CS-541
Wireless Sensor Networks

Lecture 8: Introduction to WSN programming and Hands-on Session

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pring University of Crete, Computer Science Department

FORTH

. Institute of Computer Science

Objectives

* Programming aspects for WSN

* Hands on sessions (Wednesday & Friday B306)

. CS-541 Wireless Sensor Networks Kk
Spring Semester 2017-2018 TR H
pring University of Crete, Computer Science Department 2 A FORT

2> Institute of Computer Science

WSN Programming

e HW Platform

Integration of SW
components

Some of them are
dedicated to WSN (e.g.
sensors, transceivers) and

some of them are not e.g.

uProcessors, RAM/ROM
components

o ?‘5‘3&

¥
Ras
m%

Spring Semester 2017-2018

Memory
/storage

(data acquisition, and
preprocessing, buffers
handling)

;

sensors

(transducer, measuring a
physical phenomenon e.g.

and sound)

heat, light, motion, vibration,

microProcessor
(communication with sensors &
transceivers , preprocessing,
buffers handling, etc)

transceiver
(connection to the outer-world,
e.g. other sensor nodes, or data
collectors --sinks)

!

power unit

(battery based — limited lifetime!)

{J TEXAS INSTRUMENTS

AIIIE

CS-541 Wir
University of Crete,

e ¢

FORTH

. Institute of Computer Science

WSN Programming

e HW Platform Evolution

Internet of Things and Cyber—
physical Systems: Ubiquitous
sensing, healthcare to
intelligent conditions
monitoring and control (e.g.
Smart Grid)

High
Progr./Deb
options +
Standards
Extending towards
larger scales and
Low introducing a more
intelligence closer to
Progr./Deb the level of sensing -
H : Emergency Response
OpthﬂS (Search and Rescue /
Smart Dust project: Integration with
Ambient conditions mobile robots) —
monitoring
H 1 Wireless Sensor Networks
LOW CompUtatlonal CompIeXIty ete, Computer Science Department

b

High (combined) Computational
Complexity

Family Memory | On-board Expandability Notes & Application areas
Sensors
TELOSB 10KB Temperature, | 10 GIOs, USB programming Open platform.
RAM, Humidity, interface Environmental and health structural
48KB Light monitoring. PoC research projects
Flash
Open source software support — Active.
Shimmer 10 KB 3-axis Expandability for Research platform with commercial support.
RAM, 48 | acceleromete | Accelerometers and ECG, EMG. | Excellent support (open source tools &
KB Flash, |, USB mother board. customized applications).
2GB uSD | Tilt & Healthcare and Sports projects (wearable
vibration computing)
Active and expanding.
Rechargeable battery (up to 8hours in fully
functional mode)
ZolertiaZl | 8KRAM, [3-axis 52-pin expansion board. All WSN-related. One of the latest platforms.
92KB acceleromete | Open source community support | Allows the option for a dipole antenna.
Flash r, & commercial support (excellent
temperature | Wiki)
XM1000 8K RAM, [Temperature, | 10 GIOs, USB programming from a family of open platforms....
116 Humidity, interface SMA connection (dipole antenna)...
Flash, Light All WSN-related, perhaps not for healthcare
1MB (bulky size and design).
External Can last up to 3 weeks on low data rate (per
Flash minute).

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department

. FORTH s

Institute of Computer Science

WSN Programming

Types of programming:

End users:

* Sensor network as a pool of data

* Interact with the network via queries

* Programming language: High-level abstraction, expressive & structured for efficient execution
on the distributed platform

* Shielded away from details of how sensors are organized and how nodes communicate.

Application developers:
* Provide the end users with the capabilities of data acquisition, processing, and storage.

* Have to deal with all kinds of uncertainty caused by network, hardware, and real-world
imperfections (e.g., noisy, events can happen at the same time, communication and
computation take time, communications may be unreliable, battery life)

* Appropriate programming abstractions??

' FORTH

Institute of Computer Science

WSN Programming

Application Developers....

* Objective: control its peripheral devices, sample data from the sensors, actuate on demand (or on
command) and communicate with the rest of the nodes.

* Challenges:
* Deal with message passing, event synchronization, interrupt handing, and sensor reading?

* How to have access/control to what each mote is actually doing? Or being able to accurately
emulate its behavior?

* How to allow rapid prototyping of common applications and network standards across
different types of hardware? Hardware abstraction

* How to do that easily (by using for example widely adopted programming languages and
tools?) How to reduce the learning curve?

* How to fine grain resource management in terms of memory and energy?

' FORTH

Institute of Computer Science

| | i i Hardware

B I Abstraction
Processor Processor Processor

;. Layer

Spring Semester 2017-2018 | Yensors | Power Sensors | Power Sensors | Power ™ 3

Computer Science

d |
S~ e ook = Network '

WSN Programming
Access / Control Hardware Abstraction Ease to use
KUProcessor Control / Emulation @ the level | NO NOT FOR typical WSN
Programming | of uProcessor practitioner / developer
Real-time Depends on how well it is YES Depends on how well it
Operating designed and what are the is designed...
Systems supporting tools it provides
Application Application Application
Message passing i ' ' i i A i i i
Handshaking | ! P | \ | | |
Locks and monitors | ! ! I | \ I I I
. | | | | | |
Interrupts and Services | ! ! | | ' | | |
Polling Sensors | P | | \ | | |
|| 1 ||
1 05\ 105 0s
! ‘-. l’
I el | | |
:

WSN Programming

OsS:
Abstracts the hardware platform

A set of services for applications: file management, memory allocation,
task scheduling, peripheral device drivers, networking.

OS for embedded systems:
The above under the constraint of limited resources:
Different trade-offs when providing these services — application

dependent: no file management requirement, if file system is not needed.

No dY_n_amic memory allocation, if memory management can be
simplified.

No prioritization among tasks if not critical

OS for WSN:

* The above under the challenge of scalability, need to support _
distributed applications, real-time response to stimuli from the physical
environment

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

Reduce code size
Improve time response
Reduce energy consumption

* Microkernel: modularizing the
operating system so that only
the necessary parts are
deployed with the application.

* RTsched.: allocates resources
to more urgent tasks so that
they can be finished early.

* Event-driven execution allows
the system to fall into low-
power sleep mode when no
interesting events need to be
processed.

. FORTH :

Institute of Computer Science

WSN Programming

Netw@
Reac

Spring Semester 2017-2018

Typical State Machine of a Sensor Node

Standby Wake-up by an event

sensing

Data Read

Sensor Ready

Including
process Unreliable
INg communication

channels, long
delays, irregular
arrival of messages,

simultaneous events
DI:I 11 1

stitute of Computer Science

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

=3 non-preemptive scheduler - a task
) is executed to the end, may not be
WSN PrOgrammlﬂg interrupted by another task

=3 preemptive scheduler - a task of
higher priority may interrupt a task of
e Task Model low priority

Each task a triplet: (execution time, period, deadline)

E ti ti)
Initiation xecution time Deadline
| | > Time
\\§)
Y
Period

OS For WSN: How to successfully manage the execution of tasks related to the
sensors and the protocol stack? (Interrupts, Services, & Polling)

CS-541 Wireless Sensor Networks F
&g 11
University of Crete, Computer Science Department 2 0e? FORTH

Institute of Computer Science

Spring Semester 2017-2018

WSN Programming

Types of Architectures for OS For WSN

Monolithic

* Services provided by an OS are
implemented separately and each
service provides an interface for
other services.

* Asingle system image & smaller OS
memory footprint.

++Low module interaction costs are low.
--The system is hard to understand and
modify, unreliable, and difficult to
maintain.

Spring Semester 2017-2018

Modular

Event driven @ kernel and optional threading
facilities to individual processes.

A lightweight event scheduler that dispatches
events to running processes.

Process execution is triggered by events
dispatched by the kernel to the processes or
by a polling mechanism.

Any scheduled event will run to completion,
however, event handlers can use internal
mechanisms for preemption.

Polling mechanism: high-priority events that
are scheduled in between each asynchronous
event. When a poll is scheduled, all

processes that implement a poll handler are
called in order of their priority.

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

Layered

Implements services in
the form of layers.
++manageability, easy
to understand, and
reliability.

--not a very flexible
architecture from an OS
design perspective.

