

CS-541 Wireless Sensor Networks

Lecture 4: Data models and data acquisition

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

Disclaimer

Material adapted from:

- Tensor Decomposition for Signal Processing and Machine Learning, by N.D. Sidiropoulos, L. De Lathauwer, X. Fu, E.E. Papalexakis, ICASSP 2017 Tutorial
- M. Giannopoulos presentation

Spring Semester 2017-2018

Multivariate based WSN models

Sampling a WSN

Incomplete Matrices

Problem "first" appeared in Netflix challenge

- Given user-movie rating
- Guess missing entries

	John	Anne	Scot	Mark	Alice
Chicago	2	5	?	?	?
Matrix	5	?	5	?	?-
Star wars	?	?	5	?	1
Inception	?	3	?	2	?
Alien	4	1	?	?	?
Pulp Fiction	?	?	4	?	2

Matrix Rank

The **rank** of a matrix *M* is the size of the largest collection of <u>linearly</u> <u>independent</u> *columns of M* (the **column rank**) or the size of the largest collection of linearly independent *rows of M* (the **row rank**)

• Row Echelon Form

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} R_2 \rightarrow 2r_1 + r_2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix}$$
(i)
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} R_3 \rightarrow -3r_1 + r_3 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
(ii)
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix} R_3 \rightarrow r_2 + r_3 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
(ii)
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix} R_3 \rightarrow r_2 + r_3 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
Rank=2

A matrix is in row echelon form if

- (i) all nonzero rows are above any rows of all zeroes
- (ii) The <u>leading coefficient</u> of a nonzero row is always strictly to the right of the leading coefficient of the row above it

Matrix Rank

- The rank of an $m \times n$ matrix is a nonnegative integer and cannot be greater than either m or n. That is, rank $(M) \leq \min(m, n)$.
- A matrix that has a rank as large as possible is said to have **full rank**; otherwise, the matrix is **rank deficient**.

 $\operatorname{rank}(AB) \leq \min(\operatorname{rank} A, \operatorname{rank} B).$

 $\operatorname{rank}(A^{T}A) = \operatorname{rank}(AA^{T}) = \operatorname{rank}(A) = \operatorname{rank}(A^{T})$

Spring Semester 2017-2018

Matrix Rank

Singular Value Decomposition (SVD)

Given any $m \times n$ matrix **M**, algorithm to find matrices **U**, Σ , and **V** such that **M** = **U** Σ **V**^T

- U: left singular vectors (orthonormal)
- Σ: diagonal containing singular values
- V: right singular vectors (orthonormal)

$$M = U\Sigma V^{T}$$

$$m \times m \qquad m \times n \qquad \forall \text{ is } n \times n$$

$$\begin{pmatrix} M \\ M \end{pmatrix} = \begin{pmatrix} U \\ U \end{pmatrix} \begin{pmatrix} s_1 & 0 & 0 \\ 0 & O & 0 \\ 0 & 0 & s_n \end{pmatrix} \begin{pmatrix} V \\ V \end{pmatrix}^{T}$$

Singular Value Decomposition (SVD)

Properties

Spring Semester 2017-2018

- The s_i are called the singular values of M
- If **M** is singular, some of the s_i will be 0
- In general rank(M) = number of nonzero s_i
- SVD is mostly unique (up to permutation of SV)

Low rank approximations

- Denoising
- Dimensionality reduction

Low rank approximation

Matrix norms

- Frobenius norm can be computed from SVD $||M||_{\rm F} = \sum_{i} \sum_{j} m_{ij}^2$
- Changes to a matrix \leftrightarrow changes to singular values $\|M\|_{\rm F} = \sum s_i^2$

Low rank approximation

Approximation problem: Find M_k of rank k such that $M_k = \min_{X:rank(X)=k} \|M - X\|_F$

Singular Value Decomposition (SVD)

• Solution via SVD $M_k = U \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) V^T$

set smallest r-k singular values to zero

 $M_{k} = \sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$ column notation: sum of rank 1 matrices

Spring Semester 2017-2018

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} \|M - X\|_F = \|M - M_k\|_F = \sigma_{k+1}$$

where the σ_i are ordered such that $\sigma_i \ge \sigma_{i+1}$. Suggests why Frobenius error drops as k increased.

