
CS-541
Wireless Sensor Networks

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

Lecture 8: Introduction to WSN programming and Hands-on Session

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
1

Objectives

• Programming aspects for WSN

• Hands on sessions (Wednesday & Friday Β306)

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
2

power unit
(battery based – limited lifetime!)

sensors
(transducer, measuring a
physical phenomenon e.g.

heat, light, motion, vibration,
and sound)

Memory
/storage

(data acquisition, and
preprocessing, buffers

handling)

transceiver
(connection to the outer-world,
e.g. other sensor nodes, or data

collectors --sinks)

• HW Platform

Integration of SW
components

Some of them are
dedicated to WSN (e.g.
sensors, transceivers) and
some of them are not e.g.
μProcessors, RAM/ROM
components

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
3

WSN Programming

microProcessor
(communication with sensors &

transceivers , preprocessing,
buffers handling, etc)

WSN Programming
• HW Platform Evolution

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
4

Smart Dust project:
Ambient conditions
monitoring

Extending towards
larger scales and
introducing a more
intelligence closer to
the level of sensing -
Emergency Response
(Search and Rescue /
Integration with
mobile robots) –

Internet of Things and Cyber—
physical Systems: Ubiquitous
sensing, healthcare to
intelligent conditions
monitoring and control (e.g.
Smart Grid)

Low Computational Complexity
High (combined) Computational
Complexity

Low
Progr./Deb
options

High
Progr./Deb
options +
Standards

Family Memory On-board
Sensors

Expandability Notes & Application areas

TELOSB 10KB
RAM,
48KB
Flash

Temperature,
Humidity,
Light

10 GIOs, USB programming
interface

Open platform.
Environmental and health structural
monitoring. PoC research projects

Open source software support – Active.

Shimmer 10 KB
RAM, 48
KB Flash,
2GB μSD

3-axis
acceleromete
r,
Tilt &
vibration

Expandability for
Accelerometers and ECG, EMG.
USB mother board.

Research platform with commercial support.
Excellent support (open source tools &
customized applications).
Healthcare and Sports projects (wearable
computing)
Active and expanding.
Rechargeable battery (up to 8hours in fully
functional mode)

Zolertia Z1 8K RAM,
92KB
Flash

3-axis
acceleromete
r,
temperature

52-pin expansion board.
Open source community support
& commercial support (excellent
Wiki)

All WSN-related. One of the latest platforms.
Allows the option for a dipole antenna.

XM1000 8K RAM,
116
Flash,
1MB
External
Flash

Temperature,
Humidity,
Light

10 GIOs, USB programming
interface

from a family of open platforms….
SMA connection (dipole antenna)…
All WSN-related, perhaps not for healthcare
(bulky size and design).
Can last up to 3 weeks on low data rate (per
minute).

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
5

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
6

Types of programming:

End users:

• Sensor network as a pool of data

• Interact with the network via queries

• Programming language: High-level abstraction, expressive & structured for efficient execution
on the distributed platform

• Shielded away from details of how sensors are organized and how nodes communicate.

Application developers:

• Provide the end users with the capabilities of data acquisition, processing, and storage.

• Have to deal with all kinds of uncertainty caused by network, hardware, and real-world
imperfections (e.g., noisy, events can happen at the same time, communication and
computation take time, communications may be unreliable, battery life)

• Appropriate programming abstractions??

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
7

Application Developers….

• Objective: control its peripheral devices, sample data from the sensors, actuate on demand (or on
command) and communicate with the rest of the nodes.

• Challenges:

• Deal with message passing, event synchronization, interrupt handing, and sensor reading?

• How to have access/control to what each mote is actually doing? Or being able to accurately
emulate its behavior?

• How to allow rapid prototyping of common applications and network standards across
different types of hardware? Hardware abstraction

• How to do that easily (by using for example widely adopted programming languages and
tools?) How to reduce the learning curve?

• How to fine grain resource management in terms of memory and energy?

• How to deal with the inherent concurrent / event-drive nature of the applications?

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
8

Access / Control Hardware Abstraction Ease to use

μProcessor
Programming

Control / Emulation @ the level
of μProcessor

NO NOT FOR typical WSN
practitioner / developer

Real-time
Operating
Systems

Depends on how well it is
designed and what are the
supporting tools it provides

YES Depends on how well it
is designed…

Message passing
Handshaking

Locks and monitors
Interrupts and Services

Polling Sensors

Hardware
Abstraction
Layer

WSN Programming

OS:

Abstracts the hardware platform

A set of services for applications: file management, memory allocation,
task scheduling, peripheral device drivers, networking.

OS for embedded systems:

The above under the constraint of limited resources:

Different trade-offs when providing these services – application
dependent: no file management requirement, if file system is not needed.

No dynamic memory allocation, if memory management can be
simplified.

No prioritization among tasks if not critical

OS for WSN:

• The above under the challenge of scalability, need to support
distributed applications, real-time response to stimuli from the physical
environment

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
9

• Microkernel: modularizing the
operating system so that only
the necessary parts are
deployed with the application.

• RT sched.: allocates resources
to more urgent tasks so that
they can be finished early.

• Event-driven execution allows
the system to fall into low-
power sleep mode when no
interesting events need to be
processed.

