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Abstract. In authorization-transparent access control, user queries are formu-
lated against the database schema rather than against authorization views that
transform and hide data. The Truman and the Non-Truman are two approaches to
authorization transparency where in a Truman model, queries that violate the ac-
cess restrictions are modified transparently by the system to only reveal accessible
data, while in a Non-Truman model, such queries are rejected. The advantage of
a Non-Truman model is that the semantics of user queries is not changed by the
access-control mechanism. This work presents an access-control mechanism for
XML, under the Non-Truman model. Security policies are specified as param-
eterized rules formulated using XPath. The rules specify relationships between
elements, that should be concealed from users. Hence, not only elements, but
also edges and paths within an XML document, can be concealed. The access-
control mechanism authorizes only valid queries, i.e., queries that do not disclose
the existence of concealed relationships. The additional expressive power, pro-
vided by these rules, over element-based authorization techniques is illustrated.
The proposed access-control mechanism can either serve as a substitute for views
or as a layer for verifying that specific relationships are concealed by a view.

1 Introduction

Access control is a fundamental part of database systems. The purpose of access control
is to protect private or secret information from unauthorized users. Given the status of
XML as a standard for storing and exchanging data, the need for XML access control
has been recognized and has received a lot of attention [3, 4, 9, 11, 14].

When an access-control model is authorization transparent, users formulate their
queries against the database schema rather than against authorization views that trans-
form and hide data [21]. Rizvi et al. [22] present two basic approaches to access control
in authorization-transparent systems. The first approach is referred to as the Truman
model and the second as the Non-Truman model [22]. In the Truman model, an access
control language (often a view language) is used for specifying what data is accessi-
ble to a user. User queries are modified by the system so that the answer includes only
accessible data. Suppose Q is a user query, D is a database and Du is the part of D
that the user is permitted to access, then Q is modified to a safe query Qs such that
Qs(D) = Q(Du).
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Example 1. Consider a database that contains information on courses in a university.
For each course, the system stores information about the students who are enrolled, and
the grades that they have received. Suppose that a Truman access control model is used
to specify that each student is permitted to see only her grades (not the grades of other
students). If student Alice poses a query that asks for the highest grade received in one
of the courses in which she is enrolled, say Databases 101, the system will modify the
query to return the highest grade that Alice has received in Databases 101.

As Rizvi et al. [22] point out, using a Truman access-control model, the answers to
queries may be misleading. A user may wrongly assume that an answer to a query is
correct over the entire database. In our example, Alice may be misled into thinking she
is the best in the class (after all, she asked for the highest grade over all students).

Misleading answers are prevented by the Non-Truman model, an alternative, au-
thorization-transparent model. In the Non-Truman model, a query that violates access-
control specifications is rejected, rather than modified. Only valid queries, i.e., queries
that do not violate the access specifications, are answered. Hence, query answers are
always the result of applying the user query to the entire database. The Non-Truman
model has the desirable property that the semantics of a query is independent of the
access-control specification. In Example 1, for instance, if the system uses a Non-
Truman access-control model, then the query of Alice will be rejected. Alice will
only receive answers to queries that are valid with respect to the access-control
policy.

In a Non-Truman model, a fundamental question is the definition of validity. Rizvi
et al. [22] use a mechanism in which the accessible data is defined using views. Given
a database D, a query Q is validated by checking whether it could be rewritten using
only the authorized views V . The rewritten query needs to be equivalent to Q either
for all possible database states (referred to as unconditional equivalence [22] since it
is independent of the current database state D) or for only those database states D′ for
which V (D) = V (D′) (termed conditional equivalence [22]).

Certainly, such an approach is possible for XML as well. However, results on an-
swering queries using views for small fragments of XML query languages are still
emerging [28], and may be undecidable even for the relational model [22]. Further-
more, a view is a positive statement about what data is accessible and it is up to the
designer of the view to decide what can be put in the view while still hiding the desired
private data. Regardless of the form of the view or access control mechanism, we would
like to be able to make statements about what information is concealed from a user. In
our work, we will specifically consider what it means to conceal a relationship in an
XML document.

Example 2. Consider an XML document D that contains information about depart-
ments and employees in a company. There is an edge from each department element
d to an employee element e whenever e works in d. A company may have an access
control policy that permits access to all employees and departments, but that restricts
access to the works-in relationship. That is, a user should be able to ask queries
about employees and departments, but the company may not wish to reveal who works
in which department. Perhaps this information may reveal strategic information about
the direction of the company.
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Information disclosure has been studied formally. Miklau and Suciu [20], define disclo-
sure as exposing information that increases the probability that a user can guess con-
cealed information. There are cases, however, where rejecting a query just because its
answer decreases the user’s uncertainty about the concealed data is too restrictive [29].
If we consider a set of relationships, it may be sufficient to ensure that a user cannot dis-
tinguish between the current document and other documents that differ from the current
document only in the concealed relationships.

Intuitively, a query conceals a relationship if the query answer does not reveal the
presence (or absence) of a relationship in the document. To understand our semantics,
consider the following example.

Example 3. Considering again Example 2 where the relationship between departments
and employees is secret. Consider a query Q1 that looks for all the employees in the
company, regardless of their department, and a query Q2 that looks for the employees in
a specific department d. The query Q1 conceals the relationships between departments
and employees, while Q2 does not.