Data model

♦ WSN data modeling

✦ Spatio-temporal correlations <-> Low rank measurement matrix

The case of missing values

Power consumption

Packet losses

Temporal sampling of WSN

- Sampling rate
- De-synchronization
- Temporal resolution

Matrix completion

low rank matrix with missing entries

low rank matrix

CS-541 Wressing Networks University of Crete, Computer Science Department

User

Matrix Completion (MC)

Let $\mathbf{M} = [\mathbf{M_0}, ..., \mathbf{M_1}] \in \mathbf{R^{n \times s}}$ be a measurement matrix consisting of *s* measurements from *n* different sources.

Recovery of **M** is possible from k << ns random entries if matrix **M** is *low rank* and $k \ge Cn^{6/5} r log(n)$

To recover the unknown matrix, solve:

$$\min\{ rank(\mathbf{X}) : \mathcal{A}(\mathbf{X}) = \mathcal{A}(\mathbf{M}) \}$$

Rank constraint makes problem <u>NP-hard</u>....

Spring Semester 2017-2018

Sampling operator

Sampling operator
$$\mathcal{A}_{ij}(\mathbf{M}) = \begin{cases} M_{ij}, & \text{if } ij \in S \\ 0, & \text{otherwise} \end{cases}$$

- Not all low-rank matrices can be recovered from partial measurements!
 - ... a matrix containing zeroes everywhere except the topright corner.
 - This matrix is low rank, but it <u>cannot</u> be recovered from knowledge of only a fraction of its entries!

Matrix Coherence

The coherence of subspace U of \Re^n and having dimension r with respect to the canonical basis $\{e_i\}$ is defined as: $\mu(U) = \frac{n}{m} \max_{1 \le i \le n} \left\| U e_i \right\|^2$ $\mu(U) = O(1)$

- sampled from the uniform distribution with r > log n

Spring Semester 2017-2018

Formal definition of key assumptions

 Consider an underlying matrix M of size n₁ by n₂. Let the SVD of M be given as follows:

$$M = \sum_{k=1}^{\prime} \sigma_k u_k v_k^T$$

• We make the following assumptions about M:

(A0)
$$\mu_1 \sqrt{r/(n_1 n_2)}, \mu_1 > 0$$

(A1) The maximum entry in the n_1 by n_2 matrix $\sum_{k=1}^{n} u_k v_k^T$ is upper bounded by

 $\exists \mu_0 \text{ such that max}(\mu(U), \mu(V)) \leq \mu_0$

What do these assumptions mean

(A0) means that the singular vectors of the matrix are sufficiently **incoherent** with the canonical basis.

(A1) means that the singular vectors of the matrix are **not spiky**

- canonical basis vectors are spiky signals the spike has magnitude 1 and the rest of the signal is 0;
- a vector of n elements with all values equal to 1/square-root(n) is not spiky.

What is the trace-norm of a matrix?

• The nuclear / trace norm of a matrix is the **sum of its singular values.**

$$\|\mathbf{M}\|_* = \sum_{i=1}^n \sigma_i$$

- It is a **softened version of the rank** of a matrix
- Similar to the $L_0 \rightarrow L_1$ -norm of a vector
- Minimization of the trace-norm is a convex optimization problem and can be solved efficiently.
- This is similar to the L_1 -norm optimization (in compressive sensing) being efficiently solvable.