Reduce code size
Improve time response
Reduce energy consumption

Typical State Machine of a Sensor Node

Network
Ready

sensing

process
ing

Standby
/ sleep

Network
ing

Wake-up by an event

Sensor Ready

Data Ready

Network Ready

Network Ready

Data Ready

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
10

WSN Programming

Including
Unreliable
communication
channels, long
delays, irregular
arrival of messages,
simultaneous events

WSN Programming

• Task Model

Each task a triplet: (execution time, period, deadline)

OS For WSN: How to successfully manage the execution of tasks related to the
sensors and the protocol stack? (Interrupts, Services, & Polling)

Execution time

Period

Deadline

Time

Initiation

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
11

a non-preemptive scheduler - a task
is executed to the end, may not be
interrupted by another task
a preemptive scheduler - a task of
higher priority may interrupt a task of
low priority

WSN Programming

Types of Architectures for OS For WSN

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
12

Monolithic

• Services provided by an OS are
implemented separately and each
service provides an interface for
other services.

• A single system image & smaller OS
memory footprint.

++Low module interaction costs are low.
--The system is hard to understand and
modify, unreliable, and difficult to
maintain.

Modular

• Event driven @ kernel and optional threading
facilities to individual processes.

• A lightweight event scheduler that dispatches
events to running processes.

• Process execution is triggered by events
dispatched by the kernel to the processes or
by a polling mechanism.

• Any scheduled event will run to completion,
however, event handlers can use internal
mechanisms for preemption.

• Polling mechanism: high-priority events that
are scheduled in between each asynchronous
event. When a poll is scheduled, all
processes that implement a poll handler are
called in order of their priority.

Implements services in
the form of layers.
++manageability, easy
to understand, and
reliability.
--not a very flexible
architecture from an OS
design perspective.

Layered

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
13

• Component-based architecture, implementing one single stack

• Event-based, non-blocking design that allows intra-mote concurrency

• Written in NesC
• Structured, component-based C-like programming language

Programming Model:

• Components: encapsulate state and processing – use or provide interfaces

• Interfaces list commands and events

• Configurations wire components together for creating applications

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
14

WSN Programming
Components

Specification

Implementation
(the actual

implementation)

Interfaces (library of
functions)

that the specific
components provides

and uses

Offered / Used
Functionalities

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
15

Commands Events

Provider Component must define
and may implement
User component must implement

Provider Component must
define & implement
User component can use
as is

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
16

• Two kinds of components
• Modules

• specify and implement interfaces
(commands & events)

• A new set of library modules that can
be used in a range of applications

• Configurations (wiring)
• connecting interfaces used by

components to interfaces provided by
others

• build applications out of existing
implementations.

Applications: define a top level
configuration that wires
together different components

Component A
(user of I)

Component B
(provider of I)

Interface I

WSN Programming

Component MYAPPLICATION:
Uses Interface Send.

calls the sendMsg(msg)
command

Implements the event
sendDone() – e.g. led on / go

back to sleep

Component AMSEND
PROVIDES Interface Send

Implements the
sendMsg(msg) command
& defines the sendDone()

event
Interface SEND

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
17

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
18

Split-phase execution
(Return values arrive asynchronously
through events)

Computation mechanisms -> Tasks:
Typically spawned by events
By default non-preemptive but can be pre-
empted by asynchronous events (usually
kept small)
FIFO scheduling

• A simple example:

Program a sensor node to blink a led every 250ms…..

A timer module

A led module

A module that combines them together.

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
19

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
20

configuration BlinkAppC

//specification
{

}

implementation
{

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

BlinkC -> MainC.Boot;

BlinkC.Timer0 -> Timer0;

BlinkC.Leds -> LedsC;

}

#include "Timer.h"

module BlinkC
{

uses interface Timer<TMilli> as Timer0;

uses interface Leds;
uses interface Boot;

}

implementation
{

event void Boot.booted()
{

call Timer0.startPeriodic(250);

}

event void Timer0.fired()

{
dbg("BlinkC", "Timer 0 fired

@ %s.\n", sim_time_string());

call Leds.led0Toggle();

}

}

[Split Face execution]

The provided component
defines, the user interface
must implement

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
21

Emphasizes on the use of standard abstractions

Allows the shift from WSN to IoT:

• Baseline to upper, middleware services
• μIP stack & interoperability

TinyOS: GOTO FLOW Vs
ContikiOS: Sequential flow control while keeping a single stack and an
event handler for different threads

WSN Programming

…

Contiki Core processes
(Platform Configuration)

Contiki Network Processes
(Protocol Stack)

User
Application
Process #1

User
Application
Process #N

Event-based → Invoking processes

Using protothreads: a programming abstraction that
combines events and threads

Single stack and sequential flow control

Posting events or polling

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
22

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
23

Protothreads:

• Lightweight, stackless threads

• Implement sequential flow of control without using complex state machines or full multi-
threading.

• Conditional blocking inside a C function (on top of an event-driven system)

• To minimize the overhead of multi-threading – they run on the same stack (suitable for
memory constrained systems, where a stack for a thread might use a large part of the
available memory)

• Protothread overhead: 2B of memory per protothread.

