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Material adapted from: 

• Tensor Decomposition for Signal Processing and Machine Learning, by N.D. Sidiropoulos, L. 
De Lathauwer, X. Fu, E.E. Papalexakis, ICASSP 2017 Tutorial 

• M. Giannopoulos presentation



Multivariate based WSN models
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Sampling a WSN
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Incomplete Matrices

Problem “first” appeared in Netflix challenge
• Given user-movie rating
• Guess missing entries
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John Anne Scot Mark Alice

Chicago 2 5 ? ? ?

Matrix 5 ? 5 ? ?

Star wars ? ? 5 ? 1

Inception ? 3 ? 2 ?

Alien 4 1 ? ? ?

Pulp Fiction ? ? 4 ? 2
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Matrix Rank

The rank of a matrix M is the size of the largest collection of linearly
independent columns of M (the column rank) or the size of the largest
collection of linearly independent rows of M (the row rank)

• Row Echelon Form
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Rank=2

A matrix is in row echelon form if
(i) all nonzero rows are above any rows of all 

zeroes
(ii) The leading coefficient of a nonzero row is 

always strictly to the right of the leading 
coefficient of the row above it

https://en.wikipedia.org/wiki/Leading_coefficient#Linear_algebra


Matrix Rank

• The rank of an m × n matrix is a nonnegative integer and cannot be 
greater than either m or n. That is, rank(M) ≤ min(m, n). 

• A matrix that has a rank as large as possible is said to have full rank; 
otherwise, the matrix is rank deficient.
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Matrix Rank
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Singular Value Decomposition (SVD)

Given any mn matrix M, algorithm to find matrices U, Σ, and V such 

that M = UΣVT

• U: left singular vectors (orthonormal)

• Σ: diagonal containing singular values

• V: right singular vectors (orthonormal)
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Singular Value Decomposition (SVD)

Properties

• The si are called the singular values of M

• If M is singular, some of the si will be 0

• In general rank(M) = number of nonzero si

• SVD is mostly unique (up to permutation of SV)
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Low rank approximations

• Denoising

• Dimensionality reduction
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Low rank approximation

Matrix norms

• Frobenius norm can be computed from SVD

• Changes to a matrix ↔ changes to singular values

Low rank approximation

Approximation problem: Find Mk of rank k such that
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• Solution via SVD

Singular Value Decomposition (SVD)

set smallest r-k

singular values to zero
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Approximation error

• How good (bad) is this approximation?

• It’s the best possible, measured by the Frobenius norm of 
the error:

where the i are ordered such that i  i+1.

Suggests why Frobenius error drops as k increased.
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Data model

WSN data modeling

 Spatio-temporal correlations <-> Low rank measurement matrix
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Low rank
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The case of missing values

Power consumption

Packet losses

Temporal sampling of WSN

• Sampling rate

• De-synchronization

• Temporal resolution

CS-541 Wireless Sensor Networks
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Matrix completion
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Matrix Completion (MC)

Let                                         be a measurement 
matrix consisting of s measurements from n different 
sources. 

Recovery of M is possible from k<<ns random entries
if matrix M is low rank and

To recover the unknown matrix, solve:

Rank constraint makes problem NP-hard….
CS-541 Wireless Sensor Networks
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Sampling operator

Sampling operator

•Not all low-rank matrices can be recovered from
partial measurements!
• … a matrix containing zeroes everywhere except the top-

right corner.
• This matrix is low rank, but it cannot be recovered from

knowledge of only a fraction of its entries!
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Matrix Coherence

The coherence of subspace U of Rn and having

dimension r with respect to the canonical basis {ei} is

defined as:
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Formal definition of key assumptions

•Consider an underlying matrix M of size n1 by n2. Let 
the SVD of M be given as follows:

•We make the following assumptions about M:

(A0)

(A1) The maximum entry in the n1 by n2 matrix                
is upper bounded by 
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What do these assumptions mean

(A0) means that the singular vectors of the matrix
are sufficiently incoherent with the canonical basis.

(A1) means that the singular vectors of the matrix
are not spiky

• canonical basis vectors are spiky signals – the spike
has magnitude 1 and the rest of the signal is 0;

•a vector of n elements with all values equal to
1/square-root(n) is not spiky.

CS-541 Wireless Sensor Networks
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What is the trace-norm of a matrix?

•The nuclear / trace norm of a matrix is the sum of 
its singular values.

