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Network signal processing types

Centralized → Graph signal processing

Routing based → Network coding

Distributed → Gossip

Today’s objectives
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Communication architectures
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Communication architectures
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Graph based WSN models
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Types of signals on graphs
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Electrical networksSocial networks

Environmental 
monitoring



Modeling signals on graphs

Edge weight <-> similarity between vertices.

Known

 Social media

 Sensor network

Unknown

 Neuroimaging

Common data processing tasks:

• Filtering, denoising, inpainting, compression

Challenges

• What is translation, downsampling ?

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

7Spring Semester 2017-2018

The height of each blue
bar represents the signal
value at the vertex.



Regular graph structures

1D Timeseries

• Nodes <-> time instances 

• Edges are unweighted and directed

2D images

• Nodes <-> pixel

• Edges <-> similarity
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Signals on Graphs

Graphs: generic data representation forms encoding the geometric structures
of data

Applications: social networks, energy distribution networks, transportation
network, wireless sensor network, and neuronal networks.

weights: distance /similarity/relationship
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vertices edges

weighted 
adjacency 
matrix

Undirected graph Degree matrix: D Adjacency matrix: A Laplacian matrix: L

http://en.wikipedia.org/wiki/Labeled_graph


Signals on Graphs

Graph signal f in RN , where |V|=N

Graph Laplacian , D: diagonal with sums of weights

W: weight matrix

Normalized Graph Laplacian 
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Graph Laplacian

Spectral properties

• Laplacian is Positive Semi-definite matrix

• Eigenvalues: 0=λ1(L) ≤ λ2(L) ≤  … ≤ λΝ-1(L)
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Eigenvectors of Graph Laplacian
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Laplacian Regularization

• One signal <-> many different graphs 

• Only 1 leads to a smooth graph signal. 

 Only G1 favors smoothness of the resulting graph signal.
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Graph Fourier Transform

Graph based approximation

Smoothness w.r.t. graph

Graph spectral filtering

(regularization)

Connectivity of the graph -> encoded in graph Laplacian

Define both a graph Fourier transform (graph Laplacian eigenvectors)

Different notions of smoothness
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Graph Fourier Transform

A graph filter is a system

Equivalent 

Where 

Jordan decomposition

Graph Fourier Transform
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Filters on graphs

Wavelet filterbank
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Spatial Signal Graphs
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Spectral anomaly detection in WSN

Decomposition of Laplacian

Alternative approach

Graph construction

Data fit in graph where is is the sample variance

Target ratio
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Product Graphs

• Assume: G1=(V1,A1) and G2(V2,A2)

• Product graph: 

• Kronecker:

• Cartesian:  

• Strong: 
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Communication architectures
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Communication architectures
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Network Coding (NC)

Typical routing: Each message on an output link must is a copy 
of a message that arrived earlier on an input link

Network coding: each message sent on a node’s output link 
can be some function or “mixture” of messages that arrived 
earlier on the node’s input links

Motivation: improve throughput 

Minimize 

• Energy per bit

• Delay
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IEEE Trans. on Information Theory, vol. 46, no. 4, July 2000



Typical Unicast

Without network coding

• Simple store and forward

• Multicast rate of 1.5 bits per time unit
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Unicast NC
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Unicast with NC

With network coding
X-OR → one of the simplest form of coding

Multicast rate of 2 bits per time unit

Disadvantages:

• Coding/decoding scheme has to be 
agreed upon beforehand

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
28



NC performance
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Generalize to packets

• Operate on packets instead of on bit-streams
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NC encoding & decoding

Message Encoding vector

Decoding
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NC encoding & decoding

Node t can recover the source symbols x1, . . . , xh as long as
the matrix Gt, formed by the global encoding vectors, has
(full) rank.

Gt will be invertible w.h.p. if local encoding vectors
are random and the field size is sufficiently large
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Practical NC: Random NC

Issues
• Synchronous / asynchronous packet delivery

• Varying capacity edges

• Packet delays and drops

• Central coding pattern knowledge

Random NC: random linear coefficients in a finite field and
send the encoding vector within the same packet

Packetization: Header removes need for centralized
knowledge of graph topology and encoding/decoding
functions

Buffering: Nodes stores within their buffers the received
packets. Allows asynchronous packets arrivals & departures
with arbitrarily varying rates, delay, loss
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Random NC simulation results
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Energy consumption: number of
transmissions and receptions needed
to gather all the required packets

Delay: number of time units
needed to decode all the
required packets



Communication architectures
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In-network processing

Collaborative signal processing: 

 Exploit local computational resources -> reduce data 
transmissions

Power(Communications) > Power(Processing)

• Applications
• Detection, Classification, Parameter Estimation, Tracking…

• Assumptions
• Specialized routing protocols

• spatio-temporal smoothness
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Address-based routing vs. data-centric 
forwarding