• Scheduling -> based on repeated calls to the function: Each time the function is called,
the protothread will run until it blocks or exits. Protothreads are scheduled by their
applications

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
24

Event-based state machine With Protothreads

An application implements several processes: each process is a protothread

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
25

One main.c for each platform:
Core & Network processes

process_init();
process_start(&etimer_process, NULL);

ctimer_init();

init_platform();

set_rime_addr();

//-----------------------low level api to phy--------------------------
cc2420_init();
{

uint8_t longaddr[8];
uint16_t shortaddr;

shortaddr = (linkaddr_node_addr.u8[0] << 8) + linkaddr_node_addr.u8[1];
memset(longaddr, 0, sizeof(longaddr));
linkaddr_copy((linkaddr_t *)&longaddr, &linkaddr_node_addr);

cc2420_set_pan_addr(IEEE802154_PANID, shortaddr, longaddr);
}
cc2420_set_channel(RF_CHANNEL);

memcpy(&uip_lladdr.addr, ds2411_id, sizeof(uip_lladdr.addr));

queuebuf_init();
NETSTACK_RDC.init();
NETSTACK_MAC.init();

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
26

…

Contiki Core processes
(Platform Configuration)

Contiki Network Processes
(Protocol Stack)

User
Application
Process #1

User
Application
Process #N

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
27

#include "contiki.h"
#include "dev/leds.h"

#include <stdio.h> /* For printf() */
/
*--

*/
*/

PROCESS(blink_process, "LED blink process");

/* We require the processes to be started automatically */

AUTOSTART_PROCESSES(&blink_process);/
*--
-----------*/ /* Implementation of the process */

PROCESS_THREAD(blink_process, ev, data)
{ static struct etimer timer;

PROCESS_BEGIN();

while (1)
{

/* we set the timer from here every time */

etimer_set(&timer, CLOCK_CONF_SECOND);

/* and wait until the event we receive is the one we're
waiting for */

PROCESS_WAIT_EVENT_UNTIL(ev == PROCESS_EVENT_TIMER);

printf("Blink... (state %0.2X).\r\n", leds_get());

/* update the LEDs */leds_toggle(LEDS_GREEN);
}

PROCESS_END();}
/

WSN Programming

The communication layers in Contiki

• The Rime protocol stack
• A set of communication primitives (keeping pck headers and protocol stacks separated)
• A pool of NWK protocols for ad-hoc networking
• Best-effort anonymous broadcast to reliable multihop flooding and tree protocols

• The uIP TCP/IP stack
• Lightweight TCP/IP functionalities for low complexity μControllers
• A single network interface (IP, ICMP, UDP,TCP)
• Compliant to RFC but the Application layer is responsible for handling retransmissions

(reduce memory requirements)
• RPL is part of it

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
28

WSN Programming

How does Rime work

• Rime is a software trick
• A stack of NWK layers (e.g. broadcast, unicast, polite, etc)

• Each layer represents another type of traffic & adds something to the
network header

• Complex network protocol are decomposed to simpler ones

• Each layer is associated with a channel

• 2KB memory footprint

• Interoperability and ease in changing the protocol stack

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
29

WSN Programming

How does Rime work – Example

• The Collection Tree Protocol (CTP)
• Tree-based hop-by-hop reliable data collection

• Large-scale network (e.g. environmental or industrial monitoring)

• Reliable Unicast Bulk
• Event-driven data transmission of a large data volume

• Personal health-care

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
30

WSN Programming
How does Rime work – Example

• The Collection Tree Protocol (CTP)
• Tree-based hop-by-hop reliable data collection

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department 31

Layer Description Channel Contribution to Rime
Header

Broadcast Best-effort local area
broadcast

129 Sender ID

Neighbor
discovery

Periodic Neighbor
Discovery mechanism

2 Receiver ID, Application
Channel

Unicast Single-hop unicast to
an identified single-
hop neighbor

146 Receiver ID

Stubborn
unicast

Repeatedly sends a
packet until cancelled
by upper layer

Receiver ID

Reliable
Unicast

Single-hop reliable
unicast (ACKs and
retransmissions)

144 Packet Type and Packet
ID

Collect

Neighbor
discovery

unicast

broadcast

Reliable unicast

Stubborn unicast

Large-scale network (e.g.
environmental or industrial
monitoring)

WSN Programming

unicast

broadcast

Reliable unicast

Stubborn unicast

Reliable Unicast Bulk

Layer Description Channel Contribution to Rime
Header

Broadcast Best-effort local area
broadcast

129 Sender ID

Unicast Single-hop unicast to
an identified single-
hop neighbor

146 Receiver ID

Stubborn
unicast

Repeatedly sends a
packet until cancelled
by upper layer

Receiver ID

Reliable
Unicast

Single-hop reliable
unicast (ACKs and
retransmissions)

144 Packet Type and Packet
ID

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
32

Reliable Unicast Bulk
Event-driven data transmission of a large data volume Personal health-care

WSN Programming

• Cooja
• The Contiki emulator for running WSN applications.

• Very useful for debugging your codes – the same code
you test on cooja, the same you upload to your mote

• Evaluating the network performance – has very
simplifying models for radio propagation….
• Unit disk model: Edges are instantly configured according to

power attenuation w.r.t to distance & success ratio
(configurable)

• Directed graph radio medium: Considers preconfigured
edges, without checking the output power.

