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Disclaimer

Material adapted from:

* Tensor Decomposition for Signal Processing and Machine Learning, by N.D. Sidiropoulos, L.
De Lathauwer, X. Fu, E.E. Papalexakis, ICASSP 2017 Tutorial

* M. Giannopoulos presentation
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Multivariate based WSN models

1) Earthquake or eruption occurs

2) Nodes detect seismic event

3) Each node sends event report
to base station

GPS receiver
for time sync

Time

Base station FreeWave

Y 1 Pl - |
- Sampling Instance
\ ]

|
Spatial Field

Sensor ID
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Sampling a WSN

Sensor

awily

Measurement
Matrix
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Incomplete Matrices

Problem “first” appeared in Netflix challenge
* Given user-movie rating
* Guess missing entries

John Anne Scot Mark Alice

2 5 ? ? ?
5 5 ? ?
? ? 5 ? 1
? 3 ? 2 ?
4 1 ? ? ?
? ? 4 ? 2
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Matrix Rank

The rank of a matrix M is the size of the largest collection of linearly
independent columns of M (the column rank) or the size of the largest
collection of linearly independent rows of M (the row rank)

e Row Echelon Form

1 1 21 A matrix is in row echelon form if
—2 —3 1] Ry — 21+ l” 1 3] (i) all nonzero rows are above any rows of all
550 zeroes
1 21 1 2 1 (ii) The leading coefficient of a nonzero row is
lU 1 3| Ry = —3ri+73 lU 13 ] always strictly to the right of the leading
350 0 -1 =3 coefficient of the row above it

12 1

3 Ra—??‘g—l—?‘aﬂ 1 3

_1 _3 00 0

12 1 10 -5
01 3|R = —2rr |0 1 3 Rank=2

00 0 00 0
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https://en.wikipedia.org/wiki/Leading_coefficient#Linear_algebra

Matrix Rank

* The rank of an m x n matrix is a nonnegative integer and cannot be
greater than either m or n. That is, rank(M) £ min(m, n).

* A matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.

rank( AB) < min(rank A, rank B).
rank(A”A) = rank(4A") = rank(A) = rank(A")
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Matrix Rank
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Singular Value Decomposition (SVD)

Given any mxn matrix M, algorithm to find matrices U, Z, and V such

that M =UZVT
T
» U: left singular vectors (orthonormal) M =UXV

 3: diagonal containing singular values / T
mxm m

™

Xi

* V: right singular vectors (orthonormal) Vis nxn
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Singular Value Decomposition (SVD)

Properties

* The s; are called the singular values of M

* If M is singular, some of the s; will be O

* In general rank(M) = number of nonzero s,

e SVD is mostly unique (up to permutation of SV)
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Low rank approximations

* Denoising

* Dimensionality reduction
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Low rank approximation

Matrix norms
* Frobenius norm can be computed from SVDH|\/I HF = szijz
i)

2
* Changes to a matrix €< changes to singular values HM HF - Zsi
i

Low rank approximation
Approximation problem: Find M, of rank k such that

M, = mln HM _XHF

X:rank (X )=k

N Institute of Computer Science



Singular Value Decomposition (SVD)

* Solution viasvbD M, =U diag(Gl,...,Gk,O,...,O)VT

set smallest r-k
singular values to zero

¥ * ¥ ¥ ¥ " - L - - " " "
* # ¥ * * = 1 .1 [ ] L
¥ ¥ ¥ ¥ ¥ " " - - - - -
A I = L * * e e e 4
K T
K T .
M = NeAVAYAS column notation: sum
1=1 of rank 1 matrices
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Approximation error

* How good (bad) is this approximation?

* It’s the best possible, measured by the Frobenius norm of
the error:

min [M-X|. =M -M|_ =0,

X:rank (X )=k

where the ¢, are ordered such that ¢, > G, ,.
Suggests why Frobenius error drops as k increased.
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Temperawure

22

Data model

4 WSN data modeling

4 Spatio-temporal correlations <-> Low rank measurement matrix

WSN sensor measurements

Sensor ID
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The case of missing values
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Matrix completion

e
3
E.-'-" et

—)

low rank matrix with
missing entries
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Matrix Completion (MC)

Let M = [My, ..., M;] € R***be a measurement
matrix consisting of s measurements from n different
sources.