Institute of Computer Science

FORTH 12

WSN Programming

TinyOs

Contiki

The Open Source OS for the Internet of Things

Nano-RK: A Wireless Sensor Networking Real-Time Operating System

LiteOS: A Unix-like Operating System for
Embedded Controllers and Sensor Networks

CS-541 Wireless Sensor Networks \‘”
University of Crete, Computer Science Department ‘“ FORTH

%+ Institute of Computer Science

Spring Semester 2017-2018

WSN Programming T -
Ny

* Component-based architecture, implementing one single stack
* Event-based, non-blocking design that allows intra-mote concurrency

* Written in NesC
* Structured, component-based C-like programming language

Programming Model:

* Components: encapsulate state and processing — use or provide interfaces

* Interfaces list commands and events Top Configuration

* Configurations wire components together for creating applications
[Component A j

'

Configuration B

;

CS-541 Wireless Sensor Networks f~ FOR Tl nyOS

University of Crete, Computer Science Department

Spring Semester 2017-2018

3 Institute of

WSN Programming TinyOs

Components

/\

Implementation
Specification (the actual

implementation)

Interfaces (library of
Offered / Used

functions) : 'S
that the specific Functionalities

components provides
and uses

Commands Events
Provider Component must Provider Component must define
define & implement and may implement
User component can use User component must implement
as is

 FORTH 15

Institute of Computer Science

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

Spring Semester 2017-2018

* Two kinds of components

 Modules

* specify and implement interfaces
(commands & events)

* A new set of library modules that can
be used in a range of applications

» Configurations (wiring)
e connecting interfaces used by

components to interfaces provided by
others

* build applications out of existing
implementations.

Applications: define a top level
configuration that wires
together different components

Spring Semester 2017-2018

module FooM {

/I Specification

provides {
interface Foo;

}

uses {
interface Poo as PooFoo;
interface Boo;

}
h
/limplementation
implementation {

[l Command handlers

command result_t Foo.comm{

}

[/[Event handlers
event void Boo.event]

)
)

CS-541 Wireless Sensor Networks k;;"}”i
University of Crete, Computer Science Department = 155 FORTH

Institute of Computer Science

16

WSN Programming Tlny S

Interface I

Component A Component B
(user of I) (provider of I)

Component MYAPPLICATION:
Uses Interface Send.

calls the sendMsg(msg) Component AMSEND
command __- PROVIDES Interface Send
Implements the event Implements the
sendDone() — e.g. led on / go sendMsg(msg) command
back to sleep Interface SEND & defines the s:ndDone()
even

CS-541 Wireless Sensor Networks ,{3“
University of Crete, Computer Science Department § FORTH Y

nstitute of Computer Science

Spring Semester 2017-2018

TiNnyOS

WSN Programming

Function Commands Events

calls [U
ses Send
Using Call Command Implement

Event Handler

Implement

Providing Signal Event

Command Body Application a

Split-phase execution w ¢

(Return values arrive asynchronously g g

through events) o D %
L o

Computation mechanisms -> Tasks: o = . %

Typically spawned by events © % Communication

By default non-preemptive but can be pre- O % Stack

empted by asynchronous events (usually e

kept small) %

FIFO scheduling)

Provides Send]

CS-541 Wireless Sensor Networks %
University of Crete, Computer Science Department 2457 FORTH

Institute of Computer Science

Spring Semester 2017-2018 18

WSN Programming Tlﬂy S

* A simple example:
Program a sensor node to blink a led every 250mes.....
A timer module

A led module
A module that combines them together.

Spring Semester 2017-2018)) .
University of Crete, Computer Science Department
Institute of Computer Science

CS-541 Wireless Sensor Networks “_ FORTH o

configuration BlinkAppC
{
}//specification

implementation

components MainC, BlinkC, LedsC;
components new TimerMilliC() as TimerO;

BlinkC -> MainC.Boot;

BlinkC.Timer0O -> Timer0;

BlinkC.Leds -> LedsC;
}

The provided component
defines, the user interface
must implement

Spring Semester 2017-2018

TiNnyOS

#include "Timer.h"

module B1linkC
{
uses interface Timer<TMilli> as TimerO;

uses interface Leds;

uses interface Boot;
}

}mplementation
{event volid Boot.booted ()

call TimerO.startPeriodic (250);

}

event void TimerO.fired() [Split Face execution]

dbg ("BlinkC", "Timer 0 fired

@ $s.\n", sim time string());
call Leds.ledOToggle();

}

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

/" FORTH 20

Institute of Computer Science

WSN Programming -
——— Contiki

The Open Source OS for the Internet of Things

Find Movies, TV shows, Celebrities and more... ¥
Movies, TV Celebs, Events News &
v v v Watchlist ~

& Showtimes & Photos Community

FULL CAST AND CREW TRIVIA USER REVIEWS IMDbPro MORE ¥ SHARE

+ Kon-Tiki (2012) ol e

1h 58min Adv

Allows the shift from WSN to loT:

Legendary explorer Thor Heyerdal's epic 4,300-mile crossing of the Pacific on a balsawood raft

[] Ba Se I i n e to u p pe r’ m id d I eWa re Se rvi Ces in 1947, in an effort to prove that it was possible for South Americans to settle in Polynesia in

pre-Columbian times.

[} ul P Sta c k & i nte ro pe ra bi I ity Directors: Joachim Renning, Espen Sandberg

Writers: Petter Skavlan, Allan Scott (script consultant) = 1 more credit »

Stars: P3| Sverre Hagen, Anders Baasmo Christiansen, Gustaf Skarsgard
See full cast & crew »

P Metascore Reviews W Popularity
&8 From metacritic.com | 59 user | 145 critic 3,796 (# 87)

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

- FORTH .

Institute of Computer Science

Spring Semester 2017-2018

WSN Programming

Contiki

The Open Source OS for the Internet of Things

Event-based - Invoking processes

Using protothreads: a programming abstraction that
combines events and threads

Single stack and sequential flow control

Posting events or polling

TinyOS: GOTO FLOW Vs

User User
Application Application

Process #1 Process #N

Contiki Network Processes
(Protocol Stack)

Contiki Core processes
(Platform Configuration)

ContikiOS: Sequential flow control while keeping a single stack and an

event handler for different threads

Spring Semester 2017-2018 CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department

Institute of Computer Science

- FORTH 22

WSN Programming Contiki

Protothreads: The Open Source OS for the Internet of Things
* Lightweight, stackless threads

* Implement sequential flow of control without using complex state machines or full multi-
threading.

* Conditional blocking inside a C function (on top of an event-driven system)

* To minimize the overhead of multi-threading — they run on the same stack (suitable for
memory constrained systems, where a stack for a thread might use a large part of the
available memory)

* Protothread overhead: 2B of memory per protothread.

e Scheduling -> based on repeated calls to the function: Each time the function is called,
the protothread will run until it blocks or exits. Protothreads are scheduled by their
applications

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks ;-;: FORTH -
N : Insti

University of Crete, Computer Science Department
itute of Computer Science

WSN Programming

Event-based state machine
enum {ON, WAITING, OFF} state;

| if(state == ON) {

if(expired(timer)) {
timer = t_sleep;
if(!comm _complete {
state = WAITING;
walt timer = t wait max;
} else {
radio off();
state = OFF;

H

} else if(state == WAITING) {
if(comm_complete() ||

expired({wait timer)) {
state = OFF;

radio offT();

} else if(state == OFF) {

if(expired(timer)) {
radio on();
state ON;
timer t awake;

}

}

With Protothreads

int protothread(struct pt *pt) {
PT_BEGIN(pt);
while(1) {
radio_on();
timer = t_awake;
PT_WAIT_UNTIL(pt, expired(timer));
timer = t_sleep;
if(!comm_complete()) {
wait_timer = t_wait_max;
PT_WAIT UNTIL(pt, comm_complete()
|| expired(wait_timer));
}
radio off(),;
PT_WAIT_UNTIL(pt, expired(timer));

}
PT_END(pt);

}

Wireless Sensor Networks »j”
'te, Computer Science Department :

FORTH 24

. Institute of Computer Science

Contiki

WS N P rOg ramm | N g The Open Source OS for the Internet of Things

An application implements several processes: each process is a protothread

#idefine PROCESS WAIT EVENT()
Wait for an event to be posted to the process.

#tdefine PROCESS WAIT EVENT UNTIL(c)
Wait for an event to be posted to the process, with an extra condition.

#tdefine PROCESS _YIELD()
Yield the currently running process.

#define PROCESS_YIELD UNTIL(c)
Yield the currently running process until a condition occurs.

#define PROCESS WAIT UNTIL(c)
Wait for a condition to occur.

