

CS-541 Wireless Sensor Networks

Lecture 3: Signal Sampling for WSN

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

Today's objectives

Signal Sampling

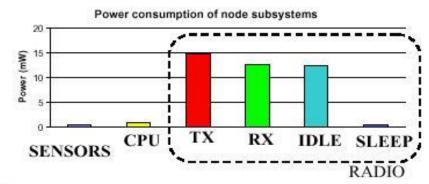
Compressed Sensing

Applications in WSN

Spring Semester 2017-2018

Sensing in WSNs

Sensing	Quantization	Storage/Processing	Communications
Sensor type	A/D	Size	Route selection
Operations	Bus	Speed	Reliability/Connectivity
Calibration		Complexity	Robustness
Power consumption			



Spring Semester 2017-2018

Objectives

- Efficient data acquisition and gathering
 - Increase life-time of network
 - Reduce communication requirements
 - Handle transmission errors
 - Reduce calibration operations
 - Facilitate data classification
- Prior Knowledge
 - Training data

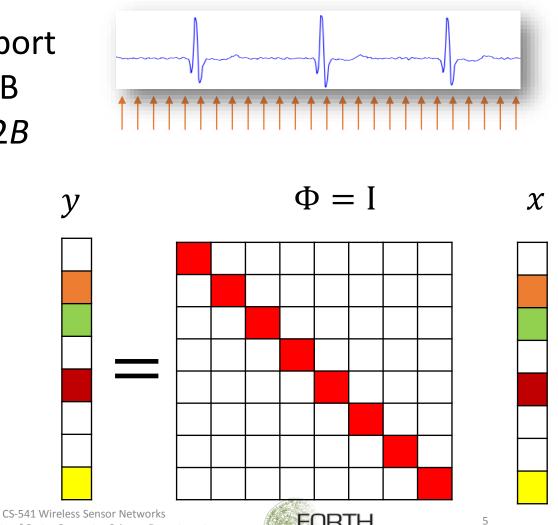
Spring Semester 2017-2018

Spatio-temporal correlations

Signal Sensing

Nyquist-Shannon

- limited signal support
- Signal bandwidth B lacksquareSampling rate $F_s = 2B$ (Nyquist rate)
- Limitations
- Requirements
- Power/battery
- Storage/Bandwidth
- Calibration

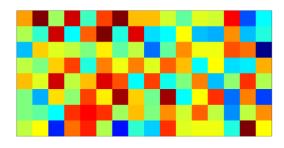


Institute of Computer Science

University of Crete, Computer Science Department

Random Projections Johnson-Lindenstrauss (JL) lemma

Sensing matrix $M \ll N$



What's wrong with PCA

- Computational complexity
- Universality
- Adaptability
- Robustness

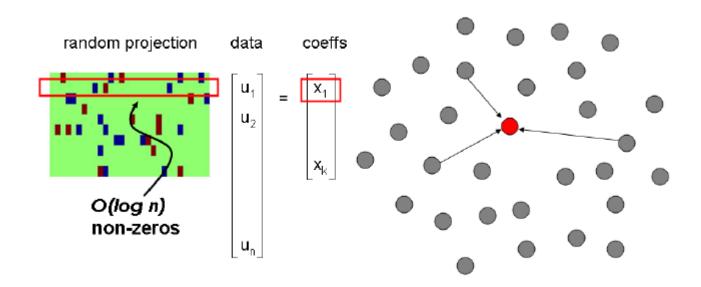
Given $0 < \varepsilon < 1$, a set Q of *m* points in \mathbb{R}^N , and a number $n > 8 \ln(m) / \varepsilon^2$, there is a linear map $f : \mathbb{R}^N \to \mathbb{R}^n$ such that

$$(1-\epsilon)\|u-v\|^2 \le \|f(u) - f(v)\|^2 \le (1+\epsilon)\|u-v\|^2$$

for all $x, y \in Q$.

Simplified Random Projection (SRP)

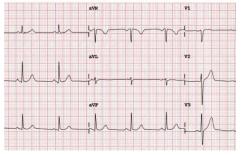
- f: Random matrix is usually gaussian distributed
 - mean: 0; standart deviation: 1
- mean: 0; standart deviation: 1 *f*: sparse RP distribution $r_{ij} = \sqrt{3} \cdot \begin{cases} +1 & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{2}{3} \\ -1 & \text{with probability } \frac{1}{6} \end{cases}$



Spring Semester 2017-2018

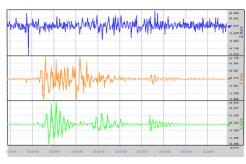
What about recovery?