Recovery of M is possible from k<<ns random entries
if matrix M is low rank andk > Cn%/®rlog(n)

To recover the unknown matrix, solve:

(min{ rank(X) : A(X) = A(M)}J

N Institute of Computer Science



Sampling operator

f

M;;, itijesS

Sampling operator A;; (M) = < _
0, otherwise

\

* Not all low-rank matrices can be recovered from
partial measurements!

* ... @ matrix containing zeroes everywhere except the top-
right corner.

* This matrix is low rank, but it cannot be recovered from
knowledge of only a fraction of its entries!
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Matrix Coherence

The coherence of subspace U of Q" and having
dimension r with respect to the canonical basis {e,;} is

defined as: u(U) = n maxgignHUGiHZ

r B B

H B = I
i .

B

H Bl
n(U) = 0(1)

- sampled from the uniform distribution with r > log n
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Formal definition of key assumptions

* Consider an underlying matrix M of size n, by n,. Let
the SVD of M be given as follows:
r

M = Zakukvg
k=1

* We make the following assumptions about M:

(AO)  4\r/(nn,), >0

(A1) The maximum entry in the n, by n, matrix ZU Vy
is upper bounded by =

34, such that max( z(U), u(V)) < 14,

N Institute of Computer Science



What do these assumptions mean

(AO) means that the singular vectors of the matrix
are sufficiently incoherent with the canonical basis.

(A1) means that the singular vectors of the matrix
are not spiky

* canonical basis vectors are spiky signals — the spike
has magnitude 1 and the rest of the signal is O;

*a vector of n elements with all values equal to
1/square-root(n) is not spiky.

N Institute of Computer Science



What is the trace-norm of a matrix?

* The nuclear / trace norm of a matrix is the sum of
its singular values.

IM], = Za@

|t is a softened version of the rank of a matrix
* Similar to the L, — L;-norm of a vector

* Minimization of the trace-norm is a convex
optimization problem and can be solved efficiently.

*This is similar to the L,-norm optimization (in
compressive sensing) bemg eff|C|entIy soIvabIe
S . FORTH




Matrix Completion (MC)

Relaxation (min{ M|, : AX) = A(M)}J

2F£4\/(2+ p)mln(nl,n2)5+25’
P

Performance HM M’

- : m @)
where p = fraction of known entries = = ‘ ‘
nn, nn,

Noisycase | min M|, : [AX) — AM)[ < ¢}




Recovery guarantees

Theorem 1.3 Let M be an ny X na matriz of rank r obeying A0 and A1l and put n = max(ni,n2).
Suppose we observe m entries of M with locations sampled uniformly at random. Then there exist
constants C', ¢ such that if

/

m > C max(p3, ps(l) e pion'/*) nr(5logn) (1.9)

for some [3 > 2, then the minimizer to the problem (1.5) is unique and equal to M with probability
at least 1 —en™P. Forr < pso_lnlﬁ’ this estimate can™be_improved to

m > C puon®°r(Blogn) (1.10)

with the same probability of success.

the trace-norm minimizer
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Matrix Completion solvers

* Matrix Completion via ALM
* Objective minimizex || X[«

subject to A(X) = A(M)

* Reformulation minimizexﬂ HXH*

subject to X+ E =M
A(E) = 0

Spring Semester 2017-2018
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Matrix Completion solvers

* Let y=A(M) min}r{nize |AX) —y||5 + Al X+

* Iterative Hard Thresholding

Yy = X — A (A(Xk) —y))
X .11 = ProjectRank p(Yz11).

SVvD
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CS and MC

Sparse recovery Rank minimization

Unknown Vector x Matrix A

Observations y = Ax y=L[A] (linear map)
Combinatorial #{x; #0} = ||x|lo0 rank(A) = #{o;(A)#0}
objective _ ||O'(A) ||0
Convex =l = > [ Al = >_; 04(A)

relaxation

Algorithmic Linear programming Semidefinite programming

tools

Yi Ma et al, “Matrix Extensions to
Sparse Recovery”, CVPR2009

Institute of Computer Science



Applications of MC

» Recommendation systems

* Matrix (user, preference/quality/intention)
» Sensor localization

* Matrix (location, physical quantity)

» Data recovery in Wireless Sensor Networks
* Matrix (sensor, time)

