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Today’s objectives

Signal Sampling

Compressed Sensing

Applications in WSN
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Sensing in WSNs
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Sensing Quantization Storage/Processing Communications

Sensor type A/D Size Route selection

Operations Bus Speed Reliability/Connectivity

Calibration Complexity Robustness

Power consumption
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Objectives

 Efficient data acquisition and gathering
• Increase life-time of network
• Reduce communication requirements
• Handle transmission errors 
• Reduce calibration operations
• Facilitate data classification

 Prior Knowledge
• Training data
• Spatio-temporal correlations
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Signal Sensing

Limitations
• Requirements
• Power/battery
• Storage/Bandwidth
• Calibration

Nyquist–Shannon
• limited signal support
• Signal bandwidth B 

Sampling rate Fs=2B
(Nyquist rate)

=

𝑦 𝑥Φ = I
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Given 0 < ε < 1, a set Q of m points in RN, and a number 

n > 8 ln(m) / ε 2, there is a linear map ƒ : RN → Rn such that

for all x, y ∈ Q.

Random Projections
Johnson-Lindenstrauss (JL) lemma

Sensing matrix
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What’s wrong with PCA
• Computational complexity
• Universality
• Adaptability
• Robustness
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Simplified Random Projection (SRP)

• f: Random matrix is usually gaussian distributed
• mean: 0; standart deviation: 1

• f: sparse RP distribution
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What about recovery?

Can we recovery the original signal from its RP?

YES…. for sparse signal
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Biological Environmental Astronomical
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Q: which sensor is different (using as few observations as possible) ?
A: Project the data onto random vectors (second column)
• Initially: n/2 hypothesis sensors are consistent with each random projection observation
• Exponential decrease of consistence observations
Observations
• Random projections -> binary bisections of the hypothesis space
• Only log n observations are needed to determine which sensor reads the nonzero value.

0

1

x (+1)

x (-1)
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Compressed Sensing
(or compressive sensing, compressed sampling…)

• Goal:  Recover signal 
from measurements

• Problem:  Random
projection      not full rank
(ill-posed inverse problem)

• Solution:  Exploit the sparse/compressible
geometry of acquired signal

• Recovery via (convex) sparsity penalty or greedy algorithms

[Donoho; Candes, Romberg, Tao, 2004]
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 𝑥 = argmin
𝑥

𝑥 0 subject to Φ𝑥 = 𝑦

NP-hard!
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Restricted Isometry Property (RIP)

• Preserve the structure of sparse/compressible signals

• RIP of order 2K implies: for all K-sparse x1 and x2

K-planes
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Φ satisfies Restricted Isometry Property (RIP)

For all x that are K sparse

When Φ MxN satisfies RIP of order 2K with δ<√(2)-1,

• Random (sub-) Gaussian (iid Gaussian, Bernoulli) satisfy RIP

How many measurements?
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• Iterative Thresholding

CS Recovery Algorithm

update signal estimate

prune signal estimate
(best K-term approx)

update residual

Adapted from “Model-based Compressive Sensing”, by Volkan Cevher
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Matching Pursuit Algorithms

• Use greedy algorithm to iteratively recover sparse signal

• Procedure:
1. Initialize

2. Find the column that is most correlated

3. Set Union (add one col. every iter.)

4. Solve the least squares 

5. Update data and residual

6. Back to step 2 or output 
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A linear programming approach

Replace greedy with convex optimization problem
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Compressed Sensing via 

•0-norm is nonconvex  difficult to solve

•1-norm is convex  Basis Pursuit (Lasso)
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Performance of Recovery

•Using         methods

•Sparse signals
• noise-free : exact recovery 
• noisy : stable recovery

•Compressible signals
• recovery as good as 

K-sparse approximation
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CS recovery
error

signal K-term
approx error

noise
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Sparse event detection

• N sources, K events, K<<N, M sensors

• Event vector

• Channel response 

• Received signal

• Formulation
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Sparse location estimation

• The location of mobile device is sparse in space.
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Sparse vector: b 
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Sparse location estimation
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Training 

Signature map

Runtime

TAP1,Cell1
TAP1,Cell2

… TAP1,CellD

?

Runtime measurements 

RAP1
RAP2

RAP3

Compare

Location 
Estimation

Localization 
Server (LS)

MD RSS measurements are collected 
for each position.

TAP1,Cell1
TAP1,Cell2

… TAP1,CellD

TAP2,Cell1
TAP2,Cell2

… TAP2,CellD

TAP3,Cell1
TAP3,Cell2

… TAP3,CellD

TAP2,Cell1
TAP2,Cell2

… TAP2,CellD

TAP3,Cell1
TAP3,Cell2

… TAP3,CellD
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Sparse location estimation
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Active laboratory area of 8.5 by 14 meters 

5 APs, 135 training cells, cell size: 0.55 x 0.55 m

Online observations: 30 distinct cells, Performance metric: Location Error (m)

Empirical CDF as a function of CS measurements 
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1. Sparse or compressible   
 not sufficient alone

2. Projection

 information preserving 

(restricted isometry property - RIP)

3. Decoding algorithms

 tractable 

Key Insights from the Compressive Sensing

Slide by Volkan Cevher
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Sparsity in a basis: Dictionaries

Images

Sound WSN
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Sparsity on dictionaries
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Sparse Modeling: Approach 1

•Step 1: Choose a signal model with structure
• e.g. bandlimited, smooth with r vanishing moments, etc.

•Step 2: Analytically design a sparsifying basis/frame 
that exploits this structure
• e.g. DCT, wavelets, Gabor, etc.

DCT                    Wavelets                Gabor
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WSN data on dictionaries
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Sparse Modeling: Approach 2

• Learn the sparsifying basis/frame from training data

• Problem formulation: given a large number of training signals, 
design a dictionary D that simultaneously sparsifies the training 
data

• Called sparse coding / dictionary learning
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Dictionary Learning

• Requirement: Incoherence: correlation between  and D

• Typical formulation: Given training data

• Efficient algorithms, MOD, K-SVD
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K–SVD – An Overview 

DInitialize  D

Sparse Coding
Use MP or BP

Dictionary 
Update

Column-by-Column by  SVD 
computation

Aharon, Elad & Bruckstein (‘04)

X
T

Spring Semester 2017-2018 29



Complex Signal Reconstruction

Possible if signal is sparse in dictionary

where

Reconstruction based on L1 minimization
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Compressive Data Gathering in WSN
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Compressive Data Gathering in WSN
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Compressive Data Gathering
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CS in Wireless Video Sensor Networks
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Extending CS

Joint sparsity

• share sparse components

• different coefficients

Mixed              -norm solutions

Greedy solutions: simultaneous orthogonal matching pursuit
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Universal Distributed Sensing via Random Projections
M. F. Duarte, M. B. Wakin, D. Baron, and R. G. Baraniuk
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Reading material

Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. “Compressed 
sensing for networked data.” IEEE Signal Processing Magazine, vol. 
25(2), 92-101, 2008.

Qaisar, Saad, Rana Muhammad Bilal, Wafa Iqbal, Muqaddas Naureen, 
and Sungyoung Lee. "Compressive sensing: From theory to 
applications, a survey." Journal of Communications and networks 15, 
no. 5 (2013): 443-456.

Useful links

http://dsp.rice.edu/cs

http://nuit-blanche.blogspot.gr/

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

41Spring Semester 2017-2018

http://dsp.rice.edu/cs
http://nuit-blanche.blogspot.gr/