Matrix Completion (MC)

Recovery guarantees

Theorem 1.3 Let M be an $n_1 \times n_2$ matrix of rank r obeying A0 and A1 and put $n = \max(n_1, n_2)$. Suppose we observe m entries of M with locations sampled uniformly at random. Then there exist constants C, c such that if

$$m \ge C \max(\mu_1^2, \mu_0^{1/2} \mu_1, \mu_0 n^{1/4}) nr(\beta \log n)$$
(1.9)

for some $\beta > 2$, then the minimizer to the problem (1.5) is unique and equal to M with probability at least $1 - cn^{-\beta}$. For $r \le \mu_0^{-1} n^{1/5}$ this estimate can be improved to

$$m \ge C \mu_0 n^{6/5} r(\beta \log n)$$
 (1.10)

with the same probability of success.

the trace-norm minimizer

Matrix Completion solvers

- Matrix Completion via ALM
 - Objective $\mininize_{\mathbf{X}} \|\mathbf{X}\|_{*}$ subject to $\mathcal{A}(\mathbf{X}) = \mathcal{A}(\mathbf{M})$
 - Reformulation

Spring Semester 2017-2018

minimize_{**X**,**E**} $\|\mathbf{X}\|_*$ subject to $\mathbf{X} + \mathbf{E} = \mathbf{M}$ $\mathcal{A}(\mathbf{E}) = 0$

Matrix Completion solvers

• Let y=A(M) minimize
$$\|\mathcal{A}(X) - y\|_2^2 + \lambda \|X\|_*$$
.

• Iterative Hard Thresholding

$$Y_{k+1} = X_k - \gamma_k \mathcal{A}^* (\mathcal{A}(X_k) - y))$$

$$X_{k+1} = \operatorname{ProjectRank}_R(Y_{k+1}). \longrightarrow \operatorname{SVD}$$

Spring Semester 2017-2018

CS and MC

	Sparse recovery	Rank minimization
Unknown	Vector <i>x</i>	Matrix A
Observations	y = Ax	y = L[A] (linear map)
Combinatorial objective	$\#\{\mathbf{x}_i \neq 0\} = \ \mathbf{x}\ _0$	$\operatorname{rank}(A) = \#\{\sigma_i(A) \neq 0\}$ $= \ \sigma(A)\ _0$
Convex relaxation	$\ \mathbf{x}\ _1 = \sum_i \mathbf{x}_i $	$ A _* = \sum_i \sigma_i(A)$
Algorithmic tools	Linear programming	Semidefinite programming

Yi Ma et al, "Matrix Extensions to Sparse Recovery", CVPR2009

Applications of MC

Recommendation systems

- Matrix (user, preference/quality/intention)
- Sensor localization
 - Matrix (location, physical quantity)
- Data recovery in Wireless Sensor Networks
 - Matrix (sensor, time)

Spring Semester 2017-2018

Data Gathering

• STCDG: An Efficient Data Gathering Algorithm Based on Matrix Completion for Wireless Sensor Networks

CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

31

Body sensor network

RTT estimation

Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD),

Estimation of end-to-end network distances

- Network nodes exchange messages with each other
- Each node collects and processes local measurements

Fig. 2. Network distance prediction by matrix factorization. Note that the diagonal entries of D and \hat{D} are empty.

Fig. 3. The singular values of a RTT matrix of 2255×2255 , extracted from the Meridian dataset [30] and called "Meridian2255", and of a RTT matrix of 525×525 , extracted from the P2psim dataset [30] and called "P2psim525". The singular values are normalized so that the largest singular values of both matrices are equal to 1.

Traffic Matrix of router WASHng

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

35

Institute of Computer Science

FORTH

Institute of Computer Science

• Dataset

- Testbed @ FORTH (144m², 1x1m grid)
- RSSI values (channel quality)
- 13 IEEE802.11b/g channels

Robust PCA

missing + corrupted entries

$\begin{array}{ll} & \text{low rank} & \text{sparse} \\ & \text{matrix} & \text{corruptions} \\ & \text{minimize}_{\mathbf{X},\mathbf{E}} & \|\mathbf{X}\|_* + \|\mathbf{E}\|_1 \\ & \text{subject to} & \mathcal{A}(\mathbf{X} + \mathbf{E}) = \mathcal{A}(\mathbf{M}) \end{array}$

1-Bit MC

Spring Semester 2017-2018

Distributed vs. Centralized Storage

- Centralized
 - Access to resources
 - Controlled environment
- Decentralized
 - Increased network lifetime
 - > Autonomy