• Multipath ray tracer: Simulates reflection and diffraction
through homogeneous obstacles (considers that all nodes
have the same transmission power)

• Interacts with external tools, e.g. Wireshark for Network
monitoring

• Modular: Plugins for extending functionality

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
33

First Release 1999 2005

Supported Platforms (in official
distributions)

17 26

Community Support & Forums Yes Yes

Programming Language nesC C

Single / Multiple Thread Single (multithread is optional) Even-driven kernel with preemptive multithreading

Structure Component-based Protothreads (stack-less and lightweight)

Simulator / Emulator TOSSIM (python) Cooja / MSPSIm Emulator (java)

OTAP Yes Yes

Protocol Stack (802.15.4) MAC (not fully supported)
LPL/ Collection Tree

RPL/6LoWPAN

(802.15.4) MAC (not fully supported)
Radio Duty Cycle & MAC

RIME / uIP
6LoWPAN

Great flexibility in generating highly
customizable protocol stack

With default distribution: RIME or 6LoWPAN
(modifiable)

Interfacing with host (Serial
Communication)

Specific format (ActiveMessageC) Flexible
(but provides tools s.a. SLIP)

Documentation & Support Provides both Provides both & also visualization tools

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
34

HANDS ON
SESSIONS

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
35

Hands on Session

What we are going to do…

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
36

Hands on Session

Your contiki directory structure:

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
37

Supported
platforms

Contiki core
(incl. supported

prot stacks)

Contiki apps

Hands on Session

Your contiki directory structure:

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
38

platforms/sky

Parameters
definition
incl.
protocol
options

Hands on Session

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
39

http://www.hopnetwork.com/contiki/index.html

Hands on Session

Hello World contiki/examples/hello-world

[Code structure & compile]

Hello
World

Sensing

Wireless
Sensing

#include "contiki.h"

#include <stdio.h> /* For printf() */
/*---*/
PROCESS(hello_world_process, "Hello world process"); /**Process definition**/
AUTOSTART_PROCESSES(&hello_world_process); /**Process Start**/
/*---*/
PROCESS_THREAD(hello_world_process, ev, data) /**Process implementation**/
{
PROCESS_BEGIN(); /**Always first**/

printf("Hello, world\n"); //process core

PROCESS_END(); /**Always last**/
}
/*---*/

Hello-world.c

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
40

Hands on Session

Hello World contiki/examples/hello-world

[Code structure & compile]

Hello
World

Sensing

Wireless
Sensing

Makefile

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
41

CONTIKI = ../..

#TARGET_LIBFILES += -lm
#CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"
#PROJECT_SOURCEFILES += project1.c
#CONTIKI_SOURCEFILES +=mac1.c rdc1.c
#UIP_CONF_IPV6=1 ##macros…

include $(CONTIKI)/Makefile.include

Include
headers
and files.

APP layer / AUTOSTARTED
with your main app process

Source codes to use (usually
containing customized

network solutions) – that
contiki processes will use.

Customized configuration
of protocol stack

Hands on Session
Hello World contiki/examples/hello-world

[Code structure & compile]

Program:

1. Open command terminal.

2. cd contiki/examples/hello-world

3. make TARGET=<platform*> hello-world.upload (compile and program)

Serial Dump

1. At new tab (File/Open new tab).

2. make TARGET=sky MOTES=/dev/ttyUSB0 login

*sky/xm1000/z1

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
42

What we use…

Product
Name Extras Notes:

Z1 5dBi dipole antenna
Temperature & accelerometer -
ports to host more sensors

CM5000-
SMA 5dBi dipole antenna

Temperature, humidity & light
sensor
Network compatible to Z1

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
43

Hands on Session

http://www.advanticsys.com/shop/mtmcm5000sma-p-23.html

Hello-world in WSN programming.

A Blinking-Led Application

• Program a mote to blink a led every T seconds.

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
44

Hands on Session

Hello World contiki/examples/hello-world

[How to trigger a process]

• How to wake up from a process

Hello
World

Sensing

Wireless
Sensing

Keep on mind that:

Automatic variables not stored
across a blocking wait

When in doubt, use static local
variables

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
45

Hands on Session

[How to trigger a process]

• Timers

• Event timer (etimer) : Sends an

event when expired

• Callback timer (ctimer) : Calls a

function when expired – used by Rime

Hello World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
46

Hands on Session

Hello World

[How to trigger a process]

From hello-world.c generate a new application (print-and-blink.c) that:

1. periodically (e.g. per second) prints a message.

2. when the message is printed a led toggles
#include “leds.h”

leds_toggle(LEDS_RED / LEDS_GREEN / LEDS_YELLOW)

macro for time: CLOCK_SECOND

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
47

Hello
World

Sensing

Wireless
Sensing

#include “leds.h”

/*---*/
PROCESS(print_and_blink_process, ”Print and blink process");
AUTOSTART_PROCESSES(&print_and_blink_process);
/*---*/
PROCESS_THREAD(print_and_blink_process, ev, data)
{
static struct etimer et;

PROCESS_BEGIN(); /**Always first**/

while(1) {

etimer_set(&et, 5*CLOCK_SECOND);

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

printf(“Echo\n”);

leds_toggle(LEDS_GREEN);

}
PROCESS_END(); /**Always last**/

}
Spring Semester 2017-2018

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

48

A Sense and Blink Application

• Program a mote to read its sensors every T seconds, print the values
and blink a led

WSN Programming

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
49

Temperature & battery Temperature, humidity, radiation & battery

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
50

SHT11 -> Temperature and Humidity

HOW TO ACCESS IT:

A. READ THE VALUES of the global struct sht11_sensor.value(type) (PROVIDED
BY PLATFORM API)

type = SHT11_SENSOR_TEMP, SHT11_SENSOR_HUMIDITY

B. USE THE API PROVIDED BY OS API void sht11_init(void);
void sht11_off(void);

unsigned int sht11_temp(void);
unsigned int sht11_humidity(void);
unsigned int sht11_sreg(void);
int sht11_set_sreg(unsigned);