N Institute of Computer Science



Data Gathering

* STCDG: An Efficient Data Gathering Algorithm Based on Matrix
Completion for Wireless Sensor Networks

gld)
Q

AV o7t /7

BEDROOM I:‘ 0. 6!{

s

SECOND FLOOR

FIRST FLOOR

0.5

—*— House Humidity
- —A—-House Light
— + — House Voltage

-« -+ |ntel Temperature
Intel Humidity

-—o—- |ntel Light

— = — |ntel Voltage

-+-¢ -+ House Temperature

Spring Semester 2017-2018 CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department

10 15

 FORTH s

Institute of Computer Science



Input (120 min resolution)
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Body sensor network

Left Ankle Magnetometer x

Left Ankle Accelerometer x Left Ankle Gyroscope x
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RTT estimation

Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD),
Estimation of end-to-end network distances

* Network nodes exchange messages with each other

* Each node collects and processes local measurements

7 columns
~= 1
——P2psim525
£ 08 -e-Meridian2255
=
T 06
&
Al X | X YT = S 0.4
.=
w 0.2
0 § RGP G o
1 5 10 15 20
# singular value

. Fig. 3. The singular values of a RTT matrix of 2255 x« 2255, extracted from

Fig. 2. Network distance prediction by matrix factorization. Note that the diagonal entries of I) and [) are empty. the Meridian dataset [30] and called “Menidian2255", and of a RTT matrix of
5325 x 525, extracted from the P2psim dataset [30] and called “P2psim525™.
The singular values are normalized so that the largest singular values of both
matrices are equal to 1.
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Traffic Matrix of router WASHNg

(0)
o

N

Source Router
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8 WASHNnNg traffic matrices volume

- 12-5
= 3-5
21 = 5-12
= 12-2
3-12
1.5;— 4-12

Traffic volume
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LQM Estimation
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Robust PCA

k. L
-
-

el et

r mw
missing + low rank sparse
corrupted matrix corruptions

entries minimizex g ||X||>:< + HEH1
subject to A(X + E) = A(M)
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1-Bit MC

Sensors

Movies

~DO® ~ ~
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Distributed vs. Centralized Storage

A

*Centralized 2 £

» Access to resources

. B
» Controlled environment [ 8
: £ o

* Decentralized = E

» Increased network lifetime

> Autonomy ABCD
Performance comparison &£ =

* Per sensor vs. collective
* Temporal resolution
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T

=#—matrix [50] x [72] - data per hour
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=—#—Sensor 1 - Single Sensor Recovery
=&~ Sensor 1 - Collective Sensor Recovery
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=©- Sensor 2 - Collective Sensor Recovery
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| |
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0
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High-dimensional signal models

Encoding of multiple variables

28 pixels (height)

* Time, Space, Frequency, Modality

28 pixels (width)

vector matrix tensor

(RGB) (RGB)

V € ]R64 X € [RBXS X e ]R4x4x4
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Tensor Decompositions-Historical Background

* Founding fathers:
» Frank L. Hitchkock, in 1927 [1]
» Raymond b. Katell, in 1944 [2]

* Regained interest due to:
» Ledyard Tucker, in 1966

Q Tucker Decomposition

»J. Douglas Caroll, in 1970

> Richard A. Harshman, in 1970 :|L 1

PARAFAC/CANDECOMP

e First results in:

» Psychometrics (Caroll, Harshman)
» Chemometrics (Appelof, Davidson, R. Bro)
Slides by Michalis Giannopoulos

sor or a polyadic as a sum of products”, Studies in Applied Mathematfc }Eﬁﬁ% 9, 1927.
f‘y other principles for determining the choice of factors by rotation” P‘syt Ra ): 26Z|e%§53 1944.

[1] F. L. Hitchcock, “The expres ;

BhY 43
[2] R. B. Cattell, ”Parallel proportional pes
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Tensors

Scalar

1

[-way
(Vectors)

Includes materials from: Introduction to tensor, tensor factorization and its
applications, by Mu Li, iPAL Group Meeting, Sept. 17, 2010
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Fiber and slice

Tube (Mode-3)
Column (Mode-1) Fibers
Fibers

Y

Horizontal Slices Frontal Slices
Lateral Slices
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Tensor unfoldings: Matricization and
vectorization

 Matricization: convert a tensor to a matrix

Mode 2 matricization

Mode 1 matricization

CS-541 Wireless Sensor Networks
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Tensor Mode-n Multiplication

xERIXJXK, B ERMXJ, aGRI

* Tensor x Matrix

y — X X2B c RlxMxK
Yimk = Z%k bmj
j
Y(2) = BX(2)