Can we recovery the original signal from its RP? YES.... for sparse signal



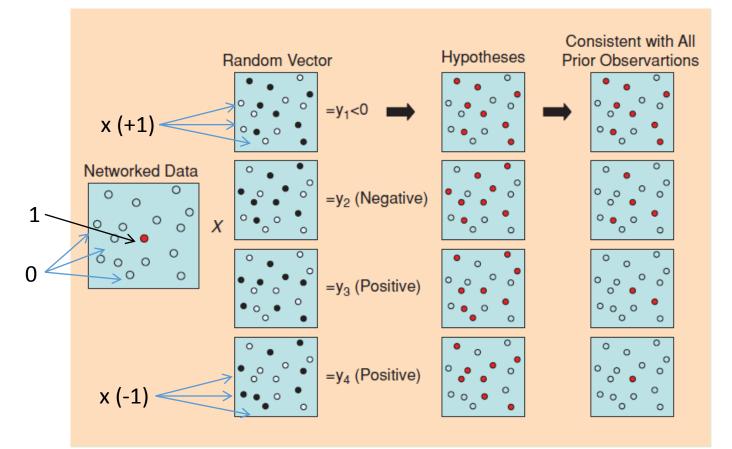
Biological

Spring Semester 2017-2018



Environmental

Astronomical



Q: which sensor is different (using as few observations as possible) ?

A: Project the data onto random vectors (second column)

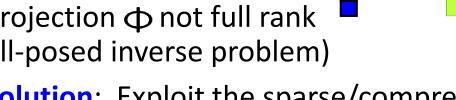
- Initially: n/2 hypothesis sensors are consistent with each random projection observation
- Exponential decrease of consistence observations

Observations

- Random projections -> binary bisections of the hypothesis space
- Only log n observations are needed to determine which sensor reads the nonzero value.

Compressed Sensing (or compressive sensing, compressed sampling...)

- Goal: Recover signal $\mathcal X$ from measurements y
- Problem: Random projection Φ not full rank (ill-posed inverse problem)



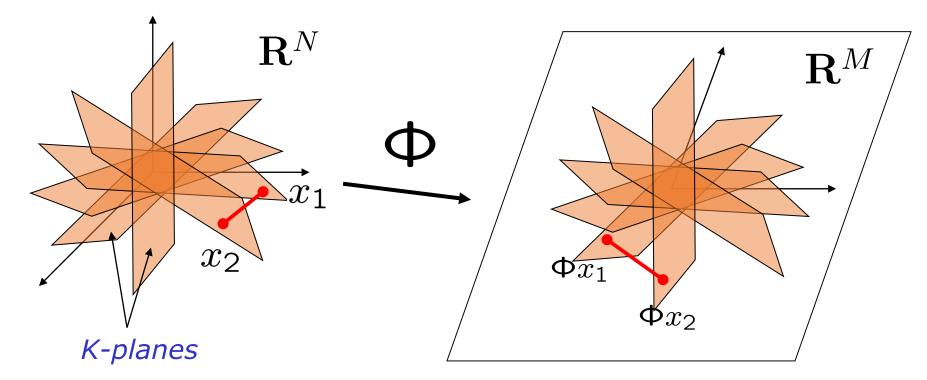
- Solution: Exploit the sparse/compressible **geometry** of acquired signal \mathcal{X}
- Recovery via (convex) sparsity penalty or greedy algorithms

$$\hat{x} = \arg \min_{x} ||x||_0$$
 subject to $\Phi x = y$
[Donoho; Candes, Romberg, Tao, 2004] NP-hard!

 \mathcal{X}

Restricted Isometry Property (RIP)

- Preserve the structure of sparse/compressible signals
- RIP of order 2K implies: for all K-sparse x_1 and x_2



How many measurements?

Φ satisfies Restricted Isometry Property (RIP) For all x that are K sparse

$$(1 - \delta_{\mathcal{K}})||x||_2^2 \le ||\Phi x||_2^2 \le (1 + \delta_{\mathcal{K}})||x||_2^2$$

When Φ MxN satisfies RIP of order 2K with $\delta < \sqrt{2}-1$,

$$M = O(K \log(N/K))$$

• Random (sub-) Gaussian (iid Gaussian, Bernoulli) satisfy RIP

CS Recovery Algorithm

• Iterative Thresholding

Given $y = \Phi x$, recover a sparse xinitialize: $\hat{x}_0 = 0$, r = y, i = 0iteration:

- $i \leftarrow i+1$
- $b \leftarrow \hat{x}_{i-1} + \Phi^T r$ update signal estimate
- $\hat{x}_i \leftarrow \text{thresh}(b, K)$ prune signal estimate (best *K*-term approx) • $r \leftarrow y - \Phi \hat{x}_i$ update residual

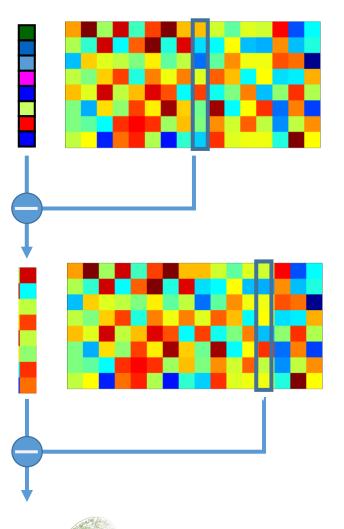
return: $\widehat{x} \leftarrow \widehat{x}_i$