• It is a softened version of the rank of a matrix

•Similar to the L0 → L1-norm of a vector

•Minimization of the trace-norm is a convex 
optimization problem and can be solved efficiently.

•This is similar to the L1-norm optimization (in 
compressive sensing) being efficiently solvable.

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department
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Matrix Completion (MC)

Relaxation

Performance

Noisy case

CS-541 Wireless Sensor Networks
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Recovery guarantees

the trace-norm minimizer

CS-541 Wireless Sensor Networks
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Matrix Completion solvers

•Matrix Completion via ALM

• Objective 

• Reformulation

27
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Matrix Completion solvers

• Let y=A(M)

• Iterative Hard Thresholding

Spring Semester 2017-2018
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Sparse recovery Rank minimization

Unknown Vector x Matrix A

Observations y = Ax y = L[A]      (linear map)

Combinatorial
objective

Convex 
relaxation

Algorithmic 
tools

Linear programming Semidefinite programming

Yi Ma et al, “Matrix Extensions to
Sparse Recovery”, CVPR2009

CS and MC

Spring Semester 2017-2018 29
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department



Applications of MC

 Recommendation systems
• Matrix (user, preference/quality/intention)

 Sensor localization
• Matrix (location, physical quantity) 

 Data recovery in Wireless Sensor Networks
• Matrix (sensor, time)

30
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Data Gathering

• STCDG: An Efficient Data Gathering Algorithm Based on Matrix 
Completion for Wireless Sensor Networks

CS-541 Wireless Sensor Networks
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Body sensor network
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RTT estimation

Decentralized Matrix Factorization by Stochastic Gradient Descent (DMFSGD),

Estimation of end-to-end network distances

• Network nodes exchange messages with each other 

• Each node collects and processes local measurements

CS-541 Wireless Sensor Networks
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LQM Estimation

• Dataset
• Testbed @ FORTH (144m2, 1x1m grid)
• RSSI values (channel quality)
• 13 IEEE802.11b/g channels
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Robust PCA
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1-Bit MC
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Distributed vs. Centralized Storage

•Centralized
 Access to resources
 Controlled environment

•Decentralized
 Increased network lifetime
 Autonomy

Performance comparison
• Per sensor vs. collective
• Temporal resolution
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High-dimensional signal models

Encoding of multiple variables

• Time, Space, Frequency, Modality
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Tensor Decompositions-Historical Background

• Founding fathers:
Frank L. Hitchkock, in 1927 [1]

Raymond b. Katell, in 1944 [2]

• Regained interest due to:
Ledyard Tucker, in 1966

J. Douglas Caroll, in 1970

Richard A. Harshman, in 1970

• First results in:
Psychometrics (Caroll, Harshman)

Chemometrics (Appelof, Davidson, R. Bro)

43

Tucker Decomposition

PARAFAC/CANDECOMP

[1] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products”, Studies in Applied Mathematics, 6(1-4):164-189, 1927.
[2] R. B. Cattell, ”Parallel proportional profiles and other principles for determining the choice of factors by rotation”, Psychometrika, 9(4):267-283, 1944.

Slides by Michalis Giannopoulos



Tensors
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Includes materials from: Introduction to tensor, tensor factorization and its 
applications, by Mu Li, iPAL Group Meeting, Sept. 17, 2010



Fiber and slice
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Tensor unfoldings: Matricization and 
vectorization

• Matricization: convert a tensor to a matrix
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Tensor Mode-n Multiplication

• Tensor x Matrix • Tensor x Vector
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Examples
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Tensor multiplication: the n-mode product: multiplied by a 
matrix 



Tensor models

•

•

•

• Rank – 1 Tensor
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Kronecker and Khatri-Rao products
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Tensor Products
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Tensor factorization
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Tensor Rank

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
54



Low-rank Tensor Approximation
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CANDECOMP/PARAFAC

• Rank 1 Tensor models

• CP  factorization: 

• CP of tensor is unique under some general conditions
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Uniqueness

Spring Semester 2017-2018
CS-541 Wireless Sensor Networks

University of Crete, Computer Science Department
57



Reminder: SVD
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Relationship to SVD

• The analogy between (a) dyadic decompositions and (b) polyadic
decompositions
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TUCKER
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• Tucker(3) factorization

•



Tucker and Multilinear SVD (MLSVD)
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The n-Rank

• :           [1], [2]: The dimension of the vector space which is spanned 
by the mode-n fibers of column rank of