Multiply each =———77
row (mode-2) ﬁ:;gz?;
fiberbyB — ~———5 7

* Tensor x Vector
Y =X X;acR/*E

Yik = D Tijk @
i

AT
Compute the dot 0{%

product of @ and

each column )
(mode-1) fiber 0 (U T

Spring Semester 2017-2018
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Examples

Location 2

Time

Time

Clusters

Time

Location 2

Time
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Tensor multiplication: the n-mode product: multiplied by a

matrix
(X Xn U) iin_1]ind1-iN Z Liyig--riny Ujip -

in=1

(7 %9 x8)

e nstitute of Computer Science



Tensor models

For two vectorsa (/ x 1) and b (J x 1), aobis an | x J rank-one matrix
* with (/. j)-th element a(i)b(j); i.e., aob = ab’.
, Forthree vectors,a (/ x 1),b (J x1),c(K x1),aocbocisan/xJ x K

rank-one three-way array with (/. /, k)-th element a(/)b(j)c(k).

The rank of a three-way array X is the smallest number of outer products
* needed to synthesize X.

(V)

e Rank—1Tensor X=aVca®o...0a

NP type
= <« | problem

CS-541 Wireless Sensor Networks )ﬁr,FORTH .

University of Crete, Computer Science Department
Institute of Computer Science
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Kronecker and Khatri-Rao products

® stands for the Kronecker product:

'BA(1.1),BA(1,2). - --
A=B - |BA(2,1),BA(2,2),--.

® stands for the Khatri-Rao (column-wise Kronecker) product: given A
(Ix F)and B (J x F), A® B is the JI x F matrix

A>B=[A(1)@B(1)---A(. F)®@B(:. F)]

vec(ABC) = (CT @ A)vec(B)
If D = diag(d), then vec(ADC) = (C” ©® A)d

Spring Semester 2017-2018
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Tensor Products

The tensor product A® B between two tensors A€ S1® S
and B € S3® S; is a tensor of S1® S2 ® S3® Ss. The conse-
quence is that the orders add up under tensor product.

Let A be represented by a three-way array A = [Aik] and B
by a four-way array B = [Bumnpl; then tensor C=A® B is
represented by the seven-way array of components
Cijkemnp = Aijk Bimnp. With some abuse of notation, the tensor
product is often applied to arrays of coordinates, so that nota-
tion C = A ® B may be encountered.

Spring Semester 2017-2018
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Tensor factorization

Hours
[1-24]

(a
>

Day [1-365]

Location [1-100]

X=UQV W X;

i, g,k ™~

CS-541 Wireless Sensor Networks
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Tensor Rank

A rank-1 matrix X of size / x J is an outer product of two vectors:
X(i.j)=a()b(),vie{1.--- . I},je{1.--- . J}; e,

X=aob.

A rank-1 third-order tensor X of size [ x J x K is an outer
product of three vectors: X(i.j. k) = a(i)b(j)c(k); i.e.,

X=aoboec. ¢

b b

Spring Semester 2017-2018
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Low-rank Tensor Approximation

Adopting a least squares criterion, the problem is

F
in || X — ar®br® cf||2.
A,B,CH ; r @ br ® cf||E,

Equivalently, we may consider
Jin[Xq — (CoB)AT][E.
Alternating optimization:
A argmin|X; — (Co B)AT|12,
B « argmin Xz — (C© A)BT|[Z.
C + argmin[Xs — (B® A)CT|2,

The above is widely known as Alternating Least Squares (ALS).

S

470 B g
: =N CS-541 Wireless Sensor Networks ¢
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CANDECOMP/PARAFAC

e Rank 1 Tensor models

CANDECOMP/PARAFAC Decomposition

* CP factorization: X ~ [A;A,B,C]| =) Ararobroc,
T

* CP of tensor is unique under some general conditions

CS-541 Wireless Sensor Networks
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Uniqueness

a, a, a;

Given tensor X of rank F, its CPD is essentially unique iff the F
rank-1 terms in its decomposition (the outer products or “chicken
feet”) are unique;

l.e., there is no other way to decompose X for the given number of
terms.