Adapted from "Model-based Compressive Sensing", by Volkan Cevher

Matching Pursuit Algorithms

- Use greedy algorithm to iteratively recover sparse signal
- Procedure:
 - 1. Initialize
 - 2. Find the column that is most correlated
 - 3. Set Union (add one col. every iter.)
 - 4. Solve the least squares
 - 5. Update data and residual
 - 6. Back to step 2 or output

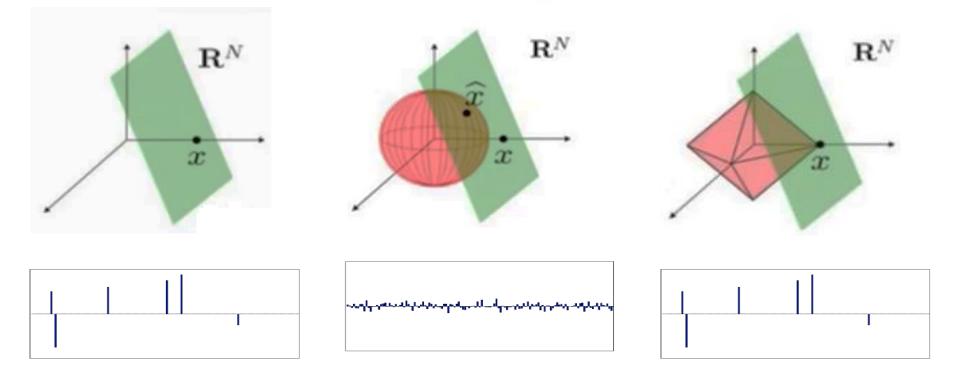




Institute of Computer Science

A linear programming approach

Replace greedy with convex optimization problem



Compressed Sensing via ℓ_1

- 0-norm is nonconvex \rightarrow difficult to solve
- 1-norm is convex → Basis Pursuit (Lasso)

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ subject to } \|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_2^2 < \epsilon$$

Theorem (Candès, Romberg, Tao 2004 – Candès 2008 – Foucart, Lai 2009 – Foucart 2009)

Assume that the restricted isometry constant δ_{2s} of $A \in \mathbb{C}^{m \times N}$ satisfies

$$\delta_{2s} < rac{2}{3 + \sqrt{7/4}} pprox 0.4627.$$

Then ℓ_1 -minimization reconstructs every s-sparse vector $\mathbf{x} \in \mathbb{C}^N$ from y = Ax.

Performance of Recovery

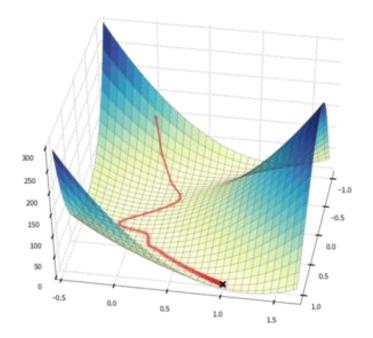
•Using ℓ_1 methods

Sparse signals

- noise-free : exact recovery
- noisy : stable recovery

Compressible signals

recovery as good as
 K-sparse approximation



$$\|x - \hat{x}\|_{2} \le C_{1} \frac{\|x - x_{K}\|_{1}}{K^{1/2}} + C_{2}\|n\|_{2}$$

S recovery
error signal K-term noise
approx error

University of Crete, Computer Science Department

Institute of Computer Science

18

CS-541 Wireless Sensor Networks

• Event vector
$$X_{N \times 1}$$

• Channel response

,

$$G_{m,n} = (d_{m,n})^{-\alpha/2} |h_{m,n}|$$

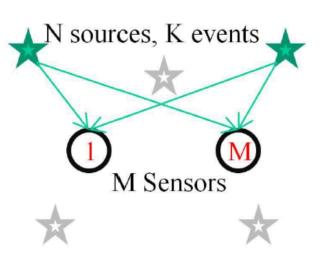
Sparse event detection

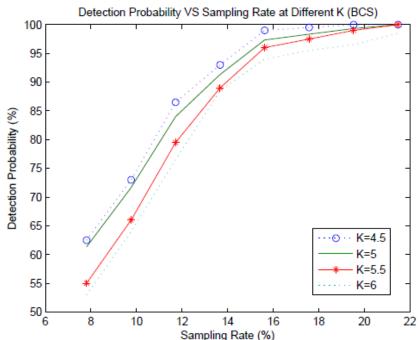
N sources, K events, K<<N, M sensors

Received signal

$$\mathbf{Y}_{M\times 1} = \mathbf{G}_{M\times N} \mathbf{X}_{N\times 1} + \epsilon_{M\times 1},$$

