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Overview

» Big Data
» Big Sensor Data

BIG DATA [S LIKE TEENAGE SEX,
EVERYONE TALKS ABOUT IT, NOBODY
REALLY KNOWS HOW TO DO IT, EVERYONE

THINKS EVERYONE ELSE IS DOING IT, SO
EVERYONE CLAIMS THEY ARE DOING IT...

(DAN ARIELY, Duke University)

Material adapted from: Recent Advances in Distributed Machine Learning Tie-Yan Liu, Wei
Chen, Taifeng Wang Microsoft Research, AAAI 2017 Tutorial

Institute of Computer Science



Computing trends

Big Data L9 Big Computations 4 Big Models

e Signals, Information & e Cloud Computing e Statistical machine Learning
Knowledge e Internet of Things (e.g., DNN)
e Digital Representation * CPU/GPU/FPGA * >2/9 parameters
of the World \ l /
n/g Al

e Digital Life/Work
e New Form of HCI
e Reinvent Productivity & Business Process
e Personal Agent
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Big Data & WSNs (loT)
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Big Data forms

* “Big” data arises in many forms:
* Physical Measurements: from science (physics, astronomy)
* Medical data: genetic sequences, detailed time series
* Activity data: GPS location, social network activity
* Business data: customer behavior tracking at fine detail

e Common themes:
* Data is large, and growing

* There are important patterns Y ormeam
and trends in the data

* We don’t fully know where to look
or how to find them

Harvard :-
7z# Business : _—-—--
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Big Data: The 4+1Vs

O
o e o # ——e-=9 =0=e s 2@ o .
e o0 0 0 @ o @ » °
e o 0 0 0 ~0 =0 —o=o o
P o o he » @ ® Mgl X
........’. ~0 —0=0 ——® O @ e © ®
e @ o o o — -0 —e—-0 .0.’0 ‘.
e o 0o o o &
Data at Rest Data in Motion Data in Many Data in Doubt
Forms
Uncertainty due to
Terabytes to Streaming data, Structured, data inconsistency
exabytes of existing milliseconds to unstructured, text, & incompleteness,
data to process seconds to respond multimedia ambiguities, latency,
deception, model
approximations
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Big Data in WSN: smart cities

Sensing-as-a-Service
among other technologies and models
Smart Smart ,.
Economy Mability i Anything
oo®
Smart Smart Smart [ ]
Governance Cities Environment L
°oo?
Any Service
Any place Any
S 5 MME'E Business
mart mart
Any path
Living People From Need from | Any Natwork
towards ecnnology
Smart Cities Technology towards Ime':'nh?t of
Need ings
Infrastructure with access to Cloud platform that supports } City
energy sources and long range sensing as a service i Council
data communication >
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Big Data in WSN: wearables

Table 2 Commonly Used Sensors in Body Area Networks or Body Sensor Networks

Sensor

Blood-pressure sensor
Camera pill

Carbon dioxide sensor
ECG/EEG/EMG sensor
Humidity sensor

Blood oxygen saturation
Pressure sensor
Respiration sensor
Temperature sensor

Function

Measures human blood pressure

Measures gastrointestinal tracts

Measures carbon dioxide gas

Measures the electrical and muscular functions of the heart
Measures humidity changes

Measures blood oxygen saturation

Measures pressure value

Measures human respiration values

Measures human body temperature

Spring Semester 2017-2018
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Big Sensor Data

Table 1 Common Sensors Integrated in Smartphones and Tablets

Sensors on

Smartphones Function

Microphone The mal-world sound and vibration are converted to digital andio

Camera Senses visible light or electromagnetic radiation and converts them o digital image or video

Gyroscope Provides orientation information

Acce lerometer Measures the linear acceleration

Compass or Works as atraditional compass. Provides orientation in relation to the magnetic field of Earth

magnatometer

Proximily sensor Finds proximity of the phone from the user

Ambient light sensor Optimizes the display brightness

GPS Global Positioning System, tracks the target location or “navigates™ the things by map with
the help of GPS saellites