Performance comparison

- Per sensor vs. collective
- Temporal resolution

Time

FORTH

High-dimensional signal models

Tensor Decompositions-Historical Background

Tensors

Includes materials from: Introduction to tensor, tensor factorization and its applications, by Mu Li, iPAL Group Meeting, Sept. 17, 2010

Fiber and slice

Tensor unfoldings: Matricization and vectorization

• Matricization: convert a tensor to a matrix

Tensor Mode-n Multiplication $\mathbf{X} \in \mathbb{R}^{I \times J \times K}, \ \mathbf{B} \in \mathbb{R}^{M \times J}, \ \mathbf{a} \in \mathbb{R}^{I}$ Tensor x Matrix Tensor x Vector $\mathcal{Y} = \mathcal{X} \times_{\mathbf{2}} \mathbf{B} \in \mathbb{R}^{I \times M \times K}$ $\mathbf{Y} = \mathbf{X} \ \bar{\mathbf{x}}_1 \ \mathbf{a} \in \mathbb{R}^{J \times K}$ $y_{imk} = \sum_{j} x_{ijk} \ b_{mj}$ $\mathbf{Y}_{(2)} = \mathbf{B}\mathbf{X}_{(2)}$ $y_{jk} = \sum_{i} x_{ijk} a_{i}$ Compute the dot Multiply each product of a and row (mode-2) each column fiber by **B** (mode-1) fiber

Examples

Time

Spring Semester 2017-2018

Tensor multiplication: the n-mode product: multiplied by a matrix

$$(\mathfrak{X} \times_n \mathbf{U})_{i_1 \cdots i_{n-1} j \, i_{n+1} \cdots i_N} = \sum_{i_n=1}^{I_n} x_{i_1 i_2 \cdots i_N} \, u_{j i_n}.$$

Tensor models

For two vectors **a** ($I \times 1$) and **b** ($J \times 1$), **a** \circ **b** is an $I \times J$ rank-one matrix with (i, j)-th element **a**(i)**b**(j); i.e., **a** \circ **b** = **ab**^T.

• For three vectors, **a** $(I \times 1)$, **b** $(J \times 1)$, **c** $(K \times 1)$, **a** \circ **b** \circ **c** is an $I \times J \times K$ rank-one three-way array with (i, j, k)-th element **a**(i)**b**(j)**c**(k).

The *rank of a three-way array* \underline{X} is the smallest number of outer products • needed to synthesize \underline{X} .

• Rank – 1 Tensor $\mathfrak{X} = \mathbf{a}^{(1)} \circ \mathbf{a}^{(2)} \circ \cdots \circ \mathbf{a}^{(N)}$.

Kronecker and Khatri-Rao products

 \otimes stands for the Kronecker product:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} \mathbf{BA}(1,1), \mathbf{BA}(1,2), \cdots \\ \mathbf{BA}(2,1), \mathbf{BA}(2,2), \cdots \\ \vdots \end{bmatrix}$$

⊙ stands for the Khatri-Rao (column-wise Kronecker) product: given **A** $(I \times F)$ and **B** $(J \times F)$, **A** ⊙ **B** is the $JI \times F$ matrix

$$\mathbf{A} \odot \mathbf{B} = \begin{bmatrix} \mathbf{A}(:, 1) \otimes \mathbf{B}(:, 1) \cdots \mathbf{A}(:, F) \otimes \mathbf{B}(:, F) \end{bmatrix}$$

 $vec(ABC) = (C^T \otimes A)vec(B)$ If D = diag(d), then $vec(ADC) = (C^T \odot A)d$

Tensor Products

The tensor product $\mathcal{A} \otimes \mathcal{B}$ between two tensors $\mathcal{A} \in S_1 \otimes S_2$ and $\mathcal{B} \in S_3 \otimes S_4$ is a tensor of $S_1 \otimes S_2 \otimes S_3 \otimes S_4$. The consequence is that the orders add up under tensor product.