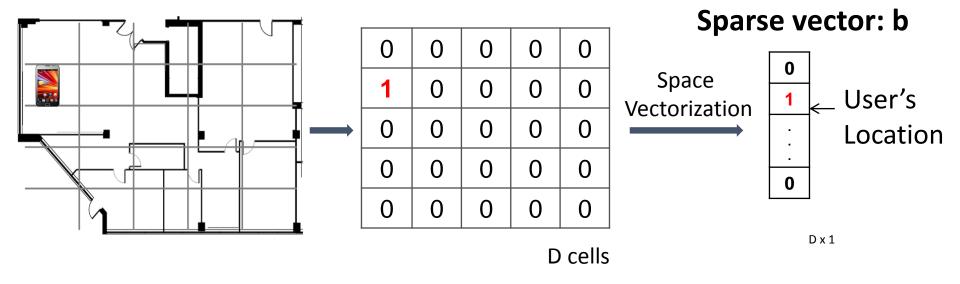
- Formulation
 - $\hat{\mathbf{X}} = \arg\min_{\mathbf{Y}=\mathbf{G}\hat{\mathbf{X}}} |\hat{\mathbf{X}}|_{\mathbf{1}},$





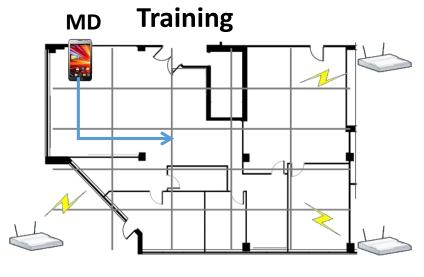
Sparse location estimation

• The location of mobile device is sparse in space.

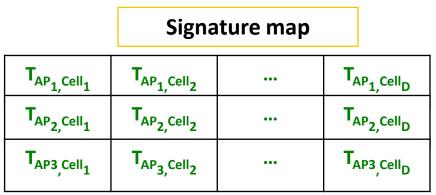


Spring Semester 2017-2018

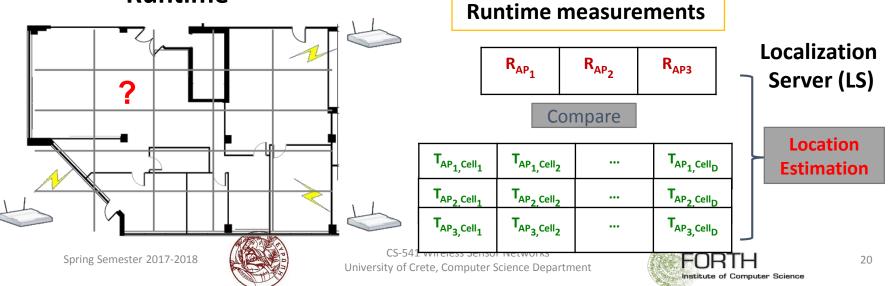
Sparse location estimation



RSS measurements are collected for each position.



Runtime

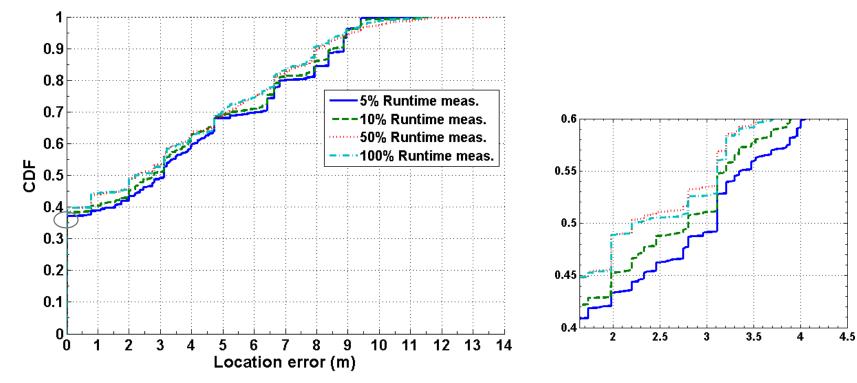


Sparse location estimation

Active laboratory area of 8.5 by 14 meters

5 APs, 135 training cells, cell size: 0.55 x 0.55 m

Online observations: 30 distinct cells, Performance metric: Location Error (m)



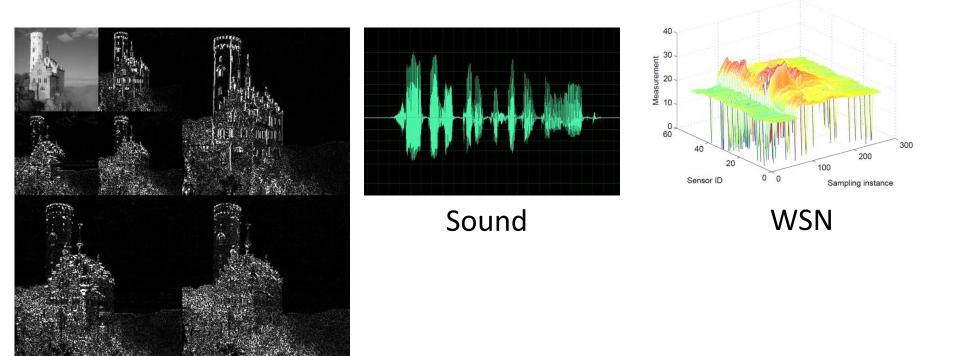
Empirical CDF as a function of CS measurements