In this work, we propose a precise semantics for what it means to conceal a relationship.
We propose a mechanism for testing whether an XPath query conceals a relationship
or set of relationships. In particular, we can test whether a view, specified by an XPath
query, conceals a relationship.

Our model controls access to relationships. This approach provides a finer granular-
ity than restricting access to elements. On one hand, restricting access to an element is
possible in our approach. This is done by concealing all the relationships (edges and
paths) to that element. On the other hand, in our approach it is possible to conceal a re-
lationship without restricting access to any of the elements in the document. Returning
to our example, our mechanism will permit access to employees and departments while
restricting only access to the set of works-in relationships.

The main contributions of our work are the following.

– The first authorization-transparent, Non-Truman access-control model for XML.
Our mechanism is fine-grained and enforces access control at the level of ancestor-
descendant relationships among elements.

– A new semantics for concealing relationships in an XML document, where a re-
lationship is defined by an edge or a path in the document. Our semantics uses a
variation of k-anonymity [25]. To specify relationships in our mechanism, we use
rules, each containing a pair of XPath expressions.

– We define two forms of query validity. A query is locally valid for a document
and a set of rules, if it conceals all the relationships that are specified by the rules.
Queries may be executed only if they are locally valid. For documents conforming
to a schema, we define a stronger form of validity. A query is globally valid for a set
of rules and a schema if the query is locally valid for the rules and each document
that conforms to the schema.

– Finally, we show that indeed valid queries do not reveal information about con-
cealed edges.
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2 Related Work

Many non-authorization-transparent access-control models for XML have been pro-
posed. Damiani et al. [9, 10] presented a model where restricted elements are identified
using labels. These restricted elements are pruned from the document before queries
are posed. A similar mechanism was proposed by Bertino et al. [2, 3] where the re-
stricted parts of an XML document are encrypted rather than pruned. Encrypting the
unauthorized data has also been used in the access-control model of Miklau and Su-
ciu [18]. In their model the access control specifications are defined using a language
that extends XQuery. Fan et al. [11] specified security by extending the document DTD
with annotations and publishing a modified DTD. In their model, queries are formulated
over the modified DTD and are rewritten by the system to befit the original DTD. The
optimization of secure queries has also been given some attention [6, 30].

Fundulaki and Marx [13] survey a number of approaches that permit access control
to be specified on elements within a document. Restricting access to elements has also
been used in XACML [15] and XACL [16], two proposed industrial standards. An al-
ternative approach of hiding element relationships was proposed by Finance et al. [12],
however, their model is not authorization transparent. Authorization-transparent models
have been proposed, so far, only for the relational model [21, 23, 24].

In contrast, we present the first authorization-transparent, Non-Truman model for
XML. Queries are posed on the original document, thus, we do not present a model
for publishing secure data. In our model, users simply specify the element relationships
that should be concealed. For defining concealment we use a variation of k-anonymity.
Various aspects of k-anonymity were studied in the relational model [1, 17, 25, 29]. To
our knowledge, our work is the first to apply k-anonymity to XML. In Section 4, we
define precisely the relationship of our model with k-anonymity. Our main focus is
to provide a test of query validity for ensuring that valid queries effectively conceal
secure relationships. This is important since unlike the non-authorization-transparent
approaches, in our model, queries are posed on the entire document.

3 Data Model

In this section, we introduce our data model. We assume that the reader is familiar with
the notion of a rooted labeled directed graph. We present a rooted labeled directed graph
G, over a set L of labels, by a 4-tuple (V, E, r, label-ofG), where V is a set of nodes, E
is a set of edges, r is the root of G and label-ofG is a function that maps each node to
an element of L.

Document. Let L be a finite set of labels and A be a finite set of atomic values. An XML
document is a rooted labeled directed tree over L with values of A attached to atomic
nodes (i.e., to nodes that do not have outgoing edges). Formally, a document D is a 5-
tuple (X, ED, rootD, label-ofD, value-ofD), where the tuple (X, ED, rootD, label-ofD)
is a rooted labeled directed tree over L, and value-ofD is a function that maps each
atomic node to a value of A. The nodes in X are called elements. In order to simplify
the model, we do not distinguish between elements and attributes and we assume that
all the values on atomic nodes are of type PCDATA (i.e., String).
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Fig. 1. A document that contains information on courses, students and grades in a university

Example 4. Figure 1 shows a document that contains information on courses, students
and grades. Elements are represented by circles and are numbered, for easier reference.
Atomic values appear below the atomic nodes and are written with a bold font.

XPath. In this work, we use XPath [8] for formulating queries and access control rules.
XPath is a simple language for navigating in an XML document. XPath expressions are
omnipresent in XML applications. In particular, XPath is part of both XSLT [7] and
XQuery [5], the WWW-Consortium standards for querying and transforming XML.

In XPath there are thirteen types of axes that are used for navigating in a document.
Our focus in this work is on the child axis (/) and the descendant-or-self axis (//) that
are the most commonly used axes in XPath. Our model, however, can also be applied
to queries that include the other axes.