(('%;2\(“!% CS-541 Wireless Sensor Networ} i
) YRS P - ireless Sensor Networks S
Spring Semester 2017-2018 w{?‘” INS . . ' e 25
pring -~ "5\ 7 University of Crete, Computer Science Department bt FDRTH
: '«3‘ : 7+ Institute of Computer Science

process_init();

CO nti ki process_start(&etimer_process, NULL);

The Open Source OS for the Internet of Things ctimer_init();

init_platform();

One main.c for each platform: set_rime_addr();
Core & Network processes
// low level api to phy
€c2420_init();
{
uint8_t longaddr[8];
uintl6_t shortaddr;
User User
Application Application shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1];
Process #1 Process #N memset(longaddr, 0, sizeof(longaddr));
. linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr);
cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
Contiki Network Processes }
(Protocol Stack) cc2420_set_channel(RF_CHANNEL);

memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr));

Contiki Core processes queuebuf_init();

(Platform Configuration) NETSTACK_RDC.init();
NETSTACK_MAC.init();

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pring University of Crete, Computer Science Department

FORTH 2

. Institute of Computer Science

WSN Programming

#include "contiki.h"
#include "dev/leds.h"

#include <stdio.h> /* For printf () */

PROCESS (blink process, "LED blink process");

/* We require the processes to be started automatically */
AUTOSTART PROCESSES (&blink process);

PROCESS THREAD (blink process, ev, data)
static struct etimer timer;

PROCESS BEGIN () ;

while (1)
/* we set the timer from here every time */
etimer set (&timer, CLOCK CONF SECOND) ;

/* and walt until the event we receive 1s the one we're
waiting for */

PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);
printf ("Blink... (state %0.2X).\r\n", leds get());

leds toggle (LEDS GREEN); /* update the LEDs */

CS-541 Wireless Sensor Networks F
. . . 3500 H 27
University of Crete, Computer Science Department PRk FORT

Institute of Computer Science

WSN Programming Contiki

The Open Source OS for the Internet of Things

The communication layers in Contiki

* The Rime protocol stack
* A set of communication primitives (keeping pck headers and protocol stacks separated)
* A pool of NWK protocols for ad-hoc networking
* Best-effort anonymous broadcast to reliable multihop flooding and tree protocols

* The ulP TCP/IP stack
* Lightweight TCP/IP functionalities for low complexity pControllers
* Asingle network interface (IP, ICMP, UDP,TCP)

* Compliant to RFC but the Application layer is responsible for handling retransmissions
(reduce memory requirements)

* RPLis part of it

. CS-541 Wireless Sensor Networks &
Spring Semester 2017-2018 . H 28
pring University of Crete, Computer Science Department 223 FORT

Institute of Computer Science

WSN Programming Contiki

The Open Source OS for the Internet of Things

How does Rime work

 Rime is a software trick
A stack of NWK layers (e.g. broadcast, unicast, polite, etc)

Each layer represents another type of traffic & adds something to the
network header

Complex network protocol are decomposed to simpler ones
Each layer is associated with a channel

2KB memory footprint

Interoperability and ease in changing the protocol stack

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks &
. . . 3 H 29
University of Crete, Computer Science Department 223 IF:ORT
: nsti

itute of Computer Science

WSN Programming

How does Rime work — Example

* The Collection Tree Protocol (CTP)
* Tree-based hop-by-hop reliable data collection
* Large-scale network (e.g. environmental or industrial monitoring)

e Reliable Unicast Bulk
* Event-driven data transmission of a large data volume
* Personal health-care

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department 238 FORTH
: nsti

itute of Computer Science

30

WSN Programming

How does Rime work — Example
* The Collection Tree Protocol (CTP)

* Tree-based hop-by-hop reliable data collection

Layer Description Channel Contribution to Rime
Header
Broadcast | Best-effortlocal area | 129 Sender ID
broadcast
Neighbor Periodic Neighbor 2 Receiver ID, Application
discovery Discovery mechanism Channel
Unicast Single-hop unicastto | 146 Receiver ID

an identified single-
hop neighbor

Stubborn Repeatedly sends a Receiver ID
unicast packet until cancelled
by upper layer

Reliable Single-hop reliable 144 Packet Type and Packet

Unicast unicast (ACKs and ID
retransmissions)

Large-scale network (e.g.
environmental or industrial
monitoring)

Reliable unicast

Stubborn unicast

' FORTH

Institute of Computer Science

Neighbor
discover

‘---_-——-__—

WSN Programming

Reliable Unicast Bulk

Event-driven data transmission of a large data volume

retransmissions)

Layer Description Channel Contribution to Rime
Header
Broadcast | Best-effortlocal area | 129 Sender ID
broadcast
Unicast Single-hop unicastto | 146 Receiver ID
an identified single-
hop neighbor
Stubborn Repeatedly sends a Receiver ID
unicast packet until cancelled
by upper layer
Reliable Single-hop reliable 144 Packet Type and Packet
Unicast unicast (ACKs and ID

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

Contiki

The Open Source OS for the Internet of Things

Personal health-care

Reliable Unicast Bulk

Reliable unicast

Stubborn unicast

' FORTH 3

Institute of Computer Science

WSN Programming

Contiki

The Open Source OS for the Internet of Things

* Cooja
* The Contiki emulator for running WSN applications.

* Very useful for debugging your codes — the same code
you test on cooja, the same you upload to your mote

* Evaluating the network performance — has very
simplifying models for radio propagation....
* Unit disk model: Edges are instantly configured according to

power attenuation w.r.t to distance & success ratio
(configurable)

* Directed graph radio medium: Considers preconfigured
edges, without checking the output power.

* Multipath ray tracer: Simulates reflection and diffraction
through homogeneous obstacles (considers that all nodes
have the same transmission power)

* Interacts with external tools, e.g. Wireshark for Network
monitoring

* Modular: Plugins for extending functionality

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

FORTH =

. Institute of Computer Science

Spring Semester 2017-2018

WSN Programming

TiNnyOS

Contiki

The Open Source OS for the Internet of Things

First Release 1999 2005
Supported Platforms (in official 17 26
distributions)
Community Support & Forums Yes Yes
Programming Language nesC C

Single / Multiple Thread

Single (multithread is optional)

Even-driven kernel with preemptive multithreading

Structure

Component-based

Protothreads (stack-less and lightweight)

Simulator / Emulator

TOSSIM (python)

Cooja / MSPSIm Emulator (java)

OTAP

Yes

Yes

Protocol Stack

(802.15.4) MAC (not fully supported)
LPL/ Collection Tree

(802.15.4) MAC (not fully supported)
Radio Duty Cycle & MAC

RPL/6LoWPAN RIME / ulP
6LoWPAN
Great flexibility in generating highly With default distribution: RIME or 6LoWPAN
customizable protocol stack (modifiable)
Interfacing with host (Serial Specific format (ActiveMessageC) Flexible

Communication)

(but provides tools s.a. SLIP)

Documentation & Support

Provides both

Provides both & also visualization tools

CS-54T WITeless Sensor Networks
University of Crete, Computer Science Department

Spring Semester 2017-2018

7 FORTH 54

. Institute of Computer Science

HANDS ON
SESSIONS

" FORTH

Institute of Computer Science

Hands on Session
Contiki

The Open Source OS for the Internet of Things

What we are going to do...

Sensing

Wireless
Sensing

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

Hands on Session

Your contiki directory structure:

1 apps

Contiki core

L. core
4 cpu
4 doc
. examples

(incl. supported
prot stacks)

). tools

D .gitignore

D ravis.yml

|| LICENSE

|| Makefile.include

|| README.md

|| README-BUILDING.md

D README-EXAMPLES. md
N

. platform
-h FEE fﬁiiﬂm

Supported
platforms

CS-541 Wireless Sensor Networks
~sity of Crete, Computer Science Department

Contiki apps

Hands on Session

Your contiki directory structure:

. apps
. core

. Cpu
. doc
. examples
. platform
. regression-tests
. tools
|| .gitignore
| travis.yml
|| LECENSE
|| Makefile.include
__| README.rmd
| README-BUILDING.md

__| README-EXAMPLES.md
S

platforms/sky

v

CS-541 Wireless Sensor Networks
~sity of Crete, Computer Science Department

Mame

| apps
| dev
| doc
|| cfs-coffee-arch.h
|| checkpoint-arch.c
|| contiki-conf.h
| contiki-sky-main.c

|| contiki-sky-main.c~

|| contiki-sky-platform.c

|| Makefile.common
|| Makefile.sky
| node-id.c

|| platform-conf.h

Institute of Computer Science

. FORTH

Parameters
definition
incl.
protocol
options

Hands on Session
Contiki

The Open Source OS for the Internet of Things

http://www.hopnetwork.com/contiki/index.html

Contiki 3.0
Related Pages | Modules | Data Structures | Files | Examples |

The Contiki Operating System

m

Contiki is an open source, highly portable, multi-tasking operating system for memory-efficient networked embedded systems and wireless sensor networks. Contiki is designed for microcontrollers with small
amounts of memory. A typical Contiki configuration is 2 kilobytes of RAM and 40 Kilobytes of ROM.

Contiki provides IP communication, both for IPv4 and IPvE. Contiki and its ulPvE stack are IPvE Ready Phase 1 certified and therefor has the right to use the IPv6 Ready silver logo.

Many key mechanisms and ideas from Contiki have been widely adopted in the industry. The ulP embedded IP stack, originally released in 2001, is today used by hundreds of companies in systems such as
freighter ships, satellites and oil drilling equipment. Contiki and ulP are recognized by the popular nmap network scanning tool. Contiki's protothreads, first released in 2005, have been used in many different
embedded systems, ranging from digital TV decoders to wireless vibration sensors.

Contiki introduced the idea of using IP communication in low-power sensor networks networks. This subsequently lead to an IETF standard and the IPSO Aliance, an international industry alliance. TIME Magazine
listed Internet of Things and the IPSO Alliance as the 30th most important innovation of 2008.