Bammmeter Measures atmospheric pressure

Fingerprint sensor Captures the digital image of fingerprint pattern

CS-541 Wireless Sensor Networks
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Big Computations

* Large computer clusters and highly parallel computational architectures

Cloud Computing GPU Cluster FPGA Farm

CS-541 Wireless Sensor Networks
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Big Models

1 T ;.
o . (3] v b4 v’ w N

M
LightLDA: LDA with 10° topics DistBelief: DNN with 101 weights; Human brain: 10! neurons and
(101! parameters); More topics Deeper and larger networks = 10> connections, much larger
-> better performance in ad better performance in image than any existing ML model.
selection and click predictions classification.

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pning University of Crete, Computer Science Department




Machine learning & Big Data

Supervised
e Support Vector Machines e Convolutional Neural Net
* Logistic Regression « Recurrent Neural Net
Shallow Deep

. Sparse coding * Stacked Autoencoders

 Deep Belief Nets

 Autoencoders , _ ,
* Hierarchical Sparse Coding

b

Unsupervised
 FORTH




Fully Connected Neural Networks

input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

weights

transfer
function

activation
functon
net input
ner;

threshold

— O

activation

Cost functions:
* Squared error
* Hinge loss
Ranking loss

LN
D
\ Activation functions
o8
06
! \
0 ;
|

Sigmoid
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Convolutional Neural Networks

* Local connectivity
* Sharing weights

* Pooling (translation
invariance)

Spring Semester 2017-2018
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Deep Learning

HOW NEURAL NETWORKS RECOGNIZEA DOG IN A PHOTO : , e——
Deep Learning evolution D o .

TRAINING
During the
training phase, a
neural network is
fed thousands of
labeled images of
various animals,

learning to

classify them.

INPUT Az

An unlabeled Traditional models

image is shown A . ¢ . < o

to the pretrained ——. — o O O— OO C— O ———
netwerk Deep models

FIRST LAYER

The neurons P ] Meurs Nes

respond to 4

different simple
shapes, like edges.

HIGHER LAYER
Neurons respond
to more complex
structures.

TOP LAYER
Neurons respond
to highly complex,
abstract concepts
that we would
identify as differ-
ent animals,

OUTPUT

The netwark

predicts what the
X v ohject most likely

— is, based on its
10% WOLF 30% DOG training.
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Distributed Machine Learning

Data Parallel Models

1. Partition the training data

2. Parallel training on different machines

3.Synchronize the local updates

4.Refresh local model with new parameters, then go to 2.

, —
Parameter Server W = W - T;wa

000000
a1\
we (00 00 00
w00 (00 00

o o B o

Data
Shards
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Machine Learning Methods

Shallow Models
e Linear models

d
f(x) = Z Wi X;

j=1
* Kernel methods (see SVM)

n

f(x) = wik (X, x;)

i=1
* Regularizions

Fw) == fi(w) + AR(W)

Deep Models

* Fully connected Neural Networks
* Convolutional Neural Networks

* Recurrent Neural Networks

f € ?j(()', ny...np—q, K)

N Institute of Computer Science



Optimization framework (shallow)

1
Problem: Empirical Risk Minimization F(w) = EZ:f}_(w) + AR(w)

® Loss function ® Training Data

filw) = L(w; x;, y;) {x;,ypi=1,..,n}

2016:
1950s: ADMM+SVRG
s o Frank-Wolfe+SVRG
Nonlinear optimization 2013: BEGS + SCD
Conjugate gradient SVRG,SCDA,SAG,SAGA Newton + SDCA
Coordinate Descent Stochastic BFGS SASGD
1847 (Quasi)-Newton 1983: DANE Graduated SGD
; Frank-Wolfe Nesterov’s : Async SCD )
Gradient . . . 1990s: DC-ASGD;
Recursive/Adaptive Acceleration oo Dual CoCoA Async-Prox SVRG
. - -
Descent Algorithms (SGD) Async ADMM R
1940s: 1970: 1984: 2011: 2015:
Linear Convex Optimization; Interior-Point SCD . ACC + Prox + SCDs
Programming BFGS; Hogwild! SVRG + Prox + ACC
ADMM Mini-batchSGD  Ejastic Async SGD
Downpoul SGD Async SGD for Non-convex
Parallel SGD
. CS-541 Wireless Sensor Networks FoE
2017-201 s
Spring Semester 20 018 University of Crete, Computer Science Department 223 FORTH 18
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Gradient Descent