4 Concealing Relationships

Before presenting our techniques, we first consider what it means to conceal a rela-
tionship. A relationship is a directed path between two elements. For example, in the
university database shown in Figure 1, a student element is related to a grade element
if there is an edge from the student element to the grade element.

A set of relationships is represented by a pair consisting of two sets of elements. For
example, the pair (S, G), where S is the set of all elements labeled “Student” and G is
the set of all elements labeled “Grade”, represents the set of relationships between stu-
dent and grades. Concealing the relationships (S, G) means that for every student s and
grade g in the document, the user will not be able to infer (with certainty), from query
answers, whether g is the grade for s. We will want this to be true for all authorized
queries (i.e., all valid queries). Note that we are concealing the presence or absence of
relationships, so we are concealing whether any of the set of pairs in (S, G) exists in
the document.

We also want to have some measure of the uncertainty that is gained by concealing
relationships. Thus, we use a definition that is a variation of k-anonymity [25] applied to



Authorization-Transparent Access Control for XML Under the Non-Truman Model 227

relationships in an XML document. In the k-anonymity model, the goal is to provide a
guarantee that each element cannot be distinguished from at least k − 1 other elements.
In our case, suppose that we want to conceal a set of relationships (A, B). Then, given
the answer to a valid query and any element b ∈ B, the user will not be able to infer
which element among some k sized subset of A is related to b. To make this more
precise, we present a formal definition.

Definition 1 (k-Concealment). Consider a set of valid queries Q, a document D, and
two sets A and B of elements in D. The relationships (A, B) are k-concealed if for
every b ∈ B there exist k elements a1, . . . , ak of A and k documents D1, . . . , Dk over
the element set of D, such that the following conditions hold for every 1 ≤ i ≤ k.

1. In Di, the element b is a descendant of ai. Furthermore, b is not a descendant of
any element among a1, . . . , ak, except for ai.

2. Q(D) = Q(Di), for every valid query Q ∈ Q.

Example 5. Consider a university document D, similar to the document in Figure 1,
and the set (S, G) of relationships between students and grades. Suppose that (S, G) is
k-concealed, and let Q be a set of authorized queries. Let g be some grade element in
D. Then, there are k documents that provide the answer Q(D) for every query Q in Q
and in each one of these k documents, g is below a different student. That is, there is a
set of k students such that from the information revealed by answers to queries in Q, a
user cannot tell which one among these k students received g.

We consider a relationship to be concealed as long as some uncertainty remains about
the ancestor-descendant relationships. Thus, in the rest of this paper, we will use the
phrase “concealing relationships” for 2-concealment.

Given the definition of concealing relationships, we now turn to the logistics of spec-
ifying sets of relationships over XML documents. We will use pairs of XPath expres-
sions for this purpose. Each pair will form an access-control rule. The two expressions
will define a pair of sets, i.e., a set of relationships that should be concealed.

5 Access Control Rules

Our approach to access control in XML documents is based on rules rather than views.
While views are normally “positive” in the sense that they specify what the user is
allowed to know, our rules are “negative” and specify what should be concealed from
the user. Our access-control rules specify pairs of elements in the document and by this
designate the relationships between these elements as being restricted. In this section,
we first present the syntax of rules. Then, we explain why we use rules rather than
views. We provide the semantics of rules in our model and define local and global
validity. Finally, we briefly discuss the issue of testing validity.

5.1 The Syntax of Rules

Rules are formulated using XPath expressions. Each rule consists of two expressions
specifying a set of ancestor and descendant elements. The rule specifies that the rela-
tionships between these two sets should be concealed.
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Definition 2 (Rule). An access control rule (or rule) is defined as:

for path1 exclude path2

where path1 and path2 are XPath expressions. The path path2 is a relative XPath ex-
pression with respect to path1.

Example 6. Suppose that we want to prevent queries from disclosing information about
what grades were given to which students. This restriction can be specified by the fol-
lowing rule: for //Student exclude /Grade.

Example 7. Suppose that in the CS department, relationships between students and
grades and relationships between courses and grades should be concealed. To spec-
ify this restriction, two rules are used:

for /Department[Name=’CS’]//Student exclude //Grade, and
for /Department[Name=’CS’]/Course exclude //Grade.

In many scenarios, different users have different access permissions. For example, an
institution could have a policy where a course teacher can have access to all the grades
of the course while students can only see their own grades. To support this, the access
control rules are parameterized. Parameterized variables are written with a preceding
dollar sign. Common parameters include user ids, environment variables, time parame-
ters, etc.

Example 8. Suppose that$userid is instantiated to be the current user identifier. Con-
sider a policy where a student is permitted to see her own grades, but she should not see
the student-grade relationships of other students. This policy is specified by the follow-
ing rule:

for //Student[not(SID=$userid)] exclude /Grade.

Note that when $userid is null the comparison SID=$userid is false.

5.2 Rules Versus Views

We now explain why we use rules instead of views for XML access control in the
Non-Truman model. The first reason is that there are many cases where using rules
is simpler and requires a more succinct formulation than using views. The following
example illustrates such a case.

Example 9. Suppose that we want to prevent users from knowing which student is en-
rolled in which course, but do not wish to conceal other information in the document.
We can specify this using the rule: for //Course exclude //Student. If SID is
identifying, we may also want to hide the relationship from course to a student’s SID
using the rule:

for //Course exclude //SID.

