
encodings. In both cases we know exactly how many
parameters there are, and hence do not need to encode
this information.

• For a ∗ subtree ∗(t1, . . . , tk, h, s), the number of pa-
rameters is variable. Therefore, in addition to storing
the appropriate offset into the lookup table S, we must
store the encodings of the k subtrees, as well as k it-
self. One way of doing this is to prefix the encoding
of each subtree with a single 1 bit, and terminate the
list of parameters with a 0 bit.

Figure 4 gives the encoding for a sample rule. This sim-
ple scheme slashes the space requirements for a synopsis. A
variable length encoding for symbols further improves space
usage. Note that the ability to encode our structure in this
way does not apply to other XML synopses, such as XS-

ketch, because in those structures each node can be pointed
to by any other node, and thus a pointer-based representa-
tion is necessary.

The Dynamic Case In the dynamic case, for small
synopses it is easy to simply re-encode the entire synopsis
from scratch. For larger synopses, we split the encoding
into an array of blocks, leaving padding in each block. A
standard ordered file maintenance algorithm, such as that
of Bender et al [3] can then be used to speed up insertions
and deletions (for an array of n elements, we can insert
and delete elements maintaining the order of the array in
O(log2 n) time).

8. EXPERIMENTS
In this section we give an empirical evaluation of our sys-

tem. Our experiments were implemented in C and C++.
For simplicity, we did not implement our packed represen-
tation, since it does not affect the quality of our results.
The synopsis sizes we report in this section assume that
the packed representation was used. The BPLEX algorithm
was used with maximal rank 10, maximal size of a right-
hand side 20, and window size 40000 (1000 in the case of
updates), cf. end of Section 4.1 for an explanation of these
parameters.

Data Set Size Element Max Average F/B
(MB) Count Depth Depth Size

DBLP [11] 43.61 1103703 5 3.00 1158
SwissProt [2] 30.29 756329 6 4.39 21441
XMark [22] 5.34 78414 12 5.56 35558
PSD [26] 683.64 21305818 7 5.45 1944543
Catalog [28] 10.36 225194 8 5.65 235

Table 1: Characteristics of experimental data sets.

For our data sets, we chose DBLP [11], XMark [22], Swis-
sProt [2], and the Protein Sequence Database [26]. These
data sets have intrinsically different structures, ranging from
the simplest (DBLP) to the most complicated (XMark) —
Table 1 gives the salient aspects of each data set. For our
update experiments, we used the catalog data set, generated
by the XBench data generator [28].

8.1 Evaluation of Estimation Quality
In our first experiment we test the quality of our selectiv-

ity estimation technique using randomly generated queries.
We restrict our queries to branching path queries, having be-
tween l and u nodes (we chose the values l = 3 and u = 5 for
our experiments). To generate queries, we make use of the
full F/B-index of the data set in question, which contains
the exact answers for all branching path queries.

We generate each query as follows: first, we pick the num-
ber of nodes in the query by choosing an integer uniformly
and at random in the range [l, u]. The match node of the
query is selected at random over all nodes in the F/B index,
with the probability of picking each node being its selectiv-
ity divided by |D|. Thus, high selectivity nodes are favored.
We then repeat the following process until we reach the de-
sired number of nodes in the query: we pick an insertion
point in the query at random, where the possible insertion
points are at the root (i.e., inserting a new root node for
the query), and at each node (i.e., inserting a new leaf node
for the query). Once an insertion point is selected, we then
randomly select a node from the relevant subset of the F/B
index, biasing for high selectivity nodes.

We iterate the above procedure to generate a query work-
load of 100 queries. We constructed synopses using differ-
ent values of the threshold parameter; for some values the
corresponding sizes of the synopsis is shown in the graph.
For each synopsis, we compare the selectivity estimates for
each query with the exact selectivity. Our graphs report the
average relative error for both the lower and upper bound
estimates.

As can be seen, as the threshold parameter decreases the
lower and upper bounds both correspondingly decrease. It
is also clear that the upper bounds are less accurate than
the lower bounds. One reason for this is due to our query
workload, which consisted of twigs which make use of the
descendant-or-self axis. This axis is particularly badly
affected by the presence of ∗ nodes in the grammar, and
hence the upper bounds tend to be higher. Nevertheless,
the upper bounds are still well within a useful range, and
the combination of an accurate lower bound and a slightly
less accurate upper bound still give the query plan genera-
tor more information regarding the accuracy of the estimate
than existing techniques.
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Figure 5: Relative error versus number of deleted patterns.

8.2 Handling Updates
In this experiment we investigate the effect of updates

on the size of the synopsis. Our updates were performed
randomly on the catalog XML data set, in the following
fashion:

1. An initial 80,000 node subset of the XML document is
chosen at random to be the “seed” document.

2. Until the entire document is reconstructed, we ran-
domly choose to either delete a node from the con-
structed tree, or insert a new subtree from the original
document. The set of subtrees considered for insertion
consists of all subtrees rooted at nodes of depth two
in the original document, that are not yet included in
the constructed document.