* Motivation: minimize first-order Taylor expansion of f at x

m)fn f(x) = m)gfn flxe) +VF(xe)™(x — x¢)

’

* Update rule

Xes1 = X¢ — NV (x¢)

the negative

Update towards
gradient

n > 0 is a fixed step-size Xei1

Spring Semester 2017-2018
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Newton’s Method

* Motivation: minimize second-order Taylor expansion of f at x

min £ () = min fe) +7f ()7 Ge ) 45 (x — 27V () (x — x,)

A

* Update rule
Xt+1 = Xt — [sz(xt)]_ll?'f(xt)

A 4

CS-541 Wireless Sensor Networks e S
University of Crete, Computer Science Department et FORTH
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Alternating Directions Method of Multipliers
(ADMM)

» Separable objective with constraint n;izn f(x)+g(2)
s.t. Ax+Bz=c

* Augmented Lagrangian: p>0

Ly(x,y,2) = f(x)+g(2)+y"(Ax + Bz —¢) + (g) ||Ax + Bz — c||2

* Update rule

x*t = argmin,L,(x,z",y") - x minimization
z"*t = argmin,L,(x**1,z,y") - y minimization
y*l =yt 4+ p(Axt L + Bz — ) - dual ascent update

Spring Semester 2017-2018
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Stochastic Optimization

Linear regression
* Objective

fG) = =%, fi(x) = =X (apx — b)?, x € R

* Update rule

2
Xer1 = Xe — NV () = x¢ — ?n ?:1 a;(a;x — b;)

Complexity
Linear increase with data size n
Linear increase with feature size d

Spring Semester 2017-2018
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Stochastic Gradient Descent (SGD)

e Data sampling (i: example index)

Xer1 = X¢ — NV fi(xe), where E;Vfi(x,) = Vi(xe)

Convergence Complexity (iter) Complexity (overall)

CS-541 Wireless Sensor Networks
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Data Parallelism

* Optimization under different parallelization mechanisms
» Synchronous vs Asynchronous

* Aggregation method
* Consensus based on model averaging

* Data allocation
 Shuffling + partitioning
* Sampling

CS-541 Wireless Sensor Networks ‘ FDRTH

Spring Semester 2017-2018
pring University of Crete, Computer Science Department
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Distributed optimization with ADMM

* Problem formulation min 2 L, (w)
w
st wy—2z=0k=1,.., K

- p
e Local updates wi Tt =arg ?{lvﬁ{nz (Lk(wk) + () Wi = 2 + 5 llwye — Zfllﬁ)
k

1
t+1 4 _ gt
* Global consensus KZ(W 0 Ak)
;lt+1 _ /'lt _I-_-p(wf+1 .f+1)

Spring Semester 2017-2018
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Distributed optimization

Wasted computing time!

 Synchronous execution

Time
* Exchange ALL updates at END of each iteration

» Frequent, bursty communication
* Synchronize ALL threads each iteration

CS-541 Wireless Sensor Networks ;sf‘f",
University of Crete, Computer Science Department '“ @ FORTH
DX nstitute o ol

I ut f Computer Science
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Asynchronous Parallel Processing

" Workers push update to Asynchronous Parallel
parameter server and/or
pull latest parameter back

- without waiting for others - Parameter Server

A e
0 @ 0 o

Worker 1 .-j».-j»lllll}llll}lllﬂ}
Worker 2 ) ) HE) ) mmm)

N L
Worker 4 -~ ---

Time

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department

" FORTH 2
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Encompassing model
Patterns, innovations,