Note that these rules should not prevent evaluation of queries that “jump” over a re-
stricted edge. For example, a query that returns the grades of a specific course does not
violate the rules. Neither does a query that returns the grades of a specific student.
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It is not easy to formulate an XQuery view that preserves all the relationships in the
document except for the course-student and course-SID relationships. One example for
such a view is a query Qcut that reconstructs the whole document with the following
changes. First, student elements should be moved, with all their content, to be below
their department element. This cuts the relationship between students and courses but
keeps the relationships between departments and students. Second, grade elements may
be copied and pasted below their ancestor course elements. We need to duplicate grades,
because we need grades to be related to both courses and students. Note that Qcut would
not work if in the original document, courses have an element named “Grade” as a
child. It is cumbersome to formulate Qcut in XQuery. Hence, in many cases, defining
access-control policies by views is more error-prone than using our rules. We consider
in this example XQuery, however, the same problem occurs also in other languages for
defining “positive” views.

The second reason for choosing rules instead of views is that with views it is difficult
to verify that what we want to conceal is indeed concealed.

Example 10. Consider two views. One view contains students and their grades. The
second view contains courses and for each course the grades that were given in the
course. Do these views really conceal all the relationships between courses and stu-
dents? Apparently not. Suppose that there is a grade, say 78, that appears only once in
the document. Then, knowing who received this grade and in which course this grade
was given, it is possible to infer a relationship between a student and a course.

Later in this paper we will present the notion of a coherent set of rules and we will show
that when using a coherent set of rules, we can guarantee that restricted relationships
are indeed concealed.

The third reason for not using authorization views is that in the Non-Truman model,
when using views, testing validity is defined as the problem of answering-queries-using-
views. However, answering-queries-using-views is not always decidable and may have
a very high time complexity [22]. Note that the problem of answering-queries-using-
views is different from the simpler problem of answering queries posed on views.

5.3 Local Validity

In the Non-Truman model, queries are evaluated only if they pass a validity test. We
now define local validity for queries, given a document and a set of rules. We start by
providing some necessary definitions and notation. Our first definition, of a document
expansion, is a tool to help us define (later) the set of documents that should be indis-
tinguishable from a given document, when using valid queries.

Document Expansion. Let D = (X, ED, rootD, label-ofD, value-ofD) be a document.
An expansion of D, denoted D//, is a labeled directed graph that is created by replacing
ED with a new set of edges E′ called child edges. In addition, we add to D a sec-
ond set E //

D of edges, called descendant edges. Hence, the expansion of D is a tuple
((X, E′, rootD, label-ofD, value-ofD), E //

D), where E′ is a set of child edges and E //
D is

a set of descendant edges. Note that the expansion is not necessarily a tree and is not
even required to be connected.
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To understand the role of the separate child and descendant edges, it is useful to con-
sider one special expansion, the transitive closure, formed by adding to D a descendant
edge between any two connected nodes in D.

Transitive Closure. The transitive closure of a document D, denoted as D̄, is a doc-
ument expansion where E′ = ED. The transitive closure is (D, E //

D), such that in E //
D

there is an edge between every two nodes that are connected by a directed path in D.
The direction of the edge is the same as the direction of the path. Also, E //

D contains
an edge from every node to itself. Note that the original edge set of D is not being
replaced. As an example, Figure 2(b) shows the transitive closure of the document in
Figure 2(a). Child edges are drawn with solid lines and descendant edges with dashed
lines.

The evaluation of an XPath expression over a document expansion is by following a
child edge whenever a child axis occurs and following a descendant edge whenever a
descendant-or-self axis occurs. We explain this in the following example.

Example 11. Consider the XPath query //Department[Name=’CS’]//Course over
a document expansion D//. This query returns course elements c that satisfy the follow-
ing. There are a department element d and a descendant edge in D// from the root to d.
There is an element n with label “Name”, with value “CS” and there is a child edge in
D from d to n. Finally, there is a descendant edge in D// from d to c. Note that to satisfy
the // axis we require the existence of a descendant edge rather than the existence of a
path between the relevant nodes.

It is easy to see that posing an XPath query Q on a document D is equivalent to evalu-
ating Q over the transitive closure of D. However, when evaluating Q over a document
expansion that is not the transitive closure of D, we may get an answer that is different
from the answer to Q over D.

Pruning of a Document Expansion. Given a set R of access control rules, a pruning
of a document expansion D// is a new document expansion, denoted pruneR(D//), that
is created by removing from D// all the edges (both child edges and descendant edges)
that connect a restricted pair of nodes. By restricted pair, we mean two nodes whose
relationship should be concealed according to R. For example, the pruning of the tran-
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sitive closure of D1 (Figure 2(b)) by the rule for //Department exclude //Name

is depicted in Figure 2(c).
We represent a rule ρ of the form for x1 exclude x2 as a pair (x1, x2). By x1x2

we denote the XPath expression that is created by the concatenation of the expressions
x1 and x2. In a document D, ρ specifies as restricted all the pairs (e1, e2) of elements of
D such that e1 ∈ x1(D) (i.e., e1 is in the answer to x1 over D) and e2 ∈ x1x2(D). For
example, the rule for //Student exclude //Grade specifies as restricted all the
pairs of a student element and a grade of the student. A set of rules specify as restricted
all the element pairs that are restricted according to at least one of the rules in the set.