Can of course permute “chicken feet” without changing their sum
— permutation ambiguity.
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Reminder: SVD
A~ UXV! =3, 0;u; 0 v;

n n
— — G1U;°Vy PLVAD
E;]lllllll H I N s
y VI

~ +
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Relationship to SVD

* The analogy between (a) dyadic decompositions and (b) polyadic
decompositions

4 ‘g :
= a4 - S
a4 a. a, b,
(IxJ) (IxR) (RxAR) (RxJ)

(a)

a
o UxR) (RxAxR) (AxJ)
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TUCKER

» Tucker(3) factorization X=9x1 A" xo A® .y AW —[G; AW AG . AW

5 4
7

Tucker Decomposition

* The associated model-fitting problem is

' _ T2
A,rg,'cn,GHx (B@A)GC'|£.
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Tucker and Multilinear SVD (MLSVD)

) Vv
TR T
g - I /*'/ j ﬂ = /'/:-/ e
~ _ - } T -~
5 4 8 |4 K
o aa
9 49 ga o
X = U | *@°.4° "°
‘,// 2 5 P
. o~ a . a g ﬁﬂl@/}j/
- a O | —

Note that each column of U interacts with every column of V and
every column of W in this decomposition.

The strength of this interaction is encoded in the corresponding
element of G.

Different from CPD, which only allows interactions between
e corresponding columns of A, B, C, i.e., the only outer products that
can appear in the CPD are of type ar © b ® cy.

The Tucker modelin (14) also allows “mixed” products of
non-corresponding columns of U, V, W.

S
y 0
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The n-Rank

* R, = rank,(Z )[1], [2]: The dimension of the vector space which is spanned
by the mode-n fibers of column rank of A

* Rank-(R{, R,, - Ry) tensor = R,: Column-rank of the mode-n unfolding
X )

» Usefulness: Tensor approximation = Compression

> For = 1 dimensions:
For > 1 dimensions R, < rankn(gf) ‘

* Lack of Uniqueness:
» “Transform” the core tensor
» Apply the inverse “transform” to the factor matrices A, B and C
» Sometimes desired: Sketching arithmetic solutions for Tucker decomposition computation

Trimmed version

of original tensor

[1] R Coppi and S Bolasco. “Rank, decomposition, and uniqueness for 3-way and n-way arrays”, 1989.
[2] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multilinear singular value decomposition”. SIAM journal on Matrix Analysis and Applications,
21(4):1253-1278, 2000.
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Tensor Completion

* Low rank Tensor/Matrices

1000

1200

1400

1600

500 T T T T T T 500

400 H

300 -

200 -

100 -
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Extension: Tensor Completion

Generalization of MC problem:

minimize ||Z ||,
X

subjectto & (&'i,1,i) = (T iiiy),  iriaiz) € Q
Sampling operator: o7 (7) = Tiiyiy, i (112i3) € Q
0, otherwise

Tensor Nuclear Norm Definition [1]: [[Z ||« = ity &il| X ||«

Problem reformulation:

n
minimize Y 04| X; [l
3 i—1

subject to & (X i iris) = (T iyinis), V(i1i2i3) € Q

s

14 s
o o
PlY e F\_]I E !. l |
Institute of Computer Science
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Tensor Completion via Parallel Matrix
Factorization

1.2. Problem formulation. We aim at recovering an (approximately) low-rank
tensor M € RIt*-*IN from partial observations B = Po(M), where (2 is the
index set of observed entries, and Pq keeps the entries in {2 and zeros out others.
We apply low-rank matrix factorization to each mode unfolding of M by finding
matrices X,, € RIn*™ Y, € R™*Ms#nls guch that M, ~X,Y,forn=1,...,N,
where r,, is the estimated rank, either fixed or adaptively updated. Introducing one
common variable Z to relate these matrix factorizations, we solve the following
model to recover M

N
a :
(2) XI,DYH.IZ ] ?nllann - Z(n)“%‘a subject to PQ(Z) = B,
where X = (Xy,...,Xy)and Y = (Yy,..., Yy ). In the model, a,, n=1,... N,

are weights and satisfy > an = 1. The constraint Pa(Z) = B enforces consis-
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TC via Parallel Matrix Factorization

N
 Similar to the matrix case mzinz p||Zn)le, subject to Po(Z) = B,
n=1
where a,, > 0.n = 1,..., N are preselected weights

satisfying }°_a, = 1.
* Tensor nuclear norm

| X[ = max (W, X)