Hello World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
51

HAMAMATSU-> RADIATION (TOTAL SOLAR & PHOTOSYNTHETICALLY AVAILABLE)

HOW TO ACCESS IT:

A. READ THE VALUES of the global struct light_sensor.value(type) (PROVIDED BY
PLATFORM API)

type = LIGHT_SENSOR_TOTAL_SOLAR, LIGHT_SENSOR_PHOTOSYNTHETIC

Hello World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
52

type = 0

BATTERY SENSOR -> READ THE INPUT VOLTAGE

HOW TO ACCESS IT:

READ THE VALUES of the global struct battery_sensor.value(type) (PROVIDED BY
PLATFORM API)

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
53

1

#include "dev/light-sensor.h” / "dev/sht11/sht11-sensor.h” / "dev/battery-sensor.h”
PROCESS_THREAD(sense_and_blink_process, ev, data)
{

static struct etimer et;
static struct sensor_datamsg msg;

PROCESS_BEGIN(); /**Always first**/
//activate the sensors
//SENSORS_ACTIVATE(sht11_sensor);
SENSORS_ACTIVATE(battery_sensor);
SENSORS_ACTIVATE(light_sensor);
sht11_init();

while (1) {

etimer_set(&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));

//get the data
msg.temp= sht11_temp();
msg.humm = sht11_humidity();
msg.light1 = light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC);

msg.light2 = light_sensor.value(LIGHT_SENSOR_TOTAL_SOLAR);
msg.batt = battery_sensor.value(0);

printf("Sensor raw values: temperature:%d, humidity: %d, battery: %d, visible light: %d\n, total solar radiation: %d\n",
msg.temp, msg.humm, msg.batt,msg.light1, msg.light2);

leds_toggle(LEDS_GREEN);
}
//deactivate

sht11_off();
SENSORS_DEACTIVATE(light_sensor);
SENSORS_DEACTIVATE(battery_sensor);
PROCESS_END(); /**Always last**/

}

//the data structure
struct sensor_datamsg{

uint16_t temp;
uint16_t humm;
uint16_t batt;
uint16_t light1;
uint16_t light2;

}sensor_datamsg;

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
54

PROCESS(sense_process, "Sense process");
PROCESS(print_and_blink_process, "Print and blink process");
AUTOSTART_PROCESSES(&sense_process, &print_and_blink_process);
static struct sensor_datamsg msg;
static process_event_t event_data_ready;

PROCESS_THREAD(sense_process, ev, data)
{
static struct etimer et;

PROCESS_BEGIN(); /**Always first**/
//activate the sensors
…
while (1) {

//read values as previously

//and now it is time to wake up the 2nd process
process_post(&print_and_blink_process,event_dat
a_ready, &msg);
}
//deactivate
…

PROCESS_END(); /**Always last**/
}

Hello
World

Sensing

Wireless
Sensing

2
processes

PROCESS_THREAD(print_and_blink_process, ev, data)
{
PROCESS_BEGIN(); /**Always first**/

while (1) {
PROCESS_YIELD_UNTIL(ev==event_data_ready);

//and then print
}
PROCESS_END(); /**Always last**/
}

1

2

Hello
World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
55

#include "dev/battery-sensor.h“, "dev/i2cmaster.h“, "dev/tmp102.h"

PROCESS_THREAD(sense_process, ev, data)
{

static struct etimer et;
int16_t raw;

uint16_t absraw;
PROCESS_BEGIN(); /**Always first**/

//activate the sensors
tmp102_init();

SENSORS_ACTIVATE(battery_sensor);

while (1) {

etimer_set(&et, CLOCK_SECOND);
PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&et));
//get the data

raw = tmp102_read_temp_raw();
absraw = raw;
if(raw < 0) { // Perform 2C's if sensor returned negative data

absraw = (raw ^ 0xFFFF) + 1;

}
msg.temp= absraw;
msg.batt = battery_sensor.value(0);

//and now it is time to wake up the 2nd process
process_post(&print_and_blink_process,event_data_ready, &msg);

}
//deactivate
SENSORS_DEACTIVATE(battery_sensor);
PROCESS_END(); /**Always last**/
}

//the data structure
struct sensor_datamsg{

uint16_t temp;
uint16_t humm;
uint16_t batt;
uint16_t light1;
uint16_t light2;

}sensor_datamsg;

PROCESS_THREAD(print_and_blink_process, ev, data)
{
PROCESS_BEGIN(); /**Always first**/

while (1) {
PROCESS_YIELD_UNTIL(ev==event_data_ready);

//and then print
}
PROCESS_END(); /**Always last**/
}

Hands on Session
Wireless Sensing

Access a sensor & trx using a broadcast RIME

Communication:

• Each type of connection (rime / uIP / 6LoWPAN) defines a structure

• Each type of rime connection defines a struct for the callback function (rx
events).