Intuitively, given a rule ρ = (x1, x2) we want to conceal whether (or not) there is a
path between any two restricted elements. We can think of the existing paths in D as
defining a subset P of x1(D)×x1x2(D). We will define as valid only those queries that
do not permit a user to distinguish whether D contains the subset P or another possible
subset of x1(D) × x1x2(D). This motivates the following definition.

Universe of Expansions. Consider a document D and a set of access control rules R.
Let D̄ be the transitive closure of D and let pruneR(D̄) be the pruning of D̄ using the
rules of R. The universe of expansions (universe, for short) of D under the concealment
of R, is the set of all document expansions D// such that pruneR(D̄) = pruneR(D//).
In other words, the universe contains all the document expansions that are created by
adding to pruneR(D̄) some edges that connect restricted pairs of nodes. We denote the
universe of D by UR(D).

Definition 3 (Local Validity). Given a document D and a set of rules R, a query Q is
locally valid if Q(D) = Q(D//) for any document expansion D// in the universe UR(D).

We now explain why we need to consider, in Definition 3, all the document expan-
sions in the universe UR(D) instead of applying a simpler test, called pseudo-validity,
where we just consider the single document expansion pruneR(D̄) (the pruning of the
transitive closure of D), i.e., the document expansion that contains only edges between
non-restricted pairs.

A query Q is pseudo-valid if Q(D) = Q(pruneR(D̄)). By Definition 3, the con-
dition of pseudo-validity is necessary, but not sufficient for Q to be locally valid. The
following example demonstrates a situation where secure information may be leaked
due to authorizing pseudo-valid queries.

Example 12. Consider the university document D of Figure 1 and the rule ρ in Exam-
ple 6 that conceals relationships between students and grades. Suppose we authorize
pseudo-valid queries such as Qi : //Student[SID=’12345’ and Grade=i],
for i = 0, 1, . . . , 100. In all the 100 cases where i �= 98, the query will be autho-
rized and return an empty result. For i = 98 (i.e., the grade of the student in the DB
course), the query will not be authorized. This reveals the grade of a student in some
course.

Such information leakage does not occur when only locally valid queries are au-
thorized. To see why this is true, consider the document expansion D// constructed as
follows. Let D// be the result of removing two edges and adding two new edges to the
transitive closure D̄. The removed edges are the two Student-Grade edges that con-
nect Node 301 to 321 and Node 302 to 322. The two added edges are Student-Grade
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edges that connect Node 301 to 322 and Node 302 to 321. All these added and re-
moved edges are Student-Grade edges and thus, are removed in a pruning w.r.t. ρ. That
is, pruneρ(D̄) = pruneρ(D

//). Yet, evaluating Q93 w.r.t. D// provides a different answer
from the answer to Q93 over D. Thus, Q93 is not valid. Q78 is also not valid by a similar
construction. All the three queries Q78, Q93 and Q98 are rejected. Thus, a user could
only tell that the grade of Student ‘12345’ is one of the grades 78, 93, 98; however, this
is what she could have learned from the result of the valid query //Grade.

The definition of local validity has a number of properties that are important in practice.
For example, if two documents are equal (that is, isomorphic) except for their restricted
edges, then a locally valid query will not be able to distinguish between them.

Proposition 1. Consider a set of rules R and let D1 and D2 be two documents such
that pruneR(D̄1) = pruneR(D̄2). If a query Q is locally valid w.r.t. D1 and R then Q
is also locally valid w.r.t. D2 and R. Furthermore, Q(D1) = Q(D2).

5.4 Global Validity

For documents conforming to a schema, we define a more restrictive form of validity
called global validity. First, we formally define the notion of a schema.

Schema. In our model, a schema is represented as a rooted labeled directed graph. Our
schema representation is a simplification of common XML schema-definition languages
such as DTD [26] and XSchema [27]. A schema can be used to provide a succinct
description of a document structure, or as a constraint on the structure of documents
in a repository. Formally, a schema S, over a finite set of labels L, is a rooted labeled
directed graph (NamesS , ES , rootS , label-ofS) over L, where the nodes are uniquely
labeled. A document conforms to a schema if there exists a homomorphism from the
graph of the document to the schema. An example of a schema is given in Figure 3(c).
The document in Figure 1 conforms to this schema.

University Department Course Student

Name Teacher SID Grade
root

Fig. 3. A university schema

Definition 4 (Global Validity). A query Q is globally valid for a set of rules R and a
schema S, if, given R, Q is locally valid for every document D that conforms to S.

Example 13. Let R contain the rule given in Example 6. This rule rejects queries that
use the relationship between students and grades. Suppose a query Q that is asking for
the grades of the student with id ‘00000’ (i.e., //Student[SID=’00000’]//Grade)
is posed on the document in Figure 1. If there was a student with id ‘00000’ in the
document, then the query would not be considered locally valid and would not be au-
thorized. Since there is no student with id ‘00000’, there is no edge to prune and the
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query is locally valid. Note that the query does not reveal the grade of any existing stu-
dent. Although Q is locally valid, it is not globally valid if we consider the schema S
shown in Figure 3. It is possible to construct a document D′ that conforms to S and
contains a student with id ‘00000’. Hence, the query will not be locally valid for D′ and
R. Thus, Q is not globally valid for schema S.