Key Insights from the Compressive Sensing

- 1. Sparse or compressible > not sufficient alone 2. Projection Φ > information preserving (restricted isometry property - RIP) $M \times 1$ $M \times N$ (M < N)
- 3. Decoding algorithms
- tractable

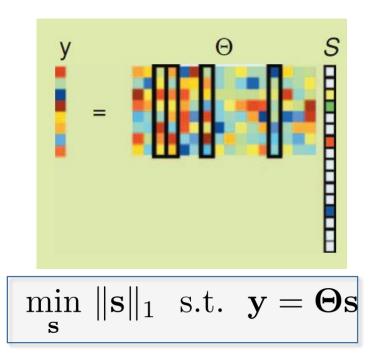
Slide by Volkan Cevher

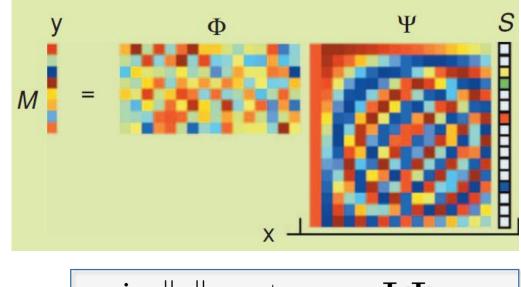
Sparsity in a basis: Dictionaries



Images

Sparsity on dictionaries



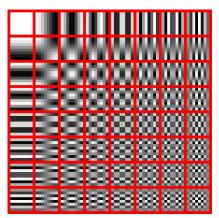


$$\min_{\mathbf{s}} \|\mathbf{s}\|_1 \text{ s.t. } \mathbf{y} = \mathbf{\Phi} \mathbf{\Psi} \mathbf{s}$$

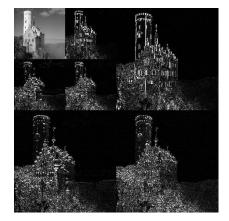
Sparse Modeling: Approach 1

- Step 1: Choose a signal model with structure
 - e.g. bandlimited, smooth with r vanishing moments, etc.
- Step 2: Analytically design a sparsifying basis/frame that exploits this structure
 - e.g. DCT, wavelets, Gabor, etc.

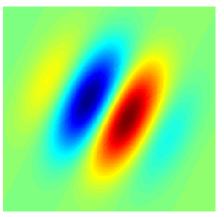
DCT



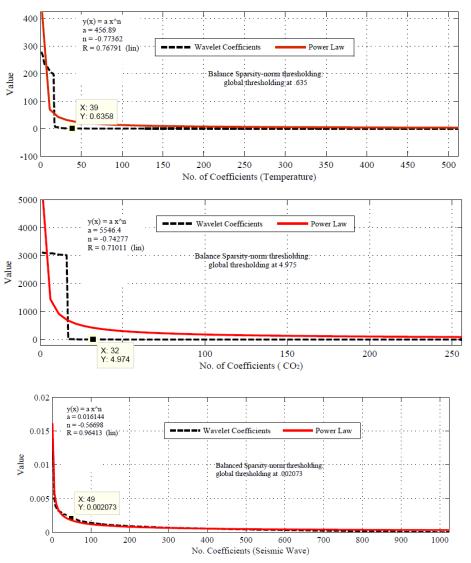
Wavelets



Gabor

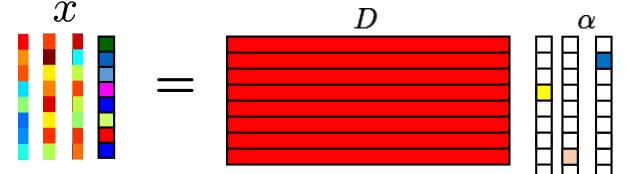


WSN data on dictionaries

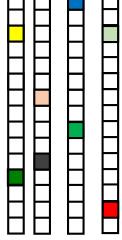


Sparse Modeling: Approach 2

- Learn the sparsifying basis/frame from training data
- Problem formulation: given a large number of training signals, design a dictionary D that simultaneously sparsifies the training data