Background (low rank) (co-)clusters, outliers

\ /

Observed data e R?*" —— Y = L + DS + V+<— Noise

Dictionary € RP*@ Sparse matrix € R9*7

S

» L =0,D known = Compressive sampling (CS) [Candes-Tao 05]
» L = 0 = Dictionary learning (DL) [Olshausen-Field '97]

» L =0,[DJ];; > 0,[S];; > 0= Non-negative matrix factorization (NMF)
[Lee-Seung '99]
» D = Ip = Principal component pursuit (PCP) [Candes etal ‘11]

» S = 0,rank(L) < p = Principal component analysis (PCA) [Pearson 1901]

G. B. Giannakis, K. Slavakis, and G. Mateos, Signal Processing Tools for Big Data Analytics
Nice, France August 31, 2015, ICASSP2015

>

i 2 CS-541 Wireless Sensor Networks G
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In-network decentralized processing

O Network anomaly detection: Spatially-distributed link count data

Agent 1
_ m n Decentralized: S = El-,_l'
L
Agent N -'/
Bl —LE
X[ = min 2 [JUJE+|¥[3]. stoX = U®
{U T} 2 N Lxp.

>rank[X]

Spring Semester 2017-2018
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SGD

L_T_J

Genres

min || X —

U, v

Spring Semester 2017-2018
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SGD for Matrix Factorization

PP
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N
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) _ —2(X;; — Z Ui nVir)Ui

9V

Material from: N. Sidiropoulos (UMN), E. Papalexakis (CMU), Tutorial ICASSP 2014, Florence, Italy
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DSGD for Matrix Factorization

V i | % | w
v || 2
ol 1x a| | 2
Us Z

- FORTH
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DSGD for Matrix Factorization

Partition your data & model into d x d blocks

Vi Vo | V5
U, (1)
U, (1)
U, (1)

i | W Vs
U, 2
U, )
Us | | 2§

process blocks in each stratum in parallel

Spring Semester 2017-2018

Results in d=3 strata

Vi Va V3
U, (3)
Uy | | 28
Us Z®
AN

Process strata sequentially,

CS-541 Wireless Sensor Networks
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Tensor Decomposition

Independent

/)

HHH Not Independent >

CS-541 Wireless Sensor Networks
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Distributed Machine Learning

Model Parallel Models
1. Partition the model into multiple local workers
2. For every sample, local workers collaborate to perform optimization

Machine |
7 duiydel

Machine 3
{ SUIyde]




Parameter Server

» Single Machine Parallel

UpdateVar(i) {
old = y[i]
delta = f(old)
y[i] += delta }

 Distributed with PS

UpdateVar(i) {
old = PS.read(y,1)
delta = f(old)
PS.inc(y,i,delta) }

Worker 1 \'

Parameter
Table

ﬁsharded N '

across
machines)

Worker 3 Worker 4

« Examples: Petuum, MXNet, TensorFlow, etc

Spring Semester 2017-2018 \3 L
i,
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Distributed Machine Learning Architectures

r Y 1

1
* Flexible in nhodeling dependency
* Lack of good abstraction

Asynchronous

Parameter Server

Synchronous lterative
MapReduce

* High-level :abstractions (MapReduce)
* Lack of flexibility in modeling
complex dépendency

1

----’-----------------JI . ‘ ;
Data Parallelism  Model Parallelism Irregular Parallelism

.
-

CS-541 Wireless Sensor Networks

Spring S ter 2017-2018
pring semester University of Crete, Computer Science Department

Support hybrid parallelism and
fine-grained parallelization,
particularly for deep learning
Good balance between high-
level abstraction and low-level
flexibility in implementation
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Spark

RDD Objects DAGScheduler TaskScheduler Worker
Resilient distributed datasets (RDD) [ - _—
. . manager
* Programming language with J = W) Taskset Task mock
i i i u = ) =T : == || manager
distributed collection data-structure p - 9
rddl.join(rdd2) split graph into launch tasks via execute tasks
%MM) stages of tasks cluster manager
filter(.)
. submit each retry failed or store and serve
build operator DAG stage as ready straggling tasks blocks