Callback function has to have a specific definition…

• Each rime-based connection is associated with a predefined channel (>128)

Hello World

Sensing

Wireless
Sensing

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
56

Hands on Session
Wireless Sensing contiki/examples/hello-world

[Access a sensor & trx]

@ rime:

• packetbuf module for packet buffer management

• Struct linkaddr_t for addressing…

typedef union {

unsigned char u8[LINKADDR_SIZE]; //=2

} linkaddr_t;

@ uip:

• uipbuf module for packet buffer management

• Struct ipaddr_t

Hello World

Sensing

Wireless
Sensing

Unless otherwise
specified,
IP=
176.12.RIME_ADDR[
0]. RIME_ADDR[1]

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
57

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
58

http://www.eistec.se/docs/contiki/

http://www.eistec.se/docs/contiki/

Hands on Session

Wireless Sensing [Access a sensor & trx]

From the sense-and-tx, generate a new application (sense-and-trx.c) that:

1. Periodically samples from on-board temperature sensor

2. When done broadcast the value

3. Upon the reception of a incoming packet, print its contents and the
source node id

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
59Temperature & battery Temperature, humidity, radiation & battery

//the data structure
struct sensor_datamsg{

uint16_t temp;
uint16_t humm;
uint16_t batt;
uint16_t light1;
uint16_t light2;

}sensor_datamsg;

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
60

#include “net/rime/rime.h”
#include “random.h”

//DEFINE THE RX CALLBACK FUNCTION
static const struct broadcast_callbacks broadcast_call = {broadcast_recv}; -- visible outside
process

//DECLARE THE BROADCAST CHANNEL

static struct broadcast_conn broadcast; -- visible outside
process

static void
broadcast_recv(struct broadcast_conn *c, const linkaddr_t*from)
{
//processing upon RX
}

PROCESS_THREAD(send_and_blink_process, ev, data)
{

}

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
61

PROCESS_THREAD(send_and_blink_process, ev, data)
{

static uint8_t data2send[sizeof(sensor_datamsg)];
static struct etimer send_timer;

PROCESS_EXITHANDLER(broadcast_close(&broadcast);)

PROCESS_BEGIN(); /**Always first**/

broadcast_open(&broadcast, 129, &broadcast_call);

while (1) {
PROCESS_YIELD_UNTIL(ev==event_data_ready);

data2send[0] = msg.temp & 255;//lsb
data2send[1] = msg.temp >> 8;//msb

data2send[2] = msg.humm & 255;
data2send[3] = msg.humm >> 8;

data2send[4] = msg.batt & 255;
data2send[5] = msg.batt >> 8;

PROCESS_WAIT_EVENT_UNTIL(etimer_expired(&send_timer));
packetbuf_clear();
packetbuf_clear_hdr();
packetbuf_copyfrom(data2send,sizeof(sensor_datamsg));
broadcast_send(&broadcast);
leds_toggle(LEDS_GREEN);

}
PROCESS_END(); /**Always last**/

Transmit process

Instead of
PROCESS_THREAD(print_and_blink_process,
ev, data)

static void
broadcast_recv(struct broadcast_conn *c, const linkaddr_t*from)
{

uint8_t *appdata;
uint8_t i;
appdata = (uint8_t *)packetbuf_dataptr();
struct sensor_datamsg rxmsg;
printf("******************broadcast message received from %d.%d\n", from->u8[0], from->u8[1]);
if (packetbuf_datalen() == sizeof(struct sensor_datamsg)){

rxmsg.temp = appdata[0] | appdata[1]<<8;
rxmsg.humm = appdata[2] | appdata[3]<<8;
rxmsg.batt = appdata[4] | appdata[5]<<8;

printf("temp: %d, humm: %d, batt:%d\n", rxmsg.temp, rxmsg.humm, rxmsg.batt);

}
else{

for (i=0;i<packetbuf_datalen();i++){
printf("%u,", appdata[i]);
}

printf("\n");

}

}

Receive function

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
62

#include “net/rime/rime.h”
#include “random.h”

Hands on Session

Wireless Sensing [Access a sensor & trx]

From the sense-and-tx, generate a new application (sense-and-trx.c) that:

1. Periodically samples from on-board temperature sensor

2. When done broadcast the value

3. Upon the reception of a incoming packet, print its contents and the
source node id

4. USE PACKETBUF attributes to READ ALSO RSSI AND LQI VALUES

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
63

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
64

packetbuf_attr (at core/net/packetbuf.h):

00342 PACKETBUF_ATTR_LINK_QUALITY,

00343 PACKETBUF_ATTR_RSSI,

To use it: packetbuf_attr(type of attribute)

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
65

broadcast_recv(struct broadcast_conn *c, const linkaddr_t *from)
{
uint8_t *appdata;
uint8_t i;
appdata = (uint8_t *)packetbuf_dataptr();
struct sensor_datamsg rxmsg;
printf("******************broadcast message received from %d.%d\n", from->u8[0], from->u8[1]);
if (packetbuf_datalen() == sizeof(struct sensor_datamsg)){

rxmsg.temp = appdata[0] | appdata[1]<<8;
rxmsg.humm = appdata[2] | appdata[3]<<8;
rxmsg.batt = appdata[4] | appdata[5]<<8;

printf("temp: %d, humm: %d, batt:%d\n", rxmsg.temp, rxmsg.humm, rxmsg.batt);

}
else{

for (i=0;i<packetbuf_datalen();i++){
printf("%u,", appdata[i]);
}

printf("\n");

}
//this is the id of the sender (as defined in compile time).

//printf(" from: %d.%d ",from->u8[0], from->u8[1]);
printf("with RSSI: %d and LQI:%d*****************\n", packetbuf_attr(PACKETBUF_ATTR_RSSI),

packetbuf_attr(PACKETBUF_ATTR_LINK_QUALITY));

}

COOJA SESSION

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
66

WSN Programming II

• Cooja
• The Contiki emulator for running WSN applications.