Called sparse coding / dictionary learning



Dictionary Learning

• Requirement: Incoherence: correlation between Φ and D

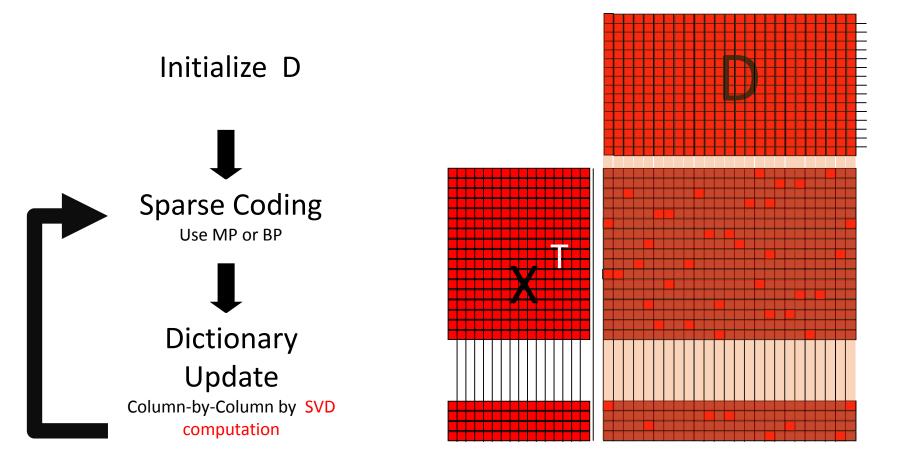
$$\mu(\Phi, d) = \sqrt{N} \cdot \max_{1 \le i, j \le N} |\langle \phi_i, d_j \rangle$$

• Typical formulation: Given training data

$$X = \left(\begin{array}{ccc} | & | & | \\ x_1 & x_2 & \dots & x_T \\ | & | & | \end{array}\right) \implies \min_{\substack{\alpha_i \in \mathbb{R}^Q \\ D \in \mathbb{R}^{N \times Q}}} \sum_i \|x_i - D\alpha_i\|_2^2 + \lambda \|\alpha_i\|_0$$

• Efficient algorithms, MOD, K-SVD

K–SVD – An Overview



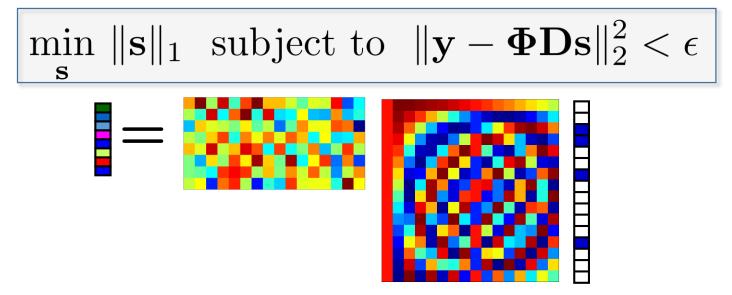
Aharon, Elad & Bruckstein ('04)