Contiki is developed by a group of developers from industry and academia lead by Adam Dunkels from the Swedish Institute of Computer Science. The Contiki team currently consists of sixteen developers from
SICS, SAP AG, Cisco, Atmel, NewAE and TU Munich.

Contiki contains two communication stacks: ulP and Rime. ulP is a small RFC-compliant TCP/IP stack that makes it possible for Contiki to communicate over the Internet. Rime is a lightweight communication stack
designed for low-power radios. Rime provides a wide range of communication primitives, from best-effort local area broadcast, to reliable multi-hop bulk data flooding.

Contiki runs on a variety of platform ranging from embedded microcontrollers such as the MSP430 and the AVR to old homecomputers. Code footprint is on the order of kilobytes and memory usage can be
configured to be as low as tens of bytes.

Contiki is written in the C programming language and is freely available as open source under a BSD-style license.

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

FORTH 5

Institute of Computer Science

Hands on Session

Hello World © contiki/examples/hello-world
[Code structure & compile]

#tinclude "contiki.h"

Hello-world.c
#include <stdio.h> /* For printf() */
/* */
PROCESS(hello_world_process, "Hello world process"); /**Process definition**/
AUTOSTART _PROCESSES(&hello_world_process); /**Process Start**/
/* */
PROCESS_THREAD(hello_world_process, ev, data) /**Process implementation**/

{
PROCESS_BEGIN(); /**Always first**/

printf("Hello, world\n"); //process core

PROCESS_END(); /**Always last**/

}
/* */

CS-541 Wireless Sensor Networks Kk
Spring Semester 2017-2018 TR H
pring University of Crete, Computer Science Department 2 A FORT

Hello
World

&

Sensing

Wireless
Sensing

40

Institute of Computer Science

Hands on Session

Hello World © contiki/examples/hello-world
[Code structure & compile]

CONTIKI =../..

H#TARGET _LIBFILES += -Im
#CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"
#PROJECT_SOURCEFILES += projectl.c
#CONTIKI_SOURCEFILES +=macl.c rdcl.c
#UIP_CONF_IPV6=1 ##macros...

Include

headers
include S(CONTIKI)/Makefile.include “<Elleill=s

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

Hello
World

Sensing

Ma keflle Wireless

Sensing

Customized configuration
of protocol stack

APP layer / AUTOSTARTED
with your main app process

Source codes to use (usually
containing customized
network solutions) — that
contiki processes will use.

- Institute of Computer Science

Hello

World
Hands on Session g
Hello World © contiki/examples/hello-world
[Code structure & compile] Wireless
Sensing

Program:

1. Open command terminal.

2. cd contiki/examples/hello-world

3. make TARGET=<platform*> hello-world.upload (compile and program)

Serial Dump
1. At new tab (File/Open new tab).
2. make TARGET=sky MOTES=/dev/ttyUSBO login

*sky/xm1000/z1

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks e
. . . 32 H 42
University of Crete, Computer Science Department 223 FORT

Institute of Computer Science

Hands on

What we use...

Session

Product
Name

Extras Notes:

CM5000-
SMA

Temperature & accelerometer -
5dBi dipole antenna |ports to host more sensors

Temperature, humidity & light
sensor
5dBi dipole antenna |Network compatible to Z1

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

Institute of Computer Science

;;FORTH

43

http://www.advanticsys.com/shop/mtmcm5000sma-p-23.html

WSN Programming

Hello-world in WSN programming.

A Blinking-Led Application
* Program a mote to blink a led every T seconds.

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pring University of Crete, Computer Science Department

" FORTH

. Institute of Computer Science

Hands on Session Sensing

Hello World © contiki/examples/hello-world

Wireless

[How to trigger a process] Sensing
* How to wake up from a process

#idefine PROCESS WAIT EVENT()
Wait for an event to be posted to the process.

Keep on mind that:

Automatic variables not stored

fidefine PROCESS_WAIT EVENT UNTIL(c) across a blocking wait
Wait for an event to be posted to the process, with an extra condition.
#dEﬁI‘"IE FRDEESS_“ELD{} \\:\;Pr\izrt\) |i:5dOUbt' use static local

Yield the currently running process.

#define PROCESS_YIELD UNTIL(c)
Yield the currently running process until 2 condition occurs.

#define PROCESS_WAIT_UNTIL(c)
sering sHRRIY: fb 2ocondition to occur. €551 Wireless Sensor Networks "FORTH .

University of Crete, Computer Science Department
h a2

Hands on Session

[How to trigger a process]
* Timers

* Event timer (etimer) : Sends an
event when expired

 Callback timer (ctimer) : Calls a

function when expired — used by Rime

Spring Semester 2017-2018

void

void

void

void

int

clock_time_t

clock_time_t

void

void

void

void

int

void

etimer_set (struct etimer *et, clock_time_t interval)
Set an event timer.

etimer_raset (struct etimer *et)
Reset an event timer with the same interval as was previously set.

etimer_restart (struct etimer *et)
Restart an event timer from the current point in time.

etimer_adjust (struct etimer *et, int td)
Adjust the expiration time for an event timer.

etimer_expired (struct etimer *et)
Check if an event timer has expired.

etimer_expiration_time (struct etimer *et)
Get the expiration time for the event timer.

etimer_start_time (Struct etimer *er)
Get the start time for the event timer.

etimer_stop (struct etimer *et)
5top a pending event timer.

ctimer_set (struct ctimer *c, clock_time_t t, void(*fi(vaid *), void *ptr)
Set a callback timer.

ctimer_reset (struct ctimer *c)
Reset a callback timer with the same interval as was previously set.

ctimer_restart (struct ctimer *c)
Restart a callback timer from the current point in time.

ctimer_stop (struct ctimer *c)
Stop a pending callback timer.

ctimer_expired (struct ctimer *c)
Check if a callback timer has expired.

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

FORTH r

... Institute of Computer Science

Hello
World

Hands on Session

Sensing

Hello World ©
. Wireless
[How to trigger a process] Sensing

From hello-world.c generate a new application (print-and-blink.c) that:
1. periodically (e.g. per second) prints a message.

2. when the message is printed a led toggles
#include “leds.h”

leds_toggle(LEDS_RED / LEDS_GREEN / LEDS_YELLOW)
macro for time: CLOCK_SECOND

N Institute of Computer Science

#include “leds.h”

PROCESS(print_and_blink_process, “Print and blink process");
AUTOSTART_PROCESSES(&print_and_blink_process);
PROCESS_THREAD(print_and_blink_process, ev, data)

itatic struct etimer et;

PROCESS_BEGIN(); /**Always first**/

while(1) {

etimer_set(&et, 5*CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

printf(“Echo\n”);

leds_toggle(LEDS_GREEN);

PROCESS_END(); /**Always last**/
} .yl!ff}y‘) xﬁ’
Soring Semester 2017-2018 lé 2 §% CS-541 Wireless Sensor Networks
pring B v/ University of Crete, Computer Science Department

Hello
World
Sensing
Wireless
Sensing
= FORTH 48

2> Institute of Computer Science

Hello
World

WSN Programming

Sensing

Wireless
Sensing

A Sense and Blink Application

* Program a mote to read its sensors every T seconds, print the values
and blink a led

Temperature, humidity, radiation & battery

CS-541 Wireless Sensor Networks ;&3“
I 49
University of Crete, Computer Science Department ‘ FORTH

nstitute of Computer Science

Hello World

»4

Sensing
Wireless
Sensing

SHT11 -> Temperature and Humidity

HOW TO ACCESS IT:

A. READ THE VALUES of the global struct shtll_sensor.value(type) (PROVIDED
BY PLATFORM API)

type = SHT11_SENSOR_TEMP, SHT11_SENSOR_HUMIDITY

B. USE THE AP PROVIDED BY OS API void shtll_init(void);
void sht11l off(void);

unsigned int shtl1l temp(void);
unsigned int sht1l1l_humidity(void);
unsigned int shtl1l _sreg(void);

cooat Wieless sensorhetwork it shtll _set_sreg(unsigned);

Spring Semester 2017-2018
pring University of Crete, Computer Science De|

HAMAMATSU-> RADIATION (TOTAL SOLAR & PHOTOSYNTHETICALLY AVAILABLE)

HOW TO ACCESS IT:
A. READ THE VALUES of the global struct light_sensor.value(type) (PROVIDED BY

PLATFORM API)
type = LIGHT_SENSOR_TOTAL_SOLAR, LIGHT_SENSOR_PHOTOSYNTHETIC

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks Kk FORTI I
. . . 3 51
University of Crete, Computer Science Department s
N : Institute of Computer Science

BATTERY SENSOR -> READ THE INPUT VOLTAGE

HOW TO ACCESS IT:

READ THE VALUES of the global struct battery_sensor.value(type) (PROVIDED BY
PLATFORM API)

type=0

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department FDRTH

. Institute of Computer Sc

Spring Semester 2017-2018

#include "dev/light-sensor.h” / "dev/sht11/sht11-sensor.h” / "dev/battery-sensor.h”

o

PROCESS_THREAD(sense_and_blink_process, ev, data) P
{ &5

static struct etimer et;
static struct sensor_datamsg msg;

PROCESS_BEGIN(); /**Always first**/
//activate the sensors

//SENSORS_ACTIVATE(sht11_sensor); //the data structure
SENSORS_ACTIVATE(battery_sensor); struct sensor_datamsg{
SENSORS_ACTIVATE(light_sensor);
sht11_init(); uintl6_t temp;
uintl6_t humm;
while (1) { uintl16_t batt;
uintl6_t lightl;
etimer_set(&et, CLOCK_SECOND); uint16_t light2;
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et)); }sensor_datamsg;
//get the data

msg.temp= shtll_temp();

msg.humm = shtl1l_humidity();

msg.lightl = light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC);
msg.light2 = light_sensor.value(LIGHT_SENSOR_TOTAL_SOLAR);

msg.batt = battery_sensor.value(0);

printf("Sensor raw values: temperature:%d, humidity: %d, battery: %d, visible light: %d\n, total solar radiation: %d\n",
msg.temp, msg.humm, msg.batt,msg.lightl, msg.light2);

leds_toggle(LEDS_GREEN);
}
//deactivate

sht11_off();

SENSORS_DEACTIVATE(light_sensor);

SENSORS_DEACTIVATE(battery_sensor);

PROCESS_END(); /**Always last**/

PROCESS(sense_process, "Sense process");

. . n . . n 2
PROCESS(print_and_blink_process, "Print and blink process"); Hello
AUTOSTART_PROCESSES(&sense_process, &print_and_blink_process); processes World)
static struct sensor_datamsg msg;
static process_event_t event_data_ready;

PROCESS_THREAD(sense_process, ev, data)
{

static struct etimer et;

PROCESS_BEGIN(); /**Always first**/
//activate the sensors

;/.\;hile (1) {

//read values as previously PROCESS_THREAD(print_and_blink_process, ev, data)
{
//and now it is time to wake up the 2nd process PROCESS_BEGIN(); /**Always first**/
process_post(&print_and_blink_process,event_dat
while (1) {

a_ready, &msg);
’ PROCESS_YIELD_UNTIL(ev==event_data_ready);

}
//deactivate //and then print
}
PROCESS_END(); /**Always last**/
PROCESS_END(); /**Always last**/ }
}

‘nsor Networks
University of Crete, Computer Science Department

 FORTH s

. Institute of Computer Science

Spring Semester 201/-2018

#finclude "dev/battery-sensor.h”, "dev/i2cmaster.h”, "dev/tmp102.h"

PROCESS_THREAD(sense_process, ev, data)
{

static struct etimer et;
intl6_t raw;
uintl6_t absraw;
PROCESS_BEGIN(); /**Always first**/
//activate the sensors

.. //the data structure
tmp102_init();

struct sensor_datamsg{

SENSORS_ACTIVATE(battery_sensor); int16 tt
uintl6é_ttemp;

while (1) { uintl6_t humm;
uintl6_t batt;

etimer_set(&et, CLOCK_SECOND); uintl6_tlight1;

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et)); uintl6_t light2;

//get the data }sensor_datamsg;
raw = tmp102_read_temp_raw();

absraw = raw;
if(raw < 0) { // Perform 2C's if sensor returned negative data
absraw = (raw * OxFFFF) + 1;

: _ _ PROCESS_THREAD(print_and_blink_process, ev, data)
msg.temp= absraw;
msg.batt = battery_sensor.value(0); {

PROCESS_BEGIN(); /**Always first**/

//and now it is time to wake up the 2nd process
process_post(&print_and_blink_process,event_data_ready, &msg);

while (1) {
PROCESS_YIELD_UNTIL(ev==event_data_ready);
} .
J/deactivate //and then print
SENSORS_DEACTIVATE(battery_sensor); }
PROCESS_END(); /**Always last**/ PROCESS_END(); /**Always last**/
} }

Hello World

Hands on Session sensing
Wireless Sensing ©
Access a sensor & trx using a broadcast RIME \gV;Li'Ii;S

Communication:
 Each type of connection (rime / ulP / 6LoWPAN) defines a structure

* Each ty;pe of rime connection defines a struct for the callback function (rx
events).

Callback function has to have a specific definition...

* Each rime-based connection is associated with a predefined channel (>128)

' FORTH

itute of Computer Science

Hello World

Hands on Session sensing
Wireless Sensing © contiki/examples/hello-world

[Access a sensor & trx] "SV;;i'Ifg
@ rime:
* packetbuf module for packet buffer management
e Struct linkaddr_t for addressing...
typedef union {

unsigned char u8[LINKADDR_SIZE]; //=2
} linkaddr_t;
@ uip:
* uipbuf module for packet buffer management

 Struct ipaddr_t

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department

.’lnstitute of Computer Science

Contiki 3.0

http://www.eistec.se/docs/contiki/

Main Page | Related Pages | Modules | Data Structures File

Rime buffer management

The Rime communication stack

The packetbuf module does Rime's buffer management. More._

int packetbuf copyto_hdr (uintd_t *to)

Macros Copy the header portion of the packetbuf to an external buffer. More._..
#define PACKETBUF_SIZE 128 105 [Pom st L s s (58 T

The size of the packetbuf, in bytes. Copy the entire packetbuf to an external buffer. More...
#define PACKETBUF_HDR_S'ZE 48 int pal:kethuf_hl:lrallnc {lnt 5|ZE}

The size of the paCHEtDUf header in D‘Y‘ES. Extend the header of the paCKEtbuf, for outbound paCHEtS. More._.

int packetbuf hdrreduce (int size)
Functions Reduce the header in the packetbuf, for incoming packets. More. .

void packetbuf set datalen (uint16_t len)
Set the length of the data in the packetbuf. More...

void packetbuf clear (void)
Clear and reset the packetbuf. More...
void * packetbuf_dataptr (void)
Get a pointer to the data in the packetbuf. More. ..

void packetbuf clear hdr (void)
Clear and reset the header of the packetbuf. More...
void * packetbuf hdrptr (void)
et a pointer to the header in the packetbuf, for outbound packets. More. ..

int packetbuf copyfrom (const void *from, uint16_t len)
Copy from external data into the packetbuf. More. ..

T A e S T uint16_t packetbuf datalen (void)

Get the length of the data in the packetbuf. More. .

uinté_t packetbuf_hdrlen (void)
et the length of the header in the packetbuf. More._.

uint16_t packetbuf totlen (void)
Get the total length of the header and data in the packetbuf. More_..

CS-54:

Spring S ter 2017-2018
pring semester University of Ci

int packetbuf holds broadcast (void)
Checks whether the current packet is a broadcast. More. ..

http://www.eistec.se/docs/contiki/

//the data structure
struct sensor_datamsg{

Hands on Session Snt16.t temp;

uintl6_t humm;
uintl6_t batt;
uintl6_t lightl;
uintl6_t light2;
Wireless Sensing © [Access a sensor & trx] }sensor_datamsg;

From the sense-and-tx, generate a new application (sense-and-trx.c) that:
1. Periodically samples from on-board temperature sensor
2. When done broadcast the value

3. Upon the reception of a incoming packet, print its contents and the
source node id

CS-541W
University of Crete

s> Temperature & battery

Temperature, humidity, radiation & battery

#include “net/rime/rime.h”
#include “random.h”

static void
broadcast_recv(struct broadcast_conn *c, const linkaddr_t*from)

{
//processing upon RX

}

//DEFINE THE RX CALLBACK FUNCTION
static const struct broadcast_callbacks broadcast_call = {broadcast_recv}; -- visible outside
process

//DECLARE THE BROADCAST CHANNEL

static struct broadcast_conn broadcast; -- visible outside
process

PROCESS_THREAD(send_and_blink_process, ev, data)
{

CS-541 Wireless Sensor Networks ::“'
University of Crete, Computer Science Department 2457 FORTH

Institute of Computer Science

} Spring Semester 2017-2018

PROCESS_THREAD(send_and_blink_process, ev, data)
{

static uint8_t data2send[sizeof(sensor_datamsg)]; Transmit process
static struct etimer send_timer;

PROCESS_EXITHANDLER(broadcast_close(&broadcast);)

PROCESS_BEGIN(); /**Always first**/ Instead of

PROCESS THREAD(print_and_blink_process,

broadcast_open(&broadcast, 129, &broadcast_call);
ev, data)

while (1) {
PROCESS_YIELD_UNTIL(ev==event_data_ready);

data2send[0] = msg.temp & 255;//Isb
data2send[1] = msg.temp >> 8;//msb

data2send[2] = msg.humm & 255;
data2send[3] = msg.humm >> §;

data2send[4] = msg.batt & 255;
data2send[5] = msg.batt >> §;