• Rank-(𝑅1, 𝑅2, ⋯𝑅𝑁) tensor  𝑅𝑛: Column-rank of the mode-n unfolding 
𝑿 𝑛

• Usefulness: Tensor approximation  Compression

For ≥ 1 dimensions:

• Lack of Uniqueness:
“Transform” the core tensor

Apply the inverse ”transform” to the factor matrices 𝑨, 𝑩 and 𝑪

Sometimes desired: Sketching arithmetic solutions for Tucker decomposition computation

62

[1] R Coppi and S Bolasco. “Rank, decomposition, and uniqueness for 3-way and n-way arrays”, 1989.
[2] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multilinear singular value decomposition”. SIAM journal on Matrix Analysis and Applications, 

21(4):1253–1278, 2000.

Trimmed version 
of original tensor



Tensor Completion
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• Low rank Tensor/Matrices



Extension: Tensor Completion

64

• Generalization of MC problem:

• Sampling operator:

• Tensor Nuclear Norm Definition [1]:

• Problem reformulation:

[1] Ji Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual data”, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 35(1):208-220, 2013.



Tensor Completion via Parallel Matrix 
Factorization
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TC via Parallel Matrix Factorization

• Similar to the matrix case

• Tensor nuclear norm

• Nuclear norm minimization
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Tensor Signal Analysis for WSN Data

• Water impedance measurements (Ohms)

 5 sensors

 10 different channels/sensor

 3 day period  Sampling every 1 and 2 hours

Experimental data collected from a WSN operating at a 
pilot desalination plant, located at La Tordera, Spain [1]

Matrices: 50 × 72, 50 × 36

Tensors: 5 × 10 × 72, 5 × 10 × 36



Effects of Data Structuring
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• Higher fill-ratio

 Better reconstruction 
quality quantified

• Regardless matrix/tensor 
size
 TC outperforms MC from 

low fill-ratio regimes

• NMSE convergence
 MC reaches a plateau

 TC decreases (nearly) 
monotonically



WSN Outdoors Dataset
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• Temperature measurements

 19 sensors

 10 day period

 Sampling every 5 and 10 minutes

Experimental data collected from a WSN operating at a 
Grand-St-Bernard pass between Switzerland and Italy

Matrices: 190 × 288, 190 × 144

Tensors: 19 × 10 × 288, 19 × 10 × 144

[1] Guillermo Barrenetxea, Francois Ingelrest, Gunnar Schaefer, Martin Vetterli, Olivier Couach, and Marc Parlange, “Sensorscope: Out-of-the-box 
environmental monitoring”, In Information Processing in Sensor Networks, 2008. IPSN’08. International Conference on, pages 332-343, IEEE, 2008.



Effects of Data Structuring
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• Higher fill-ratio

 Better reconstruction 
quality quantified

• Larger Dataset
 TC outperforms MC from

lower fill-ratio regimes

• NMSE convergence
 MC reaches a plateau

 TC keeps decreasing



Effects of Fill-Ratio

71

• Data sampled from single day
 GT data

 MC reconstructed data

 TC reconstructed data

• 𝑓 = 0.2



WSNs for Human Activity Recognition
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HAR

Elderly 
assistance

Health 
monitoring

Fitness 
coaching

Acting upon 
alerting 
events

Chronic 
conditions 

management



?

Sensing and Gathering Matrix/Tensor Measurement Recovery Learning based HAR

Problem formulation



Single-device vs collective recovery: 
matrices

Scenario 2
Collective per modality

Scenario 1
Single-device

Scenario 3: Overall collective recovery structured similarly



Single-device vs collective recovery: 
tensors

Scenario 3: Overall collective recovery structured similarly

Scenario 2
Collective per modality

Scenario 1
Single-device



Some results
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Matrix Completion Tensor Completion

HAR

mHealth



Reading Material

• Davenport, Mark A., and Justin Romberg. "An overview of low-rank 
matrix recovery from incomplete observations." IEEE Journal of 
Selected Topics in Signal Processing 10.4 (2016): 608-622.

• Cichocki, Andrzej, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou, 
Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. "Tensor decompositions 
for signal processing applications: From two-way to multiway 
component analysis." IEEE Signal Processing Magazine 32, no. 2 
(2015): 145-163.

• Savvaki, Sofia, Grigorios Tsagkatakis, Athanasia Panousopoulou, and 
Panagiotis Tsakalides. "Matrix and Tensor Completion on a Human 
Activity Recognition Framework." IEEE journal of biomedical and 
health informatics 21, no. 6 (2017): 1554-1561.
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