Let \mathcal{A} be represented by a three-way array $\mathcal{A} = [A_{ijk}]$ and \mathcal{B} by a four-way array $\mathcal{B} = [B_{\ell mnp}]$; then tensor $C = \mathcal{A} \otimes \mathcal{B}$ is represented by the seven-way array of components $C_{ijk\ell mnp} = A_{ijk}B_{\ell mnp}$. With some abuse of notation, the tensor product is often applied to arrays of coordinates, so that notation $C = \mathcal{A} \otimes \mathcal{B}$ may be encountered.

Tensor Rank

A rank-1 matrix X of size $I \times J$ is an outer product of two vectors: $X(i,j) = a(i)b(j), \forall i \in \{1, \dots, I\}, j \in \{1, \dots, J\}; i.e.,$

 $\mathbf{X} = \mathbf{a} \odot \mathbf{b}$.

A rank-1 third-order tensor **X** of size $I \times J \times K$ is an outer product of three vectors: $\mathbf{X}(i, j, k) = \mathbf{a}(i)\mathbf{b}(j)\mathbf{c}(k)$; i.e.,

Low-rank Tensor Approximation

Adopting a least squares criterion, the problem is

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}} ||\mathbf{X} - \sum_{f=1}^{F} \mathbf{a}_{f} \odot \mathbf{b}_{f} \odot \mathbf{c}_{f}||_{F}^{2},$$

Equivalently, we may consider

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}}||\mathbf{X}_1-(\mathbf{C}\odot\mathbf{B})\mathbf{A}^{\mathcal{T}}||_F^2.$$

Alternating optimization:

$$\mathbf{A} \leftarrow \arg\min_{\mathbf{A}} ||\mathbf{X}_{1} - (\mathbf{C} \odot \mathbf{B})\mathbf{A}^{T}||_{F}^{2},$$
$$\mathbf{B} \leftarrow \arg\min_{\mathbf{B}} ||\mathbf{X}_{2} - (\mathbf{C} \odot \mathbf{A})\mathbf{B}^{T}||_{F}^{2},$$
$$\mathbf{C} \leftarrow \arg\min_{\mathbf{C}} ||\mathbf{X}_{3} - (\mathbf{B} \odot \mathbf{A})\mathbf{C}^{T}||_{F}^{2},$$

The above is widely known as Alternating Least Squares (ALS).

Spring Semester 2017-2018

CANDECOMP/PARAFAC

• Rank 1 Tensor models

- CP factorization: $\mathfrak{X} \approx [\![\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}]\!] = \sum_r \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$
- CP of tensor is unique under some general conditions

Uniqueness

Given tensor **X** of rank *F*, its CPD is *essentially unique* iff the *F* rank-1 terms in its decomposition (the outer products or "chicken feet") are unique;

i.e., there is no other way to decompose **X** for the given number of terms.

Can of course permute "chicken feet" without changing their sum \rightarrow permutation ambiguity.

Spring Semester 2017-2018

Relationship to SVD

• The analogy between (a) dyadic decompositions and (b) polyadic decompositions

TUCKER

• Tucker(3) factorization $\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \cdots \times_N \mathbf{A}^{(N)} = \llbracket \mathcal{G} ; \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(N)} \rrbracket$

• The associated model-fitting problem is

 $\min_{\textbf{A},\textbf{B},\textbf{C},\textbf{G}}||\textbf{X}-(\textbf{B}\otimes\textbf{A})\textbf{G}\textbf{C}^{\mathcal{T}}||_{F}^{2},$

which is usually solved using an alternating least squares procedure.

Tucker and Multilinear SVD (MLSVD)

 Note that each column of U interacts with every column of V and every column of W in this decomposition.

The strength of this interaction is encoded in the corresponding

• element of G.

Different from CPD, which only allows interactions between

- corresponding columns of A, B, C, i.e., the only outer products that can appear in the CPD are of type a_f ⊚ b_f ⊚ c_f.
 - The Tucker model in (14) also allows "mixed" products of

non-corresponding columns of **U**, **V**, **W**.