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&send_timer));
packetbuf_clear();

packetbuf clear_hdr();
packetbuf_copyfrom(data2send,sizeof(sensor_datamsg));
broadcast_send(&broadcast);

leds_toggle(LEDS_GREEN);

#include “net/rime/rime.h”
#include “random.h”

static void
broadcast_recv(struct broadcast_conn *c, const linkaddr_t*from)

{

Receive function

uint8_t *appdata;
uint8 ti;
appdata = (uint8_t *)packetbuf dataptr();
struct sensor_datamsg rxmsg;
printf("'* ¥ xkkxkkxskxx %%k ¥ *broadcast message received from %d.%d\n", from->u8[0], from->u8[1]);
if (packetbuf_datalen() == sizeof(struct sensor_datamsg)){
rxmsg.temp = appdata[0] | appdata[1]<<S8;
rxmsg.humm = appdata[2] | appdata[3]<<S8;
rxmsg.batt = appdata[4] | appdata[5]<<8;

printf("temp: %d, humm: %d, batt:%d\n", rxmsg.temp, rxmsg.humm, rxmsg.batt);

else{

for (i=0;i<packetbuf datalen();i++){
printf("%u,", appdatali]);
}

printf("\n");

}

. CS-541 Wireless Sensor Networks e
Spring Semester 2017-2018 s H
pring University of Crete, Computer Science Department 223 FORT

Institute of Computer Science

Hands on Session

Wireless Sensing © [Access a sensor & trx]

From the sense-and-tx, generate a new application (sense-and-trx.c) that:

1.
2.
3.

Periodically samples from on-board temperature sensor
When done broadcast the value

Upon the reception of a incoming packet, print its contents and the
source node id

USE PACKETBUF attributes to READ ALSO RSSI AND LQI VALUES

N Institute of Computer Science

Contiki 3.0

Main Page | Related Pages | Modules | Data Structures | File

packetbuf attr (at core/net/packetbuf.h):

00342 PACKETBUF ATTR LINK QUALITY,
00343 PACKETBUF_ ATTR RSST,

F* Coome 0 attributes: peed

)) PACKETBUF ATTR CHANNEL,
To use it: packetbuf attr(type of attribute) eackersor arra werwors 1o,

- PACKETBUF_ATTR_LINK_QUALITY,..,_
PACKETBUF ATTR RSSI,//or integez
PACKETBUF ATTR_TIMESTREME, //or
PACKETEUF_ATTR RADIO TXFOWER, //oz
PACKETBUF ATTR LISTEN TIME,
PACKETBUF _ATTR TRANSMIT TTME, g
PACKETBUF ATTR MAX MAC TRANSHISSIDNS, integer value=3
PACKETEUF ATTR MAC SEQNO, integer vali
PACKETBUF_ATTR_MAC_ACK,..,_

PHCKETBUF ATTR RELIAELE,
PACKETBUF_ATTR_PACKET_ID /
PACKETBUF_RTTR_FRCKET_TYPE,
PACKETEUF ATTR REXMIT,
PACKETBUF ATTR MAX | REXHIT
PACKETBUF_ATTR_NUH_REXHIT,
PACKETEUF ATTR PENDING, //or

F* Scope 2 attributes: used
PACKETBUF ATTR HOPS, //or
PACKETBUF hTTR TTL, r
PLCKETEUF ATTR EPACKFET ID,
PACKETBUF_ATTR_EFACKET_TYFE

PACKETEUF ATTR ERELIARLE,

/* These must be last +/
PACKETEUF ADDR SENDER, //or
PACKETBUF ADDR RECEIVER, //or
PLCKETEUF ADDR ESENDER, r

PACKETBUF_EDDR_ERECEIVER,..-_

Cs

Spring Semester 2017-2018
pning University ¢

broadcast_recv(struct broadcast_conn *c, const linkaddr_t *from)
{
uint8_t *appdata;
uint8_t i;
appdata = (uint8_t *)packetbuf_dataptr();
struct sensor_datamsg rxmsg;
printf("****kFxkkxkkxx %k %k X *broadcast message received from %d.%d\n", from->u8[0], from->u8[1]);
if (packetbuf datalen() == sizeof(struct sensor_datamsg)){
rxmsg.temp = appdata[0] | appdata[1]<<S8;
rxmsg.humm = appdata[2] | appdata[3]<<8;
rxmsg.batt = appdata[4] | appdata[5]<<8;

printf("temp: %d, humm: %d, batt:%d\n", rxmsg.temp, rxmsg.humm, rxmsg.batt);

else{

for (i=0;i<packetbuf_datalen();i++){
printf("%u,", appdatali]);
}

printf("\n");

}

//this is the id of the sender (as defined in compile time).
//printf(" from: %d.%d ",from->u8[0], from->u8[1]);

printf("with RSSI: %d and LQJ:%d*****x#xkxkxkxkxk\nt nacketbuf_attr(PACKETBUF_ATTR_RSSI),
packetbuf_attr(PACKETBUF_ATTR_LINK_QUALITY));

}

Spring Semester 2017-2018

COOJA SESSION

CS-541 Wireless Sensor Networks ::
University of Crete, Computer Science Department 238 FORTH
Institute of Computer Science

WSN Programming ||

Contiki

The Open Source OS for the Internet of Things

* Cooja
* The Contiki emulator for running WSN applications.

* Very useful for debugging your codes — the same code
you test on cooja, the same you upload to your mote

* Evaluating the network performance — has very
simplifying models for radio propagation....
* Unit disk model: Edges are instantly configured according to

ower attenuation w.r.t to distance & success ratio
configurable)

* Directed graph radio medium: Considers preconfigured
edges, without checking the output power.

* Multipath ray tracer: Simulates reflection and diffraction
through homogeneous obstacles (considers that all nodes
have the same transmission power)

* Interacts with external tools, e.g. Wireshark for Network
monltorlng

* Modular: Plugins for extending functionality

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

FORTH o

7+ Institute of Computer Science

Spring Semester 2017-2018

WSN Programming |

At your working directory (terminal):

cd tools/cooja
ant run
File -> New Simulation

Activities

cooja-GUIl ~

File Simulation Motes Tools Settings Help

TplL 07:33

My simulation — Cooja: The Contiki Network Simulator

-

Wiew Zoom

4 Buffer Listener - packetbuf _aligned - 0 b... [(5)(=)E3

Time ms | Mote | Access | Byte array

Filter:

[9[(=1|E3]1 53] =Ex (=) l=JEIb
BuogSneedlint Enter notes here
| Reload |
Time: 00:00.000
Speed: ---
(&) [(=€
File Edit View
Time | Mote | Message
)
Mote Radio on (%) | Radio TX
AVERAGE Nah¥% Nal%
Filter:
(58] B=)(E3]
File Edit Analyzer View
Mo, Time |From |To |Data

=)
File Edit “iew Zoom Events Motes

Spring Semester 2017-2018

Buffer view

Mo help available

WSN Programmin

Activities L sics—cooja—GUl » TpL 07:33
My simulation - Cooja: The Contiki Network Simulator x
File Simulation Motes Tools Settings Help
)](=)EINe) 8](=){EI} 6D Eu_g_u_g,_*\ Buffer view
View Zoom Run Speed limit Enter notes here Mo help available
| | |
| | | . . .
! | | Simulation
s, Control
Network output aas
= E[=]E
File Edit Wiew

Time | Mote | Message

Mote

OUtpUt 8
Mote Radio on (%) | Radio TX
AVERAGE Nal% Nah%
Filter:
(4 Buffer” “aned -0b... DIEIEI | Lox
| Timy File Edit Analyzer WView
Buffers —— T
Filter: .
Radio
£3)
File Edit View— “atag messages
[
Timeline = f
L —— v
< e

WSN Programming |

Create a new mote and upload a program:

Motes -> Create New Mote -> Sky

Locate program sense-and-trx.c

Clean

Compile

Create (5)

@simulation control: Start

' FORTH

itute of Computer Science

WSN Programming |

sense-and-trx.c

My simulation - Cooja: The Contiki Network Simulator x
Eile Simulation Motes Tools Settings Help
BEE [8]=(E3] (2] ~|0)%)| Log Listener

SdExeZoom Run_Speed limit Enter notes here Listens ta log output from

) all simulated motes.

2 Pause o | Reload Right-click the main area for

a popup menu with more
Time: 00:59.338 options

Speed: 163.81% Yfou may filter shown logs by

entering reqular

expressions in the bottom

& Mote output BEB| o ot Fikering ie

File Edit Wiew performed on both the Mote
and the Data columns

Time | Message |

0001 170 CSHA ContikiMAC, channel check rate 8 Hz, radic channel 26 1| Filter examples:

00:01.176 Starting 'Sense process' ‘Send and blink process'

00;01.183 Rime started with address 1.0 Hello

00:01.194 MAC ©1:00:00:00:00:00:00:00 Contiki 2.7 started. Node id is set to 1. logs containing the string

00:01.204 CSMA ContikiMAC, channel check rate 8 Hz, radio channel 26 Hello!