• Very useful for debugging your codes – the same code
you test on cooja, the same you upload to your mote

• Evaluating the network performance – has very
simplifying models for radio propagation….
• Unit disk model: Edges are instantly configured according to

power attenuation w.r.t to distance & success ratio
(configurable)

• Directed graph radio medium: Considers preconfigured
edges, without checking the output power.

• Multipath ray tracer: Simulates reflection and diffraction
through homogeneous obstacles (considers that all nodes
have the same transmission power)

• Interacts with external tools, e.g. Wireshark for Network
monitoring

• Modular: Plugins for extending functionality

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
67

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
68

At your working directory (terminal):

cd tools/cooja

ant run

File -> New Simulation

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
69

Network output

Simulation
Control

Mote
output

Timeline

Radio
messages

Buffers

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
70

Create a new mote and upload a program:

Motes -> Create New Mote -> Sky

Locate program sense-and-trx.c

Clean

Compile

Create (5)

@simulation control: Start

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
71

sense-and-trx.c

Check out the timeline

Transmissions: blue
Receptions: green
Congestions: red

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
72

Pause, Reload, Save & Re-open

(also: open .csc file!)

• Tools & Extensions:

• Bufferline, Mobility, MSP Code Watcher, Powertracker

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
73

Change protocol stack parameters: e.g. change RDC policy to no RDC

project-conf.h

@Makefile

#define NETSTACK_CONF_RDC nullrdc_driver

#define NEIGHS_TIMEOUT 120

#define MAX_NEIGHS 16

#define NET_SIZE 10

#CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
74

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQI values & store the 1st hop neighbors

Use of LIST in CONTIKI.

/* This structure holds information about the 1st hop neighbours. */
struct neighs {

/* The ->next pointer is needed since we are placing these on a
Contiki list. */

struct neighs *next;
linkaddr_t linkaddr;
//the time out timer for removing old entries
struct ctimer ctimer; };

static void update_neighs(void);
static void remove_neighs(void *n);

/* This MEMB() definition defines a memory pool from which we allocate
packet entries entries. */
MEMB(neighs_memb, struct neighs, MAX_NEIGHS);
/* The packets2send_list is a Contiki list that holds the packets pending for sending.*/
LIST(neighs_list);

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
75

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQI values & store the 1st hop neighbors

Use of LIST in CONTIKI.

static void update_neighs(void)

{

struct neighs *n;

linkaddr_t *tmp;

tmp = (linkaddr_t *)packetbuf_addr(PACKETBUF_ADDR_SENDER);

// Check if we already know this child.

for(n = list_head(neighs_list); n != NULL; n = list_item_next(n)) {

/* We break out of the loop if the linkaddr of the sender matches

the address of the neigbour from which we received this msg */

if (linkaddr_cmp(tmp, &n->linkaddr)){

/* Our neigh was found, so we update the timeout. */

ctimer_set(&n->ctimer, NEIGHS_TIMEOUT*CLOCK_SECOND, remove_neighs, n);

break;

}}

/* If n is NULL, this child was not found in our list, and we

allocate a new struct child from the children_memb memory

pool.*/

if(n == NULL) {

n = memb_alloc(&neighs_memb);

/* If we could not allocate a new children entry, we give up. We

could have reused an old neighbor entry, but we do not do this

for now. */

if(n != NULL) {

/* Initialize the fields. */

linkaddr_copy(&n->linkaddr, packetbuf_addr(PACKETBUF_ADDR_SENDER));

memcpy(&n->linkaddr, (linkaddr_t *)packetbuf_addr(PACKETBUF_ADDR_SENDER),sizeof(linkaddr_t));

/* Place the child on the children list at the end of the list. */

list_add(neighs_list, n);

ctimer_set(&n->ctimer, NEIGHS_TIMEOUT*CLOCK_SECOND, remove_neighs, n);

}

}

}

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
76

/*

* This function is called by the ctimer present in each neighbor

* table entry. The function removes the neighbor from the table

* because it has become too old.*/

static void remove_neighs(void *n)

{

struct neighs *e = n;

//removing old items...

//printf("now removing node: %d\n",e->addr.addr[5]);

list_remove(neighs_list, e);

memb_free(&neighs_memb, e);

}

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
77

uint8_t get_neighslist(linkaddr_t *listaddr, uint8_t size)

{

struct neighs *n;

linkaddr_t tmp;

uint8_t i;

if (size >0){

i=0;

for(n = list_head(neighs_list); n != NULL; n =

list_item_next(n)) {

memcpy(&tmp, &n->linkaddr, sizeof(linkaddr_t));

listaddr[i++] = tmp;

}

}

else {

listaddr = NULL;

}

return i;

}

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
78

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQI values & store the 1st hop neighbors

Use of LIST in CONTIKI.

Checks and print the 1st hop neighs every 1 min

list_length(list)

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
79

sense-and-trx.c: opens a bcast channel (RIME), senses a few data and sends
out values & print the RSSI and LQI values & store the 1st hop neighbors

Use of LIST in CONTIKI.