The n-Rank

- $R_n = rank_n(\mathscr{X})$ [1], [2]: The dimension of the vector space which is spanned by the mode-n fibers of column rank of ¥
- Rank- $(R_1, R_2, \cdots R_N)$ tensor $\rightarrow R_n$: Column-rank of the mode-n unfolding $X_{(n)}$
- <u>Usefulness</u>: Tensor approximation \rightarrow Compression

 $R_n < rank_n(\mathscr{X})$

- \succ For > 1 dimensions:
- Lack of Uniqueness:
 - "Transform" the core tensor
 - Apply the inverse "transform" to the factor matrices A, B and C
 - Sometimes desired: Sketching arithmetic solutions for Tucker decomposition computation

[1] R Coppi and S Bolasco. "Rank, decomposition, and uniqueness for 3-way and n-way arrays", 1989. [2] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. "A multilinear singular value decomposition". SIAM journal on Matrix Analysis and Applications, 21(4):1253-1278, 2000.

Trimmed version

of original tensor

Tensor Completion

• Low rank Tensor/Matrices

Extension: Tensor Completion

• Generalization of MC problem:

 $\begin{array}{l} \underset{\mathscr{X}}{\text{minimize}} & \|\mathscr{X}\|_{*} \\ \text{subject to} & \mathscr{A}(\mathscr{X}_{i_{1}i_{2}i_{3}}) = \mathscr{A}(\mathscr{T}_{i_{1}i_{2}i_{3}}), \quad \forall (i_{1}i_{2}i_{3}) \in \Omega \end{array}$

• Sampling operator:
$$\mathscr{A}(\mathscr{T}) = \begin{cases} \tau_{i_1 i_2 i_3}, & \text{if } (i_1 i_2 i_3) \in \Omega \\ 0, & \text{otherwise} \end{cases}$$

- Tensor Nuclear Norm Definition [1]: $\|\mathscr{X}\|_* = \sum_{i=1}^n \alpha_i \|\mathbf{X}_{(i)}\|_*$
- **Problem reformulation**:

[1] Ji Liu, P. N

	$ \underset{\mathscr{X}}{\text{minimize}} \sum_{i=1}^{n} \alpha_{i} \ \mathbf{X}_{(i)} \ _{*} $	
	subject to $\mathscr{A}(\mathscr{X}_{i_1i_2i_3}) = \mathscr{A}(\mathscr{T}_{i_1i_2i_3}), \forall (i_1i_2i_3) \in \Omega$	
/lusialski, P.	Wonka, and Machine Intelligence, 35(1):208-220, 2013.	64

 $\alpha_i > 0$

Tensor Completion via Parallel Matrix Factorization

1.2. Problem formulation. We aim at recovering an (approximately) low-rank tensor $\mathcal{M} \in \mathbb{R}^{I_1 \times \ldots \times I_N}$ from partial observations $\mathcal{B} = \mathcal{P}_{\Omega}(\mathcal{M})$, where Ω is the index set of observed entries, and \mathcal{P}_{Ω} keeps the entries in Ω and zeros out others. We apply low-rank matrix factorization to each mode unfolding of \mathcal{M} by finding matrices $\mathbf{X}_n \in \mathbb{R}^{I_n \times r_n}, \mathbf{Y}_n \in \mathbb{R}^{r_n \times \Pi_{j \neq n} I_j}$ such that $\mathbf{M}_{(n)} \approx \mathbf{X}_n \mathbf{Y}_n$ for $n = 1, \ldots, N$, where r_n is the estimated rank, either fixed or adaptively updated. Introducing one common variable \mathcal{Z} to relate these matrix factorizations, we solve the following model to recover \mathcal{M}

(2)
$$\min_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \sum_{n=1}^{N} \frac{\alpha_n}{2} \|\mathbf{X}_n \mathbf{Y}_n - \mathbf{Z}_{(n)}\|_F^2, \text{ subject to } \mathcal{P}_{\Omega}(\mathbf{Z}) = \mathbf{\mathcal{B}},$$

where $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_N)$ and $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_N)$. In the model, $\alpha_n, n = 1, \dots, N$, are weights and satisfy $\sum_n \alpha_n = 1$. The constraint $\mathcal{P}_{\Omega}(\mathbf{Z}) = \mathbf{B}$ enforces consis-