00:01.210 Starting 'Sense process' 'Send and blink process' R -

00:01.516 Rine started with address 5.8 Contiki) .

00:81.527 MAC ©5:00;00:08: 00 00:00:00 Contiki 2.7 started. Node id is set to 5. fogs starting vith ‘Contiki

00:01.537 CSMA ContikiMAC, channel check rate & e pal I8

00:01.542 Starting 'Sense process' 'Send and [NatUTT] B0 cs—cooja-GUI + Tp1 07:39

00: 01, 781 Rine started with address 3.0

08:61.711 HAC ©3:00: 00:00:00:60:00:00 Contiki My simulation — Cooja: The Contiki Network Simulator x

00:01.721 CSMA ContikiMAC, channel check rate

B 00:01.727 1D:i3 Starting 'Sense process’ 'Send and e gimulation Motes Iools Settings Help
— Filar: © o) o[_ =) | Timeline q
View Zoom Run_Speed limit Enter notes here The timeline shows

simulation events over
Pause Ste| Reload time. The timeline can be
used to inspect activities
Time: 02:01.785 of individual nodes as well
as interactions between
Speed: 11.51% nodes.

VRWNE

For each mote, simulation

"1, = events are shown on a
/ File Edit View colared line, Different
colors correspond to
Time | Mote | Message | different events. For more

Data recv: temp: -1, humm:-1, baft:139, from: 4.0 with RSSI: -4T and LQL:
Data recv: temp: -1, humm:-1, batt:139, from: 4.0 with RSSI: -27 and LQT:37
In send: temp: -1, humm:-1, batt:139
Data recv: temp: -1, humm:-1, batt:139, from: 5.0 with RSSI: -19 and LQI:37
In send: temp: -1, humm:-1, batt:139
In send: temp: -1, humm:-1, batt:17
Data recv: temp: -1, humm:-1, batt:17, from: 2.0 with RSSI: -41 and LQI:37
In send: temp: -1, humm:-1, batt:17
In send: temp: -1, humm:-1, batt:17
Data recv: temp: -1, humm:-1, batt:17, from: 1.0 with RSSI: -19 and LOI:37
Data recv: temp: -1, humm:-1, batt:17, from: 1.0 with RSSI: -27 and LQIL:37

a information about a
particular event, mouse
click it.

Check out the timeline |

The Events menu contral
what event types are
shown in the timeline.
Currently, six event types
are supported (see
below).

Transmissions: blue
Receptions: green
Congestions: red R — S —— T

— e press and hold the
— mouse on the time ruler
(top).

All motes are by default

? ? shown in the timeline,
Timeline showing 5 motes BIEEB| votes can be remaved
from the timeline by
right-clicking the node ID
on the left,

T

To display a vertical time

For more options for a
given event, right-click
the mouse for a popup
v || menu.

Spring Semester 2017-2018

traffi

WSN Programming |

Pause, Reload, Save & Re-open

(also: open .csc file!)

e Tools & Extensions:

» Bufferline, Mobility, MSP Code Watcher, Powertracker

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pring University of Crete, Computer Science Department

e

FORTH

Institute of Computer Science

WSN Programming |

Change protocol stack parameters: e.g. change RDC policy to no RDC

project-conf.h

#define NETSTACK CONF RDC nullrdc driver
#define NEIGHS_TIMEOUT 120
#define MAX_NEIGHS 16

#define NET STIZE 10

@Makefile

#CFLAGS += -DPROJECT CONF H=\"project-conf.h\"

CS-541 Wireless Sensor Networks k;;"}”i
University of Crete, Computer Science Department = 155 FORTH

Institute of Computer Science

Spring Semester 2017-2018

WSN Programming |

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQl values & store the 15t hop neighbors

Use of LIST in CONTIKI.

/* This MEMB() definition defines a memory pool from which we allocate

packet entries entries. */

MEMB(neighs_memb, struct neighs, MAX_NEIGHS);

/* The packets2send_list is a Contiki list that holds the packets pending for sending.*/
LIST(neighs_list);

/* This structure holds information about the 1st hop neighbours. */
struct neighs {

/* The ->next pointer is needed since we are placing these on a
Contiki list. */

struct neighs *next;

linkaddr_t linkaddr;

//the time out timer for removing old entries

struct ctimer ctimer; };
static void update_neighs(void);
static void remove_neighs(void *n);

static void update neighs (void)

{
struct neighs *n;
linkaddr t *tmp;
tmp = (linkaddr t *)packetbuf addr (PACKETBUF ADDR SENDER) ;

// Check if we already know this child.

for(n = list head(neighs list); n !'= NULL; n = list item next(n)) ({

/* We break out of the loop if the linkaddr of the

sender matches

the address of the neigbour from which we received this msg */

if (linkaddr cmp (tmp, &n->linkaddr)) {
/* Our neigh was found, so we update the timeout.
ctimer set (&n->ctimer, NEIGHS TIMEOUT*CLOCK SECOND,
break;

H}

/* If n is NULL, this child was not found in our list, and we
allocate a new struct child from the children memb memory
pool.*/

if (n == NULL) {

n = memb alloc(&neighs memb) ;

/* If we could not allocate a new children entry, we give up. We
could have reused an old neighbor entry, but we do not do this
for now. */

if(n !'= NULL) {

/* Initialize the fields. */

linkaddr copy(&n->linkaddr, packetbuf addr (PACKETBUF ADDR SENDER)) ;

memcpy (&n—->linkaddr, (linkaddr t *)packetbuf addr (PACKETBUF ADDR SENDER),sizeof (linkaddr t));

/* Place the child on the children list at the end of the list. */
list add(neighs list, n);

*/

remove neighs, n);

ctimer set (&n->ctimer, NEIGHS TIMEOUT*CLOCK SECOND, remove neighs, n);

}

/%

* This function is called by the ctimer present in each neighbor
* table entry. The function removes the neighbor from the table
* because it has become too old.*/

static void remove neighs (void *n)

{
struct neighs *e = n;

//removing old items...

//printf ("now removing node: %d\n",e->addr.addr[5]):;
list remove (neighs 1list, e);
memb free (&neighs memb, e);

. CS-541 Wireless Sensor Networks &
Spring Semester 2017-2018 3 H
pring University of Crete, Computer Science Department 223 FORT

Institute of Computer Science

uint8 t get neighslist(linkaddr t *listaddr, uint8 t size)
{

struct neighs *n;
linkaddr t tmp;

uint8 t 1i;
if (size >0) {

1=0;
for(n = list head(neighs 1list); n != NULL; n =
list item next(n)) {

memcpy (&tmp, &n->linkaddr, sizeof (linkaddr t));
listaddr[i++] = tmp;

}

}

else {

listaddr = NULL;
}

return 1i;

WSN Programming ||

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQI values & store the 1%t hop neighbors

Use of LIST in CONTIKI.

Checks and print the 15t hop neighs every 1 min

list length(list)

CS-541 Wireless Sensor Networks »‘”
University of Crete, Computer Science Department ‘“ FDRTH
T “‘,4'“ nstitute o ol

I ut f Computer Science

Spring Semester 2017-2018

WSN Programming |

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQl values & store the 15t hop neighbors

Use of LIST in CONTIKI.

printf ("Current length of neighbours list:%d\n",
list length(neighs list));

if (list length(neighs 1list) >0)
{
static linkaddr t tmplist[MAX NEIGHS];
get neighslist (tmplist, list length(neighs list));
for (11=0; 1i<list length(neighs list);ii++)
{

printf ("**%d.%d:: **", tmplist[ii].u8[0],tmplist[ii].u8[1]);

}
printf ("\n");

WSN Programming |

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 1 hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

/* Initialize the memory for the neighbor table entries. */
memb init (&neighbor mem) ;

/* Initialize the list used for the neighbor table. */
list init(neighbor table);

/* Open a multihop connection on Rime channel CHANNEL. */
multihop open (&multihop, CHANNEL, &multihop call);

/* Register an announcement with the same announcement ID as the
Rime channel we use to open the multihop connection above. */
announcement register (&example announcement,
CHANNEL,
received announcement) ;

" FORTH

Institute of Computer Science

WSN Programming |

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 15t hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

/* Activate the button sensor. We use the button to drive
traffic -
when the button is pressed, a packet is sent. */
SENSORS ACTIVATE (button sensor);

/* Wait until we get a sensor event with the button sensor as
data. */
PROCESS WAIT EVENT UNTIL (ev == sensors event &&
data == &button sensor);

" FORTH

itute of Computer Science

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

WSN Programming

The Rime stack

Contiki

The Open Source OS for the Internet of Things

mesh

Multihop Route Discovery
Reliable Reliable Collect
multihop unicast
unicast bulk N
RudolphO Rudolph1 Y Y ‘\
Reliable unicast 1‘1
i)
L ,r: Netflood
Stubborn Unicast i
Stubborn Neizhbour i \
broadcast Polite Trickle I , Dis%:overy] iPolite
Unicast !
4 Y ‘ y ilr y
Broadcast

Hands on Session
Contiki

The Open Source OS for the Internet of Things

What we are going to use...in order to upload code to the motes
e FTDI drivers (for Windows machines only) — USB2Serial

* How the host computer reserves a mote:
* COM<No> (Windows — Device Manager)
» /dev/ttyUSB<No> (Linux) [cat /var/log/syslog]
* Make sure that you have access on device (for programming it)
sudo addgroup <user> dialout (log out & then back in)
* Serial dump: make TARGET=sky MOTES=/dev/ttyUSBO login

(note: make sure you have permissions to execute serialdump-linux @
Scontikifolder/tools/sky)

' FORTH

itute of Computer Science

TI TMP102 -> TEMPERATURE

HOW TO ACCESS IT:
A. USE THE APl PROVIDED BY THE PLATFORM’S API

void tmp102_init(void);

uintl6_t tmp102_read _temp_raw();

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

. FORTH .