In some cases, global validity could be too restrictive; however, it does have some ad-
vantages over local validity. Suppose that there is a collection of documents and all the
documents conform to the same schema. In this case, if a query is globally valid, then
we do not need to check the validity of the query over each document. Furthermore,
after a document is updated, if the new document still conforms to the schema, we do
not need to revalidate queries.

5.5 Testing Validity

Due to lack of space, presenting algorithms for efficient validity testing is beyond the
scope of this paper. However, it is important to notice that our model has the following
advantages. First, local validity is always decidable. This is because for any document
D and a set of rules R, the universe of expansions UR(D) is finite. Secondly, for large
classes of queries, local validity can be tested efficiently. Thirdly, there are important
cases where global validity can be tested efficiently.

We now discuss one important case where testing local validity can be done effi-
ciently. Consider XPath expressions that do not contain the logical operator not. Such
queries are monotone. A query Q is monotone, if for every two document expansions
D//

1 ⊆ D//
2 holds Q(D//

1) ⊆ Q(D//
2). For testing local validity of a monotone query, it is

sufficient to compute the query over two specific document expansions and compare the
answers. Given a document D and a set of rules R, the document expansions on which
the query should be computed are the following two. First, pruneR(D̄). Second, the
document expansion that is created from pruneR(D̄) when connecting every restricted
pair of elements, by both a child edge and a descendant edge.

6 A Coherent Set of Rules

Our goal is allowing users to conceal element relationships and let them be sure that
what they want to conceal is truly concealed. Unfortunately, it is impossible to guarantee
concealment for any arbitrary set of relationships. Sometimes, it is possible to infer a
concealed relationship from the relationships that are not concealed. In this section, we
characterize sets of rules whose designated relationships are indeed concealed.

We say that a set of rules is coherent if it is impossible to infer any concealed re-
lationship from the relationships that are not pruned by the rules. Before providing the
formal definition for a coherent set of rules, we give an example of two cases where a
relationship can be inferred from a pair of non-concealed relationships.

Example 14. Suppose that in the university document it is known that the CAD course
(Node 203) is given in the EE department (Node 102) and student 56789 (Node 303)
is registered in the CAD course. In this case, the relationship between Node 102 and
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Node 303 can be derived from the other two relationships, thus, there is no point in
concealing it alone.

Suppose that the following is known. Student 12345 (Node 301) studies in the CS
department (Node 101) and she is registered in the DB course (Node 211). Knowing
that the document is a tree allows a user to infer that the DB course is given in the CS
department (i.e., Node 201 and Node 301 are related).

We now define when a set of rules is coherent. Consider a document D and a set of rules
R. The set R has an incomplete concealment in a document D if one of the following
two cases occurs. (1) Lack of transitivity: D has three elements e1, e2 and e3 such that
pruneR(D̄) has an edge from e1 to e2 and an edge from e2 to e3, but pruneR(D̄) does
not have an edge from e1 to e3. (2) Lack of reverse transitivity: there are three elements
e1, e2 and e3 in D, such that pruneR(D̄) has an edge from e1 to e3 and an edge from
e2 to e3; however, pruneR(D̄) does not have an edge from e1 to e2.

Definition 5 (A Coherent Set of Rules). Given a document D, a set of rules R is
coherent if an incomplete concealment does not occur in D. Given a schema S, a set R
is coherent if R is coherent for every document that conforms to S.

6.1 Coherence for Documents

There is a simple and efficient test for verifying that a set of rules R is coherent for a
document D. The test starts by computing the pruning of the transitive closure of D
according to R, and considering the edge set of pruneR(D̄) as a relation r. There is
a lack of transitivity if and only if the algebraic expression π$1,$4(r��$2=$1r) − r is
not empty. There is a lack of reverse transitivity if and only if the algebraic expression
π$1,$3(r��$2=$2r) − r is not empty.

Next, we provide intuitive conditions for constructing coherent sets of rules. Our
conditions consider how relationships specified by different rules are related. We say
that an edge (e1, e2) in a transitive closure D̄ encapsulates an edge (e′1, e′2) if there is
a path φ in D̄ that goes through the four nodes e1, e2, e

′
1, e

′
2, and one of the following

three cases holds: (1) e1 appears on φ before e′1, and e′2 appears before e2. (2) e1 = e′1,
and e′2 appears on φ before e2. (3) e1 appears on φ before e′1, and e2 = e′2. The following
is a necessary condition for the coherency of a set of rules.

Proposition 2. Given a document D, if a set of rules R is coherent, then the follow-
ing condition holds. For every descendant edge (e1, e2) in D̄, which is removed in the
pruning of D̄ by R, there is an edge (e′1, e

′
2) in D̄ such that (e′1, e

′
2) is encapsulated by

(e1, e2) and (e′1, e
′
2) is also removed in the pruning of D̄.