Complex Signal Reconstruction

Possible if signal is sparse in dictionary

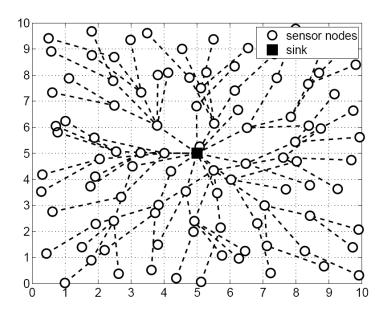
$$y = Ds$$
 where $\|s\|_0 < K$

Reconstruction based on L_1 minimization

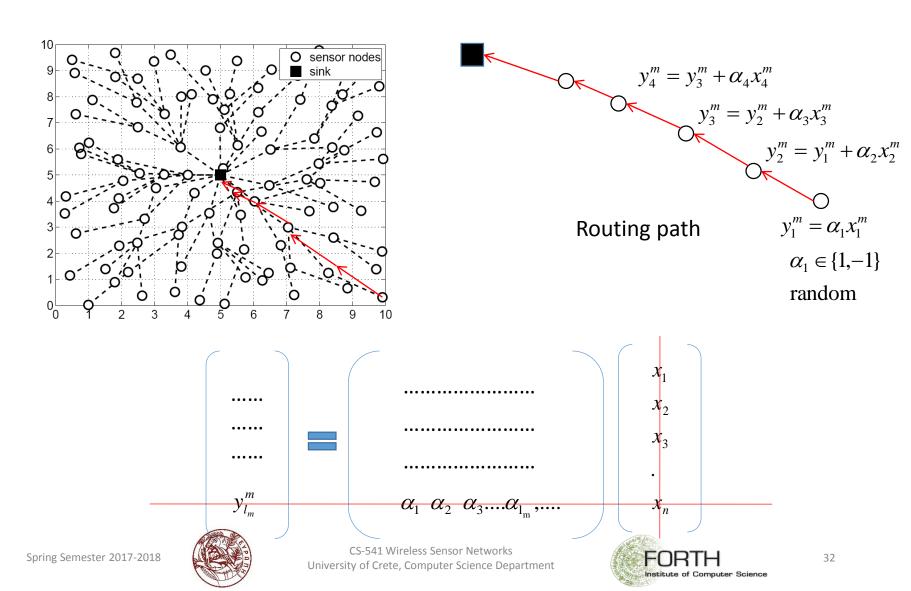


Spring Semester 2017-2018

Compressive Data Gathering in WSN



Compressive Data Gathering in WSN



Compressive Data Gathering

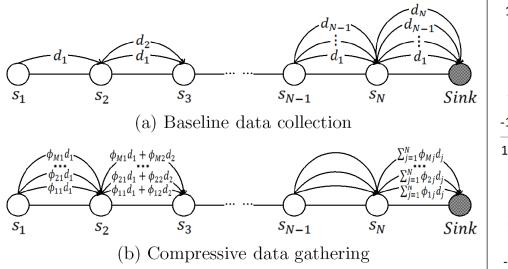
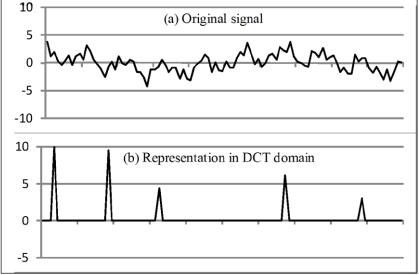
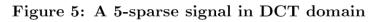
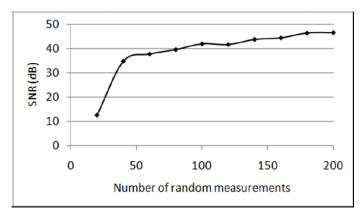


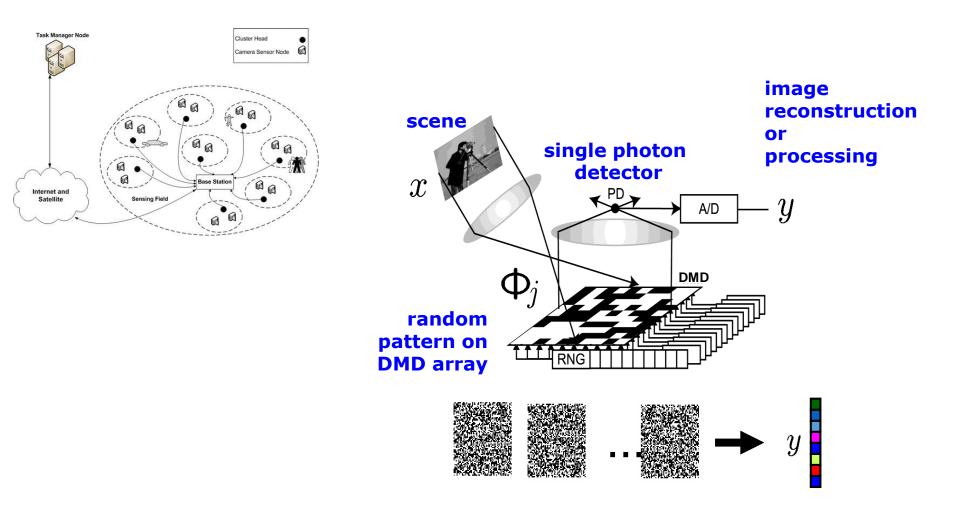
Figure 2: Comparing baseline data collection and compressive data gathering in a multi-hop route







CS in Wireless Video Sensor Networks

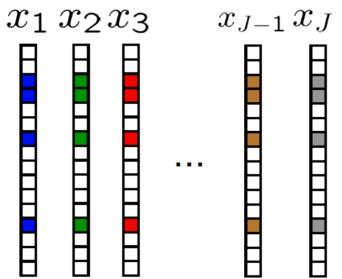


Extending CS

Joint sparsity

- share sparse components
- different coefficients

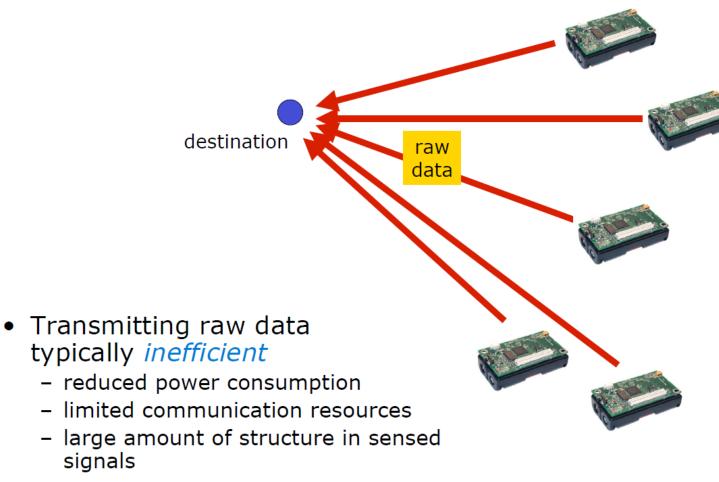
Mixed ℓ_2/ℓ_1 -norm solutions



$$\widehat{X} = \arg \min \|X\|_{2,1} \text{ s.t. } Y = \Phi X$$

 $\widehat{X} = \arg \min \|X\|_{2,1} \text{ s.t. } \|Y - \Phi X\|_2 \le \epsilon$
Greedy solutions: simultaneous orthogonal matching pursuit