• Address-based routing
• Directed towards a well-specified particular destination (sink)

• Support for unicast, multicast, and broadcast messages

1

10

7

15

11

2

TO:2 Data

Source

Sink

TO:2 Data

TO:2 Data
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Data-Centric Networking

The traditional communication paradigm focuses on the relationship 
between communicating peers

In WSNs, the application is not interested in the identity of the 
nodes, but rather in the information about the physical environment 

Objectives

• In-network aggregation 

• Data-centric addressing 

• Decoupling in time 

• Fault-tolerance 

• Scalability
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Flooding

• Basic mechanism:
• Each node that receives a packet re-broadcasts it to all neighbors

• The data packet is discarded when the maximum hop count is reached

Step 1 Step 2 Step 3
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Flooding

Simplest method for message delivery from observation node to sink

• NO routing table NOR next hop estimation

• On receiving the packet, a sensor just rebroadcasts it

(+) Low computing complexity

(+) No memory for path caching

(-) Implosion: duplicated messages are received

(-) Overlay: flooding of overlapping data

(-) Resource blindness
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Distributed Aggregation

• Every node has a measurement  
(e.g sensing temperature) 

• Every node wants to access the 
global average

• Want a truly distributed, localized 
and robust algorithm to compute 
the average. 

2 2

3

5

12
Goal: every node gets (2+2+3+5+12)/5=4.8 
with the minimum energy cost
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Consensus algorithms

Having a set of agents to agree upon a certain value (usually global 
function) using only local information exchange (local interaction)

Objectives:

Distributed computation of general functions

Computational efficient

Robust to failures

Independent of topology

Distributed Average Consensus

Nodes measure → average

Assumptions

• Nodes their neighbors (location)

• Dynamic network topology
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Gossip Algorithms for Aggregations
• Start with initial measurement as 

an estimate for the average and 
update

• Each node interacts with a 
random neighbor and both 
compute pairwise average (one 
update)

• Converges to true average

• Useful building block for more 
complex problems
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3

5
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Gossip Algorithms

One solution to distributed consensus

• Each node (n nodes in total) holds an estimate

• Goal: for every node estimate 

average of all n initial values

Iterative + random

• At each iteration: 
 random groups communicate 

& average

• Local estimation → global consensus 

• Q: Time? Packets? Quality? Synchronization?
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What is a Random Walk

• Given a graph and a starting point (node), we select a 
neighbor of it at random, and move to this neighbor; 

• Then we select a neighbor of this node and move to it, and 
so on;

• The (random) sequence of nodes selected this way is a 
random walk on the graph
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What is a random walk

• nxn Adjacency matrix A.
• A(i,j) = weight on edge from i to j
• If the graph is undirected A(i,j)=A(j,i), i.e. A is symmetric

• nxn Transition matrix P.
• P is row stochastic (doubly for undirected)
• P(i,j) = probability of stepping on node j from node i 

= A(i,j)/∑iA(i,j)

• nxn Laplacian Matrix L.
• L(i,j)=∑iA(i,j)-A(i,j)
• Symmetric positive semi-definite for undirected graphs
• Singular
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Probability Distributions

• xt(i) = prob. that the surfer is at node i at time t

• xt+1(i) = ∑j(Prob. of being at node j) * Pr(j->i) = ∑jxt(j) * P(j,i)

• xt+1  =  xtP =  xt-1 * P * P =  xt-2 * P * P * P = …= x0 P
t

When one keeps walking for a long time?

• For the stationary distribution v0 we have v0 = v0 * π

For connected, non-bipartite graphs

π(v) = node degree/2*#edges = d(v)/2m

The more neighbors you have, the more chance you’ll be reached
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Cover time in Graphs

Given a graph G, let Tcover(u) be the expected length of a simple random 
walk that starts at node u and visits every node in G at least once. 

Cover time of G => Tcover(G) = maxu in G Tcover(u).

Given a random geometric graph G with n nodes, if it is a connected 
graph with high probability, then

A random walk visits each node once by requiring that it makes C n log 
n steps for some C > 0. 
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Standard gossip
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W(t) iid random matrices
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How many messages

• ε-averaging time: First time where x(t) is ε-close to the normalized true 
average with probability greater than 1-ε.

• x(t)= W(t) x(t-1) = Πt W(t) x(0).

• Define W= E W(t)

• Theorem: ε-averaging time can be bounded using the spectral gap of W:

  



Tave(n,)  sup
x(0)

inf t : P(
|| x(t) xave

r 
1 ||

|| x(0) ||
) 











Tave[n,]
3log(1)

1 2(W )

(Boyd, Gosh, Prabhakar and Shah, IEEE Trans. On Information Theory, June 2006)
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Cost of standard Gossip

• Standard Gossip algorithms require a lot of energy.