Distributed learning on Spark

Spark Driver

Spark Worker

Spark Worker Spark Worker

CS-541 Wireless Sensor Networks
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MLIib

classification: logistic regression, linear SVM, naive Bayes, least
squares, classification tree

* regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative
matrix factorization (NMF)

clustering: k-means| | decomposition: SVD, PCA optimization:
stochastic gradient descent, L-BFGS

' FORTH

nstitute o f Computer Science



Petuum

The difference between data and model parallelism:

» data samples are always conditionally independent given the model

* Some model parameters that are not independent of each other.

??"'j“t §learming
i“*{imethods
1]

D={D,,D,...., D} 6 = 6.7, 65,.
Data Parallel Model Parallel
g2 R
gl e A e
A(i‘pl e . v X .A"‘| D)y— oy \ =
il Ad(D,), At (D
--«-f/ \ 2 * “/ \-,'
A(D2)  AG(Ds) { 802(D): IA63(D)

DiLDj | 0, Vi#j g: £ 6; | D, 3(i, )

CS-541 Wireless Sensor Networks
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Petuum

A parameter server: allows access to global model state from any
machine via distributed shared-memory interface

A scheduler allows fine-grained control over the parallel ordering of
model-parallel updates

Worker Worker PS server PS server Scheduler
T
Diata } Data } Maodel Model Scheduling |
. Partition | Fartition | Partition Partition |||  Data
nane Consistency Consistency Dependencyl
ML App Code ML App Code Controller Cantrodler Pricrity Mgr.
PS | Sched PS | Sched Sched | 4} Sched s 1+ PS
Client | Client || Client | Clignt Clignt L Client Client
T Ei L T
; U | U |
| parameter exchange channel 'J_|
T T — U 0
| scheduling control channel |
Network Layer

CS-541 Wireless Sensor Networks '1 FORTH

Spring Semester 2017-2018 ) . )
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TensorFlow

e TensorFlow is a deep learning library recently open-sourced by
Google.

e But what does it actually do?

o TensorFlow provides primitives for defining functions on
tensors and automatically computing their derivatives.

e Computation graph

h = ReLU(Wx +b) I
Ct{

42
University of Crete, Computer Science Department 223 IF:ORTH
: nsti

itute of Computer Science

Spring Semester 2017-2018




TensorFlow

* In TensorFlow computation <-> Graphs.
* Each node is an operation (op).

* Data is represented a Tensors.
* Op takes Tensors and returns Tensors.
* Variables maintain state across executions of
the graph.
* Two phases in the program:

e Construct the computation graph.
* Executes a graph in the context of a Session.

CS-541 Wireless Sensor Networks

Spring Semester 2017-2018
pring University of Crete, Computer Science Department
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A multimodal bike-sensing setup for
automatic geo-annotation of terrain types

Bike Data

Vibration Data

135542  50.97783 3.996223
135545 50.978791 3.997011
135547  50.979608 3.997236
135550 50.980645 3.996839

Spring Semester 2017-2018

Geoimages

Geofeatures
<result>
<name>Ledezijdestraat</name>
<distance>145.884564734912</distance>
<streetType>TERTIARY </streetType>

6 Terrain Classes: ASPHALT, COBBLESTONES

Automatic
Geoannotation

0.1 km

:.
¢ °

g
CEEgPs

GRASS, TILES, MUD, GRAVEL]

New Application

€ Terrain-Based Routing
4 Advanced Routing Statistics

CS-541 Wireless Sensor Networks
University of Crete, Computer Science Department
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A multimodal bike-sensing setup for
automatic geo-annotation of terrain types

Vibration Data GEO Images/Features

T

v={u(m), max (m), min(m), c(m), ..., Texture (lgy), Streets (logm)}

- fi(v) st
Tree tr

Pr(c)

P1(C){ | | Category ¢

Category ¢

CS-541 Wireless Sensor Networks ¢ ,
o 45
University of Crete, Computer Science Department FDRTH