Institute of Computer Science

Spring Semester 2017-2018

ADLX345 -> 3-axis digital accelerometer

HOW TO ACCESS IT:
A. USE THE API PROVIDED BY THE PLATFORM'’S API

void accm_init(void);

intl6_t accm_read axis(enum ADXL345_ AXIS axis);

CHECK examples/z1/test-adlx345.c to see how to access the sensor.

CS-541 Wireless Sensor Networks »‘”
University of Crete, Computer Science Department *“ FDRTH
Y ?‘.:; Institute of Col

I ut f Computer Science

Spring Semester 2017-2018

WSN Programming |

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 15t hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

Modifications:
(1) random selection of the destination
(2) hop-to-live = 16

(3) bi-directional link: Send a “Request” and the destination replies with a
”Reply”

N Institute of Computer Science

while (to.u8[0] == linkaddr node addr.u8[O0]

to.u8[0] = random rand() % NET SIZE;

}
to.u8[1] = 0;

printf ("packet ready to send to:%d.%d\n",

to.u8[1]);

packetbuf copyfrom("Request", 7);

//reply to sender if message is 'Request'.

|| to.u8[0]

to.u8[0],

if (strcmp((char *)packetbuf dataptr (), "Request") ==

linkaddr copy(&request sender, sender);

process post (&reply process,event data ready,

&request sender);

}

' FORTH

itute of Computer Science

) {

PROCESS_THREAD(reply_process, ev, data)
{

static rimeaddr_t toreply;
PROCESS_BEGIN(); /**Always first**/

while (1) {

//this process sleeps until somebody wakes it up.
PROCESS_YIELD UNTIL(ev==event_data_ready);
rimeaddr_copy(&toreply, &request_sender);
//and prepare the buffer
packetbuf clear();
packetbuf clear hdr();

// packetbuf copyfrom(data2send,sizeof(sensor_datamsg));
packetbuf copyfrom("Reply", 5);

//and now send
multihop_send(&multihop, &toreply);

leds_toggle(LEDS_GREEN);

}
PROCESS_END(); /**Always last**/

}

=85

WSN Programming |

RPL and ulP stack (client-server connection).
Now we are using the ulP stack — not RIME

mesh
Multihop Route Discovery
Reli.?ble Relliable Collect
multihop unicast
unicast bulk
Rudolph0 Rudolph1 ! |

Reliable unicast I"I
|| Netflood
Stubborn Unicast J I

Stubborn Meichb !
broadcast Polite Trickle D‘?Lﬁwgﬁ'{ { iPolite
1 Unicast l - I." l
i

Broadcast

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department ~’; « FORTH

‘ uip-over-mesh

ulP over RIME

@ Route Discovery ‘

Broadcast

ulP with RPL

RPL

ulP

SICSLoWPAN

MAC/RDC

Institute of Computer Scie

nce

Contiki 2.6

Main Page | Related Pages |

Documentation

Function guick reference

v

L

Contiki system

Tutorials

Memory functions

Modules

-

The ulP TCP/IP stack

Data Structures | Files | Directories

The Contiki/ulIP interface

Examples

TCP/IP support in Contiki is implemented using the ulP TCP/IP stack. More...

Communication stacks
v The ulP TCP/IP stack

Files

m

Protosockets library

ulP hostname resolver function

Simple-udp
Serial Line IP (SLIP) protocol

Documentation

Function quick reference

Contiki system

Memory functions

Tutorials

Communication stacks
¥ The ulP TCP/IP stack

Protosockets library

ulP hostname resolver function

Simple-udp
Serial Line IP (5LIP) protocol
¥ The ContikifulP interface

» Defines
» Functions
» Variables

Data Structures
¢ Files
ulP packet forwarding
ulP TCP throughput booster ha
ulP configuration functions
ulF initialization functions
ulP device driver functions
ulP application functions

ulP conversion functions

S[\‘|

T = I

R e d

m

file tcpip.h

Header for the Contiki/ulP interface.

UDP functions
void
CCIF struct uip_udp_conn *
struct uip_udp_conn *
CCIF void

#define
#define

TCP/IP packet processing

unsigned char

unsigned char
CCIF void

uintg_t

wvoid
zdefine

udp_attach (struct uip_udp_conn *conn, void *appstate)

Attach the current process to a UDP connection.

udp_new (const vip_ipaddr_t *ripaddr, uint16_t port, void *appstate)
Create a new UDP connection.

udp_broadcast_new (uintl6_t port, void *appstate)
Create a new UDP broadcast connection.

tcpip_poll_udp (struct vip_udp_conn *conn)

Cause a specified UDP connection to be polled.
udp_markconn{conn, appstate) udp_attach({conn, appstate)
udp_bind(conn, port) uip_udp_bind(conn, port)

Bind a UDP connection to a local port.

tcpip_do_forwarding

This function does address resolution and then calls tcpip_output.
tcpip_is_forwarding

tcpip_input (void)

Deliver an incoming packet to the TCP/IP stack.

tcpip_output (void)

Output packet to layer 2 The eventual parameter is the MAC address of the destination.
tcpip_set_outputfunc (uintd_t(*f){void))

tcpip_set_forwarding(forwarding) tcpip_do_forwarding = (forwarding)

Detailed Description

TCP/IP support in Contiki is implemented using the ulP TCR/IP stack.

For sending and receiving data, Contiki uses the functions provided by the ulP module, but Contiki adds a set of functions for
functions make sure that the ulP TCP/IP connections are connected to the correct process.

R

WSN Programming |

ulP conversion functions

The uIP TCP/IP stack

These functions can be used for converting between different data formats used by ulP. More...
Defines

#define uwip_ipaddr_to_quad(a)
Convert an IP address to four bytes separated by commas.

#define wip_ipaddr(addr, addr0, addrl, addr2, addr3)
Construct an IP address from four bytes.

#define uwip_ip6addr{addr, addr0, addrl, addr2, addr3, addr4, addr5, addr6, addr7)

At IVI a kefi I e . Construct an IPv6 address from eight 16-bit words.
. #define uip_ipbaddr_u8(addr, addr0, addrl, addr2, addr3, addr4, addr5, addr6, addr?, addr8, addr9, addr10, addr1l, addr12, addr13, addrld4, addri5)
+

nrt an 1BuR addreces fram civtean A-hit wnrde

WITH UIPo=1
UIP_CONF_IPVo=1 test-rpl-sink.c

if (root if != NULL) {

rpl dag t *dag;

dag = rpl set root (RPL DEFAULT INSTANCE, (uip ipbaddr t
*) &ipaddr) ;

uip ipé6addr (&ipaddr, Oxaaaa, 0, O, 0, 0, 0, 0, 0);

rpl set prefix(dag, &ipaddr, 64);

PRINTF ("created a new RPL dag\n");

WSN Programming |

RPL and ulP stack (client-server connection).

test-rpl-sink.c

server conn = udp_new(NULL, UIP HTONS (UDP_CLIENT_PORT) ’
NULL) ;
udp bind(server conn, UIP HTONS (UDP_SERVER PORT)) ;

test-rpl-source.c

client conn = udp new (NULL,UIP HTONS (UDP_SERVER PORT), NULL);

1f (client conn == NULL) {
// PRINTF ("No UDP connection available, exiting the
process!\n") ;
PROCESS EXIT () ;

}
udp bind(client conn, UIP HTONS (UDP CLIENT PORT)) ;

S

WSN Programming |

RPL and ulP stack (client-server connection).

test-rpl-sink.c

server conn = udp_new(NULL, UIP HTONS (UDP_CLIENT_PORT) ’
NULL) ;
udp bind(server conn, UIP HTONS (UDP_SERVER PORT)) ;

test-rpl-source.c

Schedule the transmission at ~6seconds after the expire of the periodic timer.

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks &
. . . 3 H 94
University of Crete, Computer Science Department 223 IF:DRT
: nsti

itute of Computer Science