Checks and print the 1st hop neighs every 1 min

printf("Current length of neighbours list:%d\n",

list_length(neighs_list));

if (list_length(neighs_list) >0)

{

static linkaddr_t tmplist[MAX_NEIGHS];

get_neighslist(tmplist, list_length(neighs_list));

for (ii=0; ii<list_length(neighs_list);ii++)

{

printf("**%d.%d:: **", tmplist[ii].u8[0],tmplist[ii].u8[1]);

}

printf("\n");

}

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
80

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 1st hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

/* Initialize the memory for the neighbor table entries. */

memb_init(&neighbor_mem);

/* Initialize the list used for the neighbor table. */

list_init(neighbor_table);

/* Open a multihop connection on Rime channel CHANNEL. */

multihop_open(&multihop, CHANNEL, &multihop_call);

/* Register an announcement with the same announcement ID as the

Rime channel we use to open the multihop connection above. */

announcement_register(&example_announcement,

CHANNEL,

received_announcement);

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
81

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 1st hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

/* Wait until we get a sensor event with the button sensor as

data. */

PROCESS_WAIT_EVENT_UNTIL(ev == sensors_event &&

data == &button_sensor);

/* Activate the button sensor. We use the button to drive

traffic -

when the button is pressed, a packet is sent. */

SENSORS_ACTIVATE(button_sensor);

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
82

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
83

WSN Programming

The Rime stack

Hands on Session

What we are going to use…in order to upload code to the motes

• FTDI drivers (for Windows machines only) – USB2Serial

• How the host computer reserves a mote:
• COM<No> (Windows – Device Manager)

• /dev/ttyUSB<No> (Linux) [cat /var/log/syslog]

• Make sure that you have access on device (for programming it)

sudo addgroup <user> dialout (log out & then back in)

• Serial dump: make TARGET=sky MOTES=/dev/ttyUSB0 login

(note: make sure you have permissions to execute serialdump-linux @
$contikifolder/tools/sky)

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
84

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
85

TI TMP102 -> TEMPERATURE

HOW TO ACCESS IT:

A. USE THE API PROVIDED BY THE PLATFORM’S API

void tmp102_init(void);

uint16_t tmp102_read_temp_raw();

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
86

ADLX345 -> 3-axis digital accelerometer

HOW TO ACCESS IT:

A. USE THE API PROVIDED BY THE PLATFORM’S API

CHECK examples/z1/test-adlx345.c to see how to access the sensor.

void accm_init(void);

int16_t accm_read_axis(enum ADXL345_AXIS axis);

WSN Programming II

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
87

example-multihop.c: a simplified routing algorithm (RIME) using
announcements for creating 1st hop neighborhood and generate traffic
towards a specific sensor node (1) when pressing a button.

Modifications:

(1) random selection of the destination

(2) hop-to-live = 16

(3) bi-directional link: Send a “Request” and the destination replies with a
“Reply”

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
88

//reply to sender if message is 'Request'.

if (strcmp((char *)packetbuf_dataptr(), "Request") == 0){

linkaddr_copy(&request_sender, sender);

process_post(&reply_process,event_data_ready,

&request_sender);

}

packetbuf_copyfrom("Request", 7);

while (to.u8[0] == linkaddr_node_addr.u8[0] || to.u8[0] ==0){

to.u8[0] = random_rand() % NET_SIZE;

}

to.u8[1] = 0;

printf("packet ready to send to:%d.%d\n", to.u8[0],

to.u8[1]);

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
89

/*---*/
PROCESS_THREAD(reply_process, ev, data)
{

static rimeaddr_t toreply;
PROCESS_BEGIN(); /**Always first**/

while (1) {
//this process sleeps until somebody wakes it up.

PROCESS_YIELD_UNTIL(ev==event_data_ready);
rimeaddr_copy(&toreply, &request_sender);
//and prepare the buffer
packetbuf_clear();
packetbuf_clear_hdr();

// packetbuf_copyfrom(data2send,sizeof(sensor_datamsg));
packetbuf_copyfrom("Reply", 5);
//and now send
multihop_send(&multihop, &toreply);

leds_toggle(LEDS_GREEN);

}
PROCESS_END(); /**Always last**/
}

WSN Programming II

RPL and uIP stack (client-server connection).

Now we are using the uIP stack – not RIME

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
90

RIME

uIP over RIME

MAC/RDC

SICSLoWPAN

uIP

RPL

uIP with RPL

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
91

WSN Programming II

At Makefile:

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
92

WITH_UIP6=1

UIP_CONF_IPV6=1

if(root_if != NULL) {

rpl_dag_t *dag;

dag = rpl_set_root(RPL_DEFAULT_INSTANCE,(uip_ip6addr_t

*)&ipaddr);

uip_ip6addr(&ipaddr, 0xaaaa, 0, 0, 0, 0, 0, 0, 0);

rpl_set_prefix(dag, &ipaddr, 64);

PRINTF("created a new RPL dag\n");

}

test-rpl-sink.c

WSN Programming II

RPL and uIP stack (client-server connection).

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
93

test-rpl-sink.c

server_conn = udp_new(NULL, UIP_HTONS(UDP_CLIENT_PORT),

NULL);

udp_bind(server_conn, UIP_HTONS(UDP_SERVER_PORT));

test-rpl-source.c

client_conn = udp_new(NULL,UIP_HTONS(UDP_SERVER_PORT), NULL);

if(client_conn == NULL) {

// PRINTF("No UDP connection available, exiting the

process!\n");

PROCESS_EXIT();

}

udp_bind(client_conn, UIP_HTONS(UDP_CLIENT_PORT));

WSN Programming II

RPL and uIP stack (client-server connection).

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
94

test-rpl-sink.c

server_conn = udp_new(NULL, UIP_HTONS(UDP_CLIENT_PORT),

NULL);

udp_bind(server_conn, UIP_HTONS(UDP_SERVER_PORT));

test-rpl-source.c

Schedule the transmission at ~6seconds after the expire of the periodic timer.