T"' Institute of Computer Science
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Distributed Deep Learning

Fagle ‘ : Parameter server
- < i : for GPUs
SSVARTEIN .
read, update
Accipiter |
Partitioned Distributed Shared
training data ML workers model parameters

CS-541 Wireless Sensor Networks )ﬁf 22
/3 46
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WSN to space

* Federated satellite architectures

4———— LEO-to-LEO
¢ LEO-to-GEO
\ «——— LEO-to-ground
GEO-ground

Data User: ESA and 3" parties

CS-541 Wireless Sensor Networks
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The CubeSat space platforms

m Other

Minisatellite 100-500 10-50 M
Microsatellite 10-100 2-10 M 20
Nanosatellite 1-10 0.2-2 M -

w
[=]

| Category | Mass(kg) | Cost(USD) [

Large satellite > 1000 0.1-2B § &

Medium satellite JEElvTvtly 50-100M £
£

i}
Picosatellite 0.1-1 20-200 K SIS
Femtosatellite <0.1 0.1-20K

CS-541 Wireless Sensor Networks University of Crete, S, FORTH

Spring Semester 2017-2018
pring Computer Science Department
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The CubeSat space platforms

CubeSat NPSCuL
& P-PODs

* Dimensioning
* 1U: 10x10x10cm, 1Kg
« 2U, 3U: 10x10x10:20/30, 2/3 Kg o bk

P-POD N OUTSat

8 P-POD:s installed
in NPSCuL

* Applications

L I N

ExoCube CalPoly Space weather 1/2015

GRIFEX 3U U. Michigan & Nasa Atmosphere 1/2015 3U
AAU sat 1U Aalborg University Imaging Failed
QuakeSat 3U U. Stanford Earthquakes 6/2003

CS-541 Wireless Sensor Networks University of Crete,
Computer Science Department

© FORTH 49
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Deployment architectures

\,
Q"\

GEO satellite

LEO cubesats
: Fusion center/

Cubesats swarm

(a) (b)

CS-541 Wireless Sensor Networks

50
University of Crete, Computer Science Department

Spring Semester 2017-2018




Key objectives

* Objective 1 — Computational remote sensing.

* minimize acquisition time, complexity of the sensor, removing mechanical
components and replacing them with electronic ones, along with sophisticated
computational methods.

* Objective 2 — On-board payload data processing.

* optimally exploit and utilize heterogeneous processing units
* low-level processing and high-level analysis of the acquired data.

* Objective 3 — On-board compression and storage.
* high-capacity on-board COTS memory modules + mathematical tools ->
maximizing the utilization of on-board storage
* Objective 4 — Flexible high-rate communications.
* low-power high-rate space communication links.

* low-latency direct and relay links for inter-satellite links and between satellites
and ground stations.

* Objective 5 — Distributed ground station networks.

* low-cost hardware components

* reduce the complexity and latency of data reception and high-level data
understanding
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Case studies

Mission Nm_‘nhc-r of Mass of small | Inter-satellite Inter—su:mlll]: © Launched /Projected
small _ . — communication
LA TIE . satellites (Kg) links launch year
satellites approach
GRACE 2 480 Availahle RF based (5-band) 2002
ESSAIM 2 120 Not available Not available 2004
PRISMA 4 145, 50 Available RF based 2010
{UHF-band)
ELISA 4 130 Not available Not available 2011
EDSN 8 7 Available R based 2015
(UHF-band)
QB-50 50 2, 3 Available RF based (5-band) 2016
} e
: ”{?;]“ 9 320, 180 Available RF hased (S-band) 2017
e : To be PR Optical based 19
eLISA 4 determined Available (LASER) 2028
MAGNAS o8 210, 5 Available RE based T be determined
(UHF-band)
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Reading List

Zhang Y, Li W, Zhou P, Yang J, Shi X. Big Sensor Data: A Survey. In
International Conference on Internet and Distributed Computing

Systems 2016 Sep 28 (pp. 155-166). Springer International Publishing.
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