Consider two edges (e1, e2) and (e1, e
′
2) that are outgoing edges of the same node. We

say that these two edges are parallel in D̄ if either there is a path from e2 to e′2 or vice-
versa. That is, these two edges do not lead to two disjointed parts of D̄. We will use this
definition in the next proposition to provide a sufficient condition for coherency.

Proposition 3. Let R be a set of rules and D be a document. If the following condition
holds, then R is coherent w.r.t D. For every edge (e1, e2) that is removed in the pruning
of D̄ w.r.t. R, all the edges (e1, e

′
2) that are parallel to (e1, e2) are also removed in the

pruning of D̄.
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6.2 Coherence for Schemas

Given a schema, we can generalize, using containment of XPath expressions, the con-
dition presented in Proposition 3 for coherency. However, testing containment of XPath
has high complexity [19]. Hence, the test is inefficient and we do not present it here.
Yet, a special case of the generalized condition is that for every document D that con-
forms to the schema, for each element e in D, either all the outgoing edges of e in D̄
are removed in the pruning or none of them is removed.

A simple way to satisfy this condition is to allow only rules that have one of the fol-
lowing two forms: for path exclude //* or for path exclude /label
[condition]//*, where path can be any XPath expression, label can be any label and
condition can be any XPath condition.

Example 15. Consider the schema S in Figure 3. Suppose that we want to conceal in
courses all the information on students. We can apply the following two rules. The rule
for //Course exclude /Student and the rule for //Course exclude
/Student//*. These rules are coherent w.r.t. the schema S.

7 Effectiveness of Concealment

In this section, we prove the effectiveness of a coherent set of rules in concealing re-
lationships. The presence of a schema and the fact that documents are trees impose
limitations on the relationships that we are able to conceal. These limitations will be
discussed in the first part of this section.

7.1 The Singleton-Source Disclosure

A singleton-source disclosure occurs when a user can infer that two elements e1 and e2
are related, from the following two pieces of information. (1) The path from the root to
e2 must go through an element of type T . (2) The only element in the document of type
T is e1. The problem is illustrated by the following two examples.

Example 16. Consider a university document that conforms to the schema in Figure 3
and that contains only a single department element. Consider the rule

for //Department exclude /Course

which presumably conceals the relationships between departments and courses. A user
that is familiar with the schema of the document and knows that the document contains
only a single department can infer that every course element in the document is below
the only department element.

Example 17. Consider the document in Figure 1 and the rule

for //Department[Name=’CS’] exclude /Course

Suppose that Q1 is a query that looks for all the courses in the document and Q2 is a
query that looks for all the courses in departments other than “CS”. Both queries are
locally valid w.r.t. the document and the rule. By applying set difference to the answers
to Q1 and to Q2, it is possible to infer the set of courses in the “CS” department.

We use k-concealment (Definition 1) to define a singleton-source disclosure.
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Definition 6 (Singleton-Source Disclosure). Consider a document D and a set of
rules R. A singleton-source disclosure occurs when there is a rule ρ = (x1, x2) in
R such that the set of relationships (x1(D), x1x2(D)) is not 2-concealed.

7.2 Verifying k-Concealment for a Coherent Set of Rules

We will describe now an algorithm that given a document D and a coherent set of
rules R, tests if a singleton-source disclosure occurs. Essentially, the algorithm com-
putes, for each rule ρ = (x1, x2) in R, the maximal k for which the relationship
(x1(D), x1x2(D)) is k-concealed. If k > 1 for all the rules of R, then a singleton-
source disclosure does not occur. Otherwise, a singleton-source disclosure does occur.
Before presenting the algorithm that computes k, we provide an example that illustrates
the algorithm.

Example 18. Consider the university document Du in Figure 1 and a coherent set of
rules R. Suppose R contains a rule ρ that hides the relationships between courses and
students. Also, we assume that R does not hide the relationships between departments
and students. We now discuss the computation of k for ρ.

There are three students and four courses that we need to consider. For each student
s, we need to count the number of courses c for which s might be related to c. The
element s might be related to c if, and only if, there exists a document Dsc for which
the following conditions hold. (1) In Dsc, the element s is a descendant of the element
c. (2) For every locally valid query Q, holds Q(Dsc) = Q(Du).

Intuitively, we can think of a document Dsc as a result of moving some subtrees of
the original document, from one part of the document to another. Thus, for Node 301,
we can either leave it below Node 201 or move it to be below Node 202. However, we
cannot move Node 301 to be below Node 203. On the conceptual level, this is because
Node 203 is a course that belongs to a different department from the department to
which Node 301 is related. This is because if we move Node 301 to be below Node
203, we will have two ancestors to Node 301 (Node 101 and Node 102) that are not on
the same path. In a tree this should not happen.

In the computation, we check for each student, how many courses it can be related
to, as was done for Node 301. In our example, each student has two such courses. Thus,
the relationships that ρ defines are 2-concealed.

We present now the algorithm—Compute-k—that for any coherent set of rules R and a
document D, computes a maximal value k such that k-concealment can be guaranteed
for the relationships that are specified by the rules of R.