(For realistic sensor network topologies)

• Why: useful information performs random walks, diffuses
slowly

• Can we save energy with extra information?

• Idea: gossip in random directions, diffuse faster.

• Assume each node knows its location and locations of 1-hop
neighbors.
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Random Target Routing

• Node picks a random 
location (=“target”)

• Greedy routing towards the 
target

• Probability to receive ~ 
Voronoi cell area
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Geographic Gossip

• Nodes use random routing to 
gossip with nodes far away in 
the network

• Each interaction costs 

• But faster mixing

• Number of messages
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Path averaging

Averaging on the routed path? 

The routed packet computes the sum of all the nodes it visits, and 
a hop-count. The average is propagated backwards to all the 
nodes on the path. 

Theorem: Geographic gossip with path averaging on  G(n, r) 
requires expected number of messages

Tave=Θ(n log1/ε)

Optimal number of messages
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Communication models
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Θ(n2)

Geographic 
routing

Θ(n1.5 √logn)

Path 
averaging
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Data management in WSN

Conventional approach

Sample -> aggregate to sink -> perform analysis

Limitations

• Inefficient for large scale network 

• Deployment constraints -> inaccessible sink

Alternative approach

Nodes store data locally -> collector (mobile) gathers

Unreliable & failed nodes

Persistent data storage
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Distributed Data Storage

n: nodes in the network

k: sensors take measurements

Objective

• Each sensors stores one packet

• Recovery from any k(1+ε) nodes

• Decentralized operation

Motivation

• Localized data gathering (energy)

• Recovery from failing networks
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Measuring node

Recovery region
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Erasure Codes

Message

Encoding

Received

Message

Encoding Algorithm

Decoding Algorithm

Transmission

n

cn

n

n
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Erasure codes: encode message of k symbols ->  n symbols (where k<n) 
s.t. original message can be recovered from a subset of the n symbols.

Fountain codes (rateless erasure codes)

• limitless sequence of symbols 

from a given set of source symbols 

• original source symbols can be 

recovered from any subset of the symbols  

of size equal to the number of source symbols

• Key representatives: Luby Transform (LT) and Raptor

Data persistence with Fountain Codes
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Erasure Codes: LT-Codes

b1 b2 b3 b4 b5F=

n=5 input blocks
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1. Pick degree d1 from a pre-specified 

distribution. (d1=2)

2. Select d1 input blocks uniformly at 

random. (Pick b1 and b4 )

3. Compute their sum (XOR).

4. Output sum, block IDs



LT-Codes: Encoding

b1 b2 b3 b4 b5

c1E(F)=

F=
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1. Pick degree d1 from a pre-specified 

distribution. (d1=2)

2. Select d1 input blocks uniformly at 

random. (Pick b1 and b4 )

3. Compute their sum (XOR).

4. Output sum, block IDs



LT-Codes: Encoding

E(F)=

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 L

F=
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LT-Codes: Decoding

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7

F= b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7

F= b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7

F= b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7

3 3 5

4 4 5

5 5 5

c c b

c c b

c c b

 

 

 F= b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7E(F)=

F=

b5 b5 b5

b1 b2 b3 b4 b5

c1 c2 c3 c5 c6 c7

F=

b5

c4

b5 b5

b1 b2 b3 b4 b5

c1 c2 c3 c5 c6 c7

F=

b5

c4

b5 b5

b1 b2 b3 b4 b5

c1 c2 c3 c5 c6 c7

F=

b5

c4

b5 b5

b1 b2 b3 b4 b5

c1 c2 c3 c5 c6 c7

F=

b5

c4

b5 b5b2b2

b1 b2 b3 b4 b5

c1 c2 c3 c5 c6 c7

F=

b5

c4

b5 b5b2b2

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

63Spring Semester 2017-2018



Linear code fundamentals

• Generator matrix  s=mG

• s = encoded vector, m = input vector, G in RM x K

• K = degree

Ideal Soliton distribution

Recovery

• 𝑘 + 𝑂( 𝑘ln2(𝑘/𝛿)) encoding symbols w.h.p. (1 − 𝛿).

Complexity

• 𝑂(𝑘ln(𝑘/𝛿))
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Data dissemination

 A random walk with length L will stops at a node.

 If the length L of random walk is sufficiently long, then the 
distribution will achieve steady state.

Algorithmic steps

• Step 1 : Degree generation

• Step 2 : Compute steady-state distribution

• Step 3 : Compute probabilistic forwarding table

• Step 4 : Compute the number of random walks

• Step 5 : Block dissemination

• Step 6: Encoding
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Distributed Data Storage with LC
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Experimental results
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Coding + Storage Networks = New open problems

Issues:

• Communication

• Update complexity

• Repair communication

A

B

?

Network traffic
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