Wj=1

* Nuclear norm minimization

min || X, subject to PoX = PoT',

XGRdl x do xdg

where Py, : Rd1xdz2xds |y Rdixdaxds gch that

X (i,j, k) if (i,5,k) € Q

0 otherwise

(PoX)(i,5. k) = {

. CS-541 Wireless Sensor Networks 4% i’;‘,
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Tensor Signal Analysis for WSN Data

Experimental data collected from a WSN operating at a
pilot desalination plant, located at La Tordera, Spain [1]

 Water impedance measurements (Ohms) [ Matrices: 50 x 72, 50 x 36
» 5 sensors
—_=
» 10 different channels/sensor ‘
» 3 day period = Sampling every 1 and 2 hours| Tensors: 5 X 10 X 72,5 x 10 X 36

. FORTH
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Effects of Data Structuring

107 ' ’
: : : ——NC [50x72
* Higher fill-ratio ——TC[[55XO1X0x7]2]
R, 000 NG rcc[[sfﬁxgs;m
..... ;

quality quantified 104

* Regardless matrix/tensor
size

L
» TC outperforms MC from 2 1051
low fill-ratio regimes =

 NMSE convergence
» MC reaches a plateau

» TC decreases (nearly)
monotonically

0.1 02 03 04 05 06 0.7 08 09
Fill Ratio
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WSN Outdoors Dataset

Experimental data collected from a WSN operating at a
Grand-St-Bernard pass between Switzerland and Italy

° Temperatu re measurements — Matrices: 190 x 288, 190 x 144

» 19 sensors
—_—=
» 10 day period —

Tensors: 19 X 10 x 288, 19 x 10 x 144

Se——

» Sampling every 5 and 10 minutes

unnar Schaefer, Martin Vetterli, Olivier Couach, and Marc ParIang&?ﬁégﬁaa—bﬂt-of—the—box 69
6cessing in Sensor Networks, 2008. IPSN’08. International Conferencesgfs P et £35 508 =FFE"2008.

[1] Guillermo Barrenetxea, Francois §
environmental monitoring”, In Inform
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Effects of Data Structuring

D s
* Higher fill-ratio ——MC [190x288]
. =—==TC [19x10x288
> o I MC[[19);)X1)1(14] ]

DU 00 ¢ 00 | e TC [19x10x144]

* Larger Dataset

» TC outperforms MC from
lower fill-ratio regimes

NMSE

 NMSE convergence
» MC reaches a plateau

v~
sssss
LT
-------
-
--------------------------
-----------
------

» TC keeps decreasing

01 02 03 04 05 06 07 08 09
Fill Ratio
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Effects of Fill-Ratio

+ £=02

Data sampled from single day

> GT data
> MC reconstructed data
> TC reconstructed data

Measurement Value

MC Recovered Data [190]x[288]

Measurement Instance

Measurement Value

Measurement Instance

Measurement Value

Fully Sampled Data from day 3

o 2 Sensor ID

TC Recovered Data [19]x[10]x[288]

o 2 Sensor ID
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WSNs for Human Activity Recognition

Elderly
assistance

Health
monitoring

conditions
managemen

Acting upon
alerting
events
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TRAINING
PHASE

TESTING
PHASE

Problem formulation

Sensing and Gathering

B

Learning based HAR

Machine

Learning
Algorithm

Predictive

PARTITIONING /// PREPROCESSING N | EXTRACTION | /

. /

' Segmentation \ Hankelization
Train Data
ny
n
n;
Test Data Segmentation Hankelization
Wy

n W2

| | ws Model
\

CLASSIFICATION

Predicted
Label
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Single-device vs collective recovery:

matrices
Scenario 2 Scenario 1
Collective per modality Single-device

Device 1

i Modality 1 -
X
z
- Device 3
ﬁ 1/ Modality1l 7
X
z
evice
ali

evice

evice




Single-device vs collective recovery:

tensors

Scenario 2
Collective per modality

Collective recovery per modality

==

=

I Modality 1
z
. 1

-
T

T ETT Y

Device 1

$

/ Modality 1

i
_,%\
T

-v%

Scenario 1
Single-device

Single-device recovery
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Some results

100

(o)]
(=]

HAR

B
o

Classification accuracy %

mHealth o '

)]
=]

40

Classification accuracy %
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