TC via Parallel Matrix Factorization

• Similar to the matrix case

$$\begin{split} \min_{\boldsymbol{\mathcal{Z}}} \sum_{n=1}^{N} \alpha_n \| \mathbf{Z}_{(n)} \|_{\bullet}, \text{ subject to } \mathcal{P}_{\Omega}(\boldsymbol{\mathcal{Z}}) &= \boldsymbol{\mathcal{B}}, \\ \text{where } \alpha_n \geq 0, n = 1, \dots, N \text{ are preselected weights} \\ \text{ satisfying } \sum_n \alpha_n &= 1. \end{split}$$

• Tensor nuclear norm

$$\|\boldsymbol{X}\|_* = \max_{\|\boldsymbol{W}\|=1} \langle \boldsymbol{W}, \boldsymbol{X}
angle$$

• Nuclear norm minimization

$$\min_{X\in \mathbb{R}^{d_1 imes d_2 imes d_3}} \|X\|_* \qquad ext{subject to } \mathcal{P}_\Omega X = \mathcal{P}_\Omega T,$$

where $\mathcal{P}_{\Omega} : \mathbb{R}^{d_1 \times d_2 \times d_3} \mapsto \mathbb{R}^{d_1 \times d_2 \times d_3}$ such that

$$(\mathcal{P}_{\Omega}\boldsymbol{X})(i,j,k) = \begin{cases} \boldsymbol{X}(i,j,k) & \text{if } (i,j,k) \in \Omega \\ 0 & \text{otherwise} \end{cases}$$

Spring Semester 2017-2018

Tensor Signal Analysis for WSN Data

Experimental data collected from a WSN operating at a pilot desalination plant, located at La Tordera, Spain [1]

- Water impedance measurements (Ohms)
 - ➤ 5 sensors
 - ➤ 10 different channels/sensor
 - \succ 3 day period → Sampling every 1 and 2 hours

<u>Matrices</u>: 50×72 , 50×36

<u>Tensors</u>: $5 \times 10 \times 72$, $5 \times 10 \times 36$

Effects of Data Structuring

- Higher fill-ratio
 - Better reconstruction quality quantified
- <u>Regardless matrix/tensor</u> <u>size</u>
 - TC outperforms MC from low fill-ratio regimes
- <u>NMSE convergence</u>
 - > MC reaches a plateau
 - TC decreases (nearly) monotonically

WSN Outdoors Dataset

Experimental data collected from a WSN operating at a Grand-St-Bernard pass between Switzerland and Italy

Effects of Data Structuring

- Higher fill-ratio
 - Better reconstruction quality quantified
- Larger Dataset
 - TC outperforms MC <u>from</u> <u>lower</u> fill-ratio regimes
- <u>NMSE convergence</u>
 - MC reaches a plateau
 - TC keeps decreasing

nstitute of Computer Science

Effects of Fill-Ratio

WSNs for Human Activity Recognition

Problem formulation

Single-device vs collective recovery: matrices

Scenario 2 Collective per modality

Scenario 1 Single-device

Scenario 3: Overall collective recovery structured similarly

Single-device vs collective recovery: tensors

Scenario 2 Collective per modality

Scenario 1 Single-device

Scenario 3: Overall collective recovery structured similarly

Some results

Spring Semester 2017-2018

CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

Reading Material

- Davenport, Mark A., and Justin Romberg. "An overview of low-rank matrix recovery from incomplete observations." IEEE Journal of Selected Topics in Signal Processing 10.4 (2016): 608-622.
- Cichocki, Andrzej, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. "Tensor decompositions for signal processing applications: From two-way to multiway component analysis." *IEEE Signal Processing Magazine* 32, no. 2 (2015): 145-163.
- Savvaki, Sofia, Grigorios Tsagkatakis, Athanasia Panousopoulou, and Panagiotis Tsakalides. "Matrix and Tensor Completion on a Human Activity Recognition Framework." *IEEE journal of biomedical and health informatics* 21, no. 6 (2017): 1554-1561.