Figure 6(b) gives the results for two different runs of this
experiment: one where no deletions are performed (1700
updates), and one where 20% of the operations are dele-
tions (2300 updates). The graphs plot the relative size of
the incrementally updated synopsis against the size of the
synopsis that would be obtained if we recomputed the syn-
opsis from scratch at that point. As can be seen, the space
overhead imposed by updates remains relatively constant at
about 40% of additional space. The initial spike in space us-
age is due to the fact that inserting or deleting nodes from
the synopsis results in an initial “unrolling” of the grammar;
however, due to the fact that XML documents are actually

quite structured, after this initial increase in size it appears
that there is little need to perform further unrolling.

We also note that if the updated synopsis becomes too
large, its size can be reduced by running BPLEX on the
underlying database again. This behavior can be seen in
Figure 6(c), where we periodically, after each 400 updates,
decompress and run BPLEX on the database again. As
can be seen, the amount of space saved in this way is small
and constant. This strengthens our belief that all updates
can always be done on the grammar and that recomputation
from the underlying database is not necessary. Note that for
small documents it can happen that an updated synopsis be-
comes even smaller than the corresponding base synopsis; a
similar effect can be seen in Fig. 6(c) where the recomputed
synopsis seems to become larger than the updated one to-
wards the end. This is due to the bottom-up search order of
BPLEX and suggests that a randomized version of BPLEX
will outperform the current implementation.

8.3 Discussion and Comparison
Our results demonstrate that our system can indeed han-

dle a wide range of queries in a small space budget, and
furthermore that the synopsis can efficiently be updated. It
is clear that the lower bounds are more accurate than the
upper bounds in our work, although the relative difference
is dependent on the types of queries.

There is no related work which provides an equivalent set
of features to our work. However, the most closely related
works are the correlated sub-path trees (CSTs) of Chen et
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Figure 6: Update performance.

al [6], the XSketch structural synopsis of Polyzotis et al [18],
and StatiX [8]. The authors of [6] and [8] were kind enough
to provide us with an implementation; unfortunately, we
did not succeed in getting to run the implementations on
our query workloads, even after substantial adaptations of
queries and/or code. Therefore, we instead provide a direct
comparison with the results presented in their papers.

Chen et al [6] reported errors of approximately 50%, using
a synopsis size of 1% for DBLP and 5% for SwissProt. In
contrast, as Figures 5(a) and 5(b) show, we obtain an error
rate of less than 2% for lower bounds, and 10% for upper
bounds, using a synopsis size of 120 KB (0.27%) for DBLP,
and an error rate of about 2% for lower bounds, and 5% for
upper bounds, using a synopsis size of about 62 KB (0.24%)
for SwissProt.

We obtained an implementation of the TreeSketch es-
timation structure, which allows us to give a more direct
comparison with the work of [17] (to our knowledge, this
is the most competitive XML selectivity estimator currently
available). We compared our work with this implementation
using the XMark database, however, we had to slightly sim-
plify the queries used to exclude order-sensitive axes and the
descendant axis, which are not supported by TreeSketch

(the latter only because it is not implemented). Our tests
demonstrated that TreeSketch consistently gave relative
errors in the range of 9-12% over the full range of synopsis
sizes given in Figure 5(d). Therefore, while for smaller syn-
opsis sizes TreeSketch clearly outperforms our approach,
the two synopses converge in performance in the range of
sizes given in the figure. It is worth keeping in mind that
our synopsis is updateable and supports the full structural
power of XPath, including the order-sensitive axes (not sup-
ported by TreeSketch). Moreover, even when using a non-
optimized version of BPLEX, our synopsis can be computed
extremely quickly: for a 5.4 MB XMark we need 8 seconds
and for a 30 MB XMark approximately 30 seconds; as a
comparison, the implementation of TreeSketch which we
used takes 7 minutes for the 5.4 MB document and close to
two hours for the 30 MB one.

It is difficult to determine the relative quality of StatiX
and our work from the experimental results in their paper. It
is clear that StatiX produces very accurate results, although
as shown in our results with very small space it is possible
to even produce exact results. Our work also handles a
larger range of structural queries than StatiX, and is more
amenable to updates. For example, the update strategy
of IMAX occasionally requires a recomputation from the
database, whereas our update strategy will never go back to

the actual data.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a new selectivity es-

timation technique for structural XML queries that boasts
several advantages over existing synopsis structures: it sup-
ports all thirteen XPath axes, whilst also being amenable to
efficient updates. Instead of returning educated guesses, as
many other techniques do, we instead return a range within
which the selectivity is guaranteed to lie. We believe that
this is particularly useful for query optimizers, as it allows
them to determine the relative confidence of two selectivity
estimates. Our experimental results have demonstrated that
our approach, despite its additional features, is competitive
with existing techniques, in both accuracy and space. Our
synopsis is a holographic representation of the XML docu-
ment tree and might be useful for other applications besides
selectivity estimation.

In the future, we plan to extend our techniques to handle
XML data values as well as structural queries. A possible
way of doing this is to keep seperate from the tree structure
a synopsis for data values which is built using conventional
techniques. The challenge then is to have an efficient way to
fetch at a leaf node of our synopsis the corresponding (esti-
matation of the) data value. Another possibility of handling
data values is to store them symbolically as part of the tree
structure, and to apply our compression techniques directly
on the tree. This approach is promising. Consider, for in-
stance, string values stored as monadic trees; for such trees
our technique achieves high compression as it corresponds
to Lempel-Ziv-like string compression. Unlike before, only
lengths have to be stored when pruning, and, the string af-
ter a pruning can still be used in the selectivity estimation
of the query.
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