Compute k (D, R)
Input: a document D and a coherent set of rules R;
Output: a maximal k such that there is a k-concealment for each rule in R;

Initially, we set k = ∞. We iterate over all the rules of R. Given a rule ρ = (x1, x2)
in R, we denote by A the set x1(D); and by B the set x1x2(D). We iterate over all the
elements of B. For each element b ∈ B we count the number of nodes a ∈ A such that
we can move b to be below a (shortly, we will explain how). Let kb be this count. Then,
if kb < k, we set k to be kb. At the end of all the iterations, k is returned.
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We now explain how we count, for a given b ∈ B, the number of nodes a ∈ A
such that we can move b to be below a. We iterate over the elements of A and try to
“attach” b below each one of these elements. The test for b and a is as follows. We start
by computing the pruning by R of the transitive closure of D—pruneR(D̄). We then
try to connect b to a using only edges between restricted pairs, i.e., we add only edges
that will be removed in the pruning by R. This produces an expansion D// of D such
that Q(D//) = Q(D) for every query Q that is locally valid w.r.t. R and D.

The following observations are important. First, for every a′ ∈ A, in pruneR(D̄)
there does not exist any edge from a′ to b. This is because of the rule ρ. Furthermore,
since R is coherent, in pruneR(D̄), there is no path from a′ to b, and no path from a′ to
any ancestor or descendant of b. Hence, there is a subtree Tb in pruneR(D̄) that contains
b and is disconnected (i.e., not reachable by a directed path) from any a′ ∈ A. What we
need to test is the possibility to connect the root of Tb to a or to a descendant of a, using
only edges that are removed in the pruning, such that (1) there is no element of A, other
than a, on the path from a to the root of Tb, and (2) the following two tests are passed.
First, a test for making sure that we will eventually produce a tree or a graph that can
be extended to be a tree. Secondly, a test for checking that by adding Tb below a, we
do not create a relationship (i.e., an ancestor-descendant pair) between two nodes that
were not related in D and do not form a restricted pair.

To ensure that we are able to extend the new graph D// to be a tree, we need to verify
that the nodes of Tb do not have two ancestors that are not on one path. To that end, we
define Xb to be the nodes x such that x is not in Tb and in D// there is a descendant edge
from x to some node in Tb. For the node a to be an ancestor of b, a must be below all
the nodes Xb (a cannot be above any one of the nodes Xb since there is no path from a
to any node in Tb; also, a must be on one path with all the nodes Xb). The test succeeds
if one of the following cases occurs. (1) In D//, a is below all the nodes Xb. (2) There is
an ancestor y of a that does not have a parent in D//, such that y can be connected to a
node below the nodes Xb, using an edge that is removed in the pruning by R, without
creating a path between a non-restricted pair.

In the second test, we simply check that for every pair of nodes connected by a
path, after moving Tb, either they are connected by an edge in pruneR(D̄) or they are a
restricted pair according to R. If this test, or the previous test, fails, we do not increase
kb. Otherwise, we increase kb by one. �
An important advantage of the algorithm Compute-k is that it has a polynomial time
complexity. The following theorem shows the correctness of the algorithm Compute-k.

Theorem 1. Given a document D and a coherent set of rules R, Algorithm Compute-k
computes a value k such that the followings hold.

1. All the relationships that are defined by rules of R are k-concealed.
2. There is a rule in R that defines a relationship which is not k + 1-concealed.

Theorem 1 shows that when a coherent set of rules is used, it can be tested for a given
document D, whether 2-concealment, or even k-concealment for some k > 2, is pro-
vided. When k-concealment is provided for D and R, the following holds. Suppose
that e1 and e2 are two elements such that the association between them should be con-
cealed, i.e., there is a rule in R that specifies the relationship (A, B), where e1 ∈ A and
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e2 ∈ B. Then, a user who sees the answers to locally valid queries will not be able to
tell with certainty if the two elements e1 and e2 are connected in D. This is because
2-concealment guarantees that there are two documents D1 and D2 such that in D1 the
two elements e1 and e2 are connected, while in D2, the two elements e1 and e2 are not
connected. Furthermore, Q(D1) = Q(D2), for any locally valid query.

8 Conclusion

We presented an authorization-transparent access-control mechanism for XML under
the Non-Truman model. Our mechanism uses rules, which are formulated using XPath
expressions, for specifying element relationships that should be concealed. We defined
the semantics of rules with respect to a document and with respect to a schema. Co-
herency of a rule set was defined and discussed. A set of rules is coherent if concealed
relationships cannot be inferred from non-concealed relationships. We showed how to
construct a coherent set of rules. Finally, we presented the notion of k-concealment,
which is a modification of k-anonymity to our model. We showed that when a coherent
set of rules is used, k-concealment can be tested efficiently.

Traditionally, access control has been performed using views. Rules can be used ei-
ther instead of views or in addition to views. There are cases where rules can be written
concisely while using view is cumbersome. For example, when only a small fraction
of the data should be concealed from users. Yet, when most of the data should be con-
cealed, defining the policy using views might be easier than using rules. Rules, however,
have the advantage that when the set is coherent, we can guarantee that concealed rela-
tionships cannot be inferred from the results of valid queries. Importantly, our solutions
can be used to verify not only queries but also views.

Future work includes showing how to integrate our access-control rules with existing
XPath query processors. Another important challenge is to adapt our mechanism to
XQuery and XSLT.
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