The Need for Compression



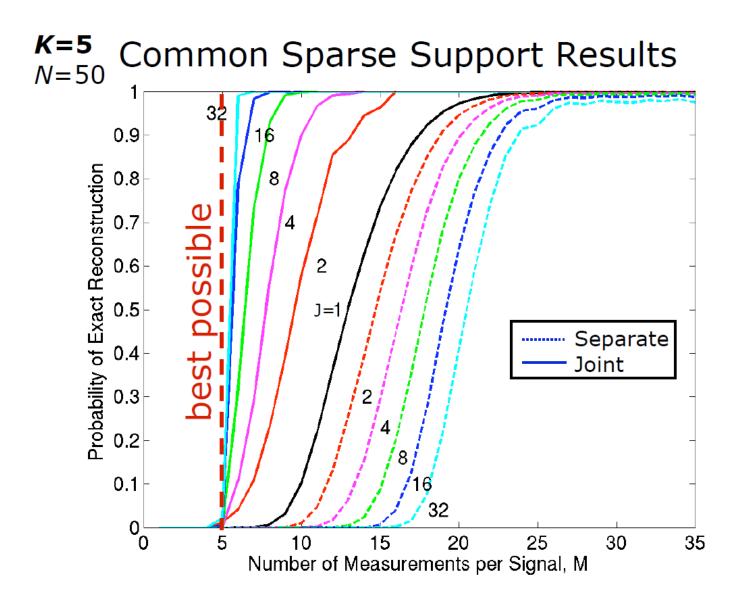
Universal Distributed Sensing via Random Projections <u>M. F. Duarte</u>, <u>M. B. Wakin</u>, <u>D. Baron</u>, and <u>R. G. Baraniuk</u>

Spring Semester 2017-2018

Correlation

- Can we exploit *intra-sensor* and *inter-sensor* correlation to *jointly compress?* – signals are *compressible* and *correlated*
- Distributed source coding problem

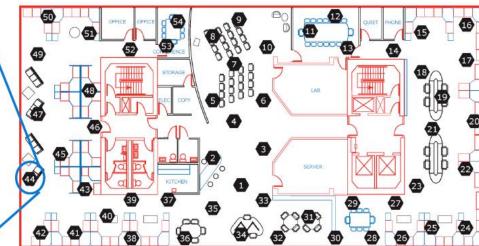
Spring Semester 2017-2018

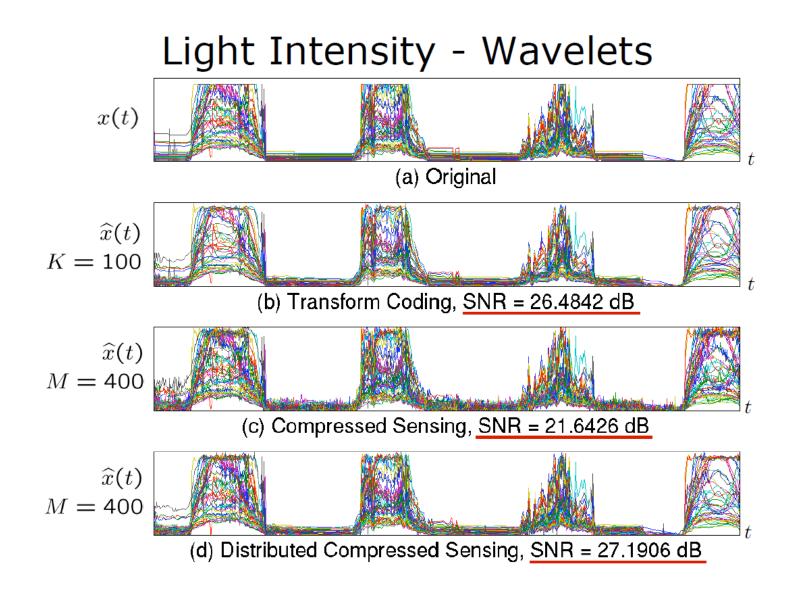


Spring Semester 2017-2018

Real Data Example

- Dataset: Indoor Environmental Sensing
- J = 49 sensors, N = 1024 samples each
- Compare compression using:
 - transform coding approx K largest terms per sensor
 - independent CS 4K measurements per sensor
 - DCS: common sparse supports 4K measurements per sensor





Spring Semester 2017-2018

Reading material

Haupt, J., Bajwa, W. U., Rabbat, M., & Nowak, R. "Compressed sensing for networked data." IEEE Signal Processing Magazine, vol. 25(2), 92-101, 2008.

Qaisar, Saad, Rana Muhammad Bilal, Wafa Iqbal, Muqaddas Naureen, and Sungyoung Lee. "Compressive sensing: From theory to applications, a survey." *Journal of Communications and networks* 15, no. 5 (2013): 443-456.

<u>Useful links</u>

http://dsp.rice.edu/cs

http://nuit-blanche.blogspot.gr/

