

CS-541 Wireless Sensor Networks

Lecture 14: Big Sensor Data

Spring Semester 2017-2018

Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis

Overview

\triangleright Big Data

≻ Big Sensor Data

BIG DATA IS LIKE TEENAGE SEX, EVERYONE TALKS ABOUT IT, NOBODY REALLY KNOWS HOW TO DO IT, EVERYONE THINKS EVERYONE ELSE IS DOING IT, SO **EVERYONE CLAIMS THEY ARE DOING IT..."**

(DAN ARIELY, Duke University)

Material adapted from: Recent Advances in Distributed Machine Learning Tie-Yan Liu, Wei Chen, Taifeng Wang Microsoft Research, AAAI 2017 Tutorial

Computing trends

Big Data & WSNs (IoT)

Big Data forms

• "Big" data arises in many forms:

- Physical Measurements: from science (physics, astronomy)
- Medical data: genetic sequences, detailed time series
- Activity data: GPS location, social network activity
- Business data: customer behavior tracking at fine detail

• Common themes:

- Data is large, and growing
- There are important patterns and trends in the data
- We don't fully know where to look or how to find them

Big Data: The 4+1Vs

Big Data in WSN: smart cities

Big Data in WSN: wearables

Big Sensor Data

Big Computations

Large computer clusters and highly parallel computational architectures \bullet

Cloud Computing

GPU Cluster

FPGA Farm

Big Models

LightLDA: LDA with 10⁶ topics $(10^{11}$ parameters); More topics \rightarrow better performance in ad selection and click predictions

DistBelief: DNN with 10¹⁰ weights; Deeper and larger networks \rightarrow better performance in image classification.

Human brain: 10^{11} neurons and 10^{15} connections, much larger than any existing ML model.

Machine learning & Big Data

Supervised

• Support Vector Machines • Logistic Regression • Convolutional Neural Net • Recurrent Neural Net • Autoencoders Sparse coding **•** Stacked Autoencoders • Deep Belief Nets • Hierarchical Sparse Coding Shallow <u>descriptions</u> been Deep

Unsupervised

Fully Connected Neural Networks

Convolutional Neural Networks

- Local connectivity
- Sharing weights
- Pooling (translation invariance)

Deep Learning

Distributed Machine Learning

Data Parallel Models

- 1. Partition the training data
- 2. Parallel training on different machines
- 3.Synchronize the local updates
- 4.Refresh local model with new parameters, then go to 2.

Machine Learning Methods

Shallow Models

• Linear models

$$
f(x) = \sum_{j=1}^{d} w_j x_j
$$

• Kernel methods (see SVM)

$$
f(x) = \sum\nolimits_{i=1}^n w_i k(x, x_i)
$$

• Regularizions

$$
F(w) := \frac{1}{n} \sum f_i(w) + \lambda R(w)
$$

Deep Models

- Fully connected Neural Networks
- Convolutional Neural Networks
- Recurrent Neural Networks

$$
f \in \mathcal{F}_A^L(\sigma, n_1, \dots n_{L-1}, K)
$$

Optimization framework (shallow)

Problem: Empirical Risk Minimization

$$
F(w) := \frac{1}{n} \sum f_i(w) + \lambda R(w)
$$

$$
f_i(w) = L(w; x_i, y_i)
$$

● Loss function ● Notal Data ${x_i, y_i; i = 1, ..., n}$

Gradient Descent

• Motivation: minimize first-order Taylor expansion of f at x

$$
\min_{x} f(x) \approx \min_{x} f(x_t) + \nabla f(x_t)^{\tau} (x - x_t)
$$

• Update rule

$$
x_{t+1} = x_t - \eta \nabla f(x_t)
$$

 $\eta > 0$ is a fixed step-size

Newton's Method

• Motivation: minimize second-order Taylor expansion of f at x

• Update rule Spring Semester 2017-2018 CS-541 Wireless Sensor Networks University of Crete, Computer Science Department ²⁰

Alternating Directions Method of Multipliers (ADMM)

• Separable objective with constraint

 $\min_{x,z} f(x) + g(z)$ s.t. $Ax + Bz = c$

• Augmented Lagrangian: p>0

$$
L_{\rho}(x, y, z) = f(x) + g(z) + y^{T}(Ax + Bz - c) + \left(\frac{\rho}{2}\right) ||Ax + Bz - c||^{2}
$$

• Update rule

$$
x^{t+1} = argmin_{x} L_{\rho}(x, z^t, y^t) \qquad \text{----}x \text{ minimization}
$$

\n
$$
z^{t+1} = argmin_{z} L_{\rho}(x^{t+1}, z, y^t) \qquad \text{----}y \text{ minimization}
$$

\n
$$
y^{t+1} = y^t + \rho(Ax^{t+1} + Bz^{t+1} - c) \qquad \text{----dual ascent update}
$$

Stochastic Optimization

Linear regression

• Objective

$$
f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) = \frac{1}{n} \sum_{i=1}^{n} (a_i x - b_i)^2, x \in R^d
$$

• Update rule

$$
x_{t+1} = x_t - \eta \nabla f(x_t) = x_t - \frac{2\eta}{n} \sum_{i=1}^n a_i (a_i x - b_i)
$$

Complexity

Linear increase with data size n Linear increase with feature size d

Stochastic Gradient Descent (SGD)

• Data sampling (i: example index)

$$
x_{t+1} = x_t - \eta_t \nabla f_i(x_t)
$$
, where $\mathbb{E}_i \nabla f_i(x_t) = \nabla f(x_t)$

Data Parallelism

- Optimization under different parallelization mechanisms
	- Synchronous vs Asynchronous
- Aggregation method
	- Consensus based on model averaging
- Data allocation
	- Shuffling + partitioning
	- Sampling

Distributed optimization with ADMM

• Problem formulation

$$
\min_{w} \sum_{k=1}^{K} L_k(w)
$$

s. t.
$$
w_k - z = 0, k = 1, ..., K
$$

 $w_k^{t+1} = arg \min_{w_k} \sum_{k} \left(L_k(w_k) + (\lambda_k^t)^T (w_k - z^t) + \frac{\rho}{2} ||w_k - z^t||_2^2 \right)$ • Local updates

$$
z^{t+1} = \frac{1}{K} \sum_k (w_k^{t+1} + \frac{1}{\rho} \lambda_k^t)
$$

• Global consensus

$$
\lambda_k^{t+1} = \lambda_k^t + \rho(w_k^{t+1} - z^{t+1})
$$

Distributed optimization

- Exchange ALL updates at END of each iteration
	- \triangleright Frequent, bursty communication
- Synchronize ALL threads each iteration
	- \triangleright Straggler problem: stuck waiting for slowest

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks University of Crete, Computer Science Department
University of Crete, Computer Science Department

Time

Asynchronous Parallel Processing

Time

 $\blacktriangleright\ L=0,D$ known \Rightarrow Compressive sampling (CS) [candes-Tao '05]

 \triangleright $L = 0 \Rightarrow$ Dictionary learning (DL) [Olshausen-Field '97]

 $\bm{\triangleright} \bm{L} = \bm{0}, [\bm{D}]_{ij} \geq 0, [\bm{S}]_{ij} \geq 0 \Rightarrow$ Non-negative matrix factorization (NMF) [Lee-Seung '99] \blacktriangleright $\bm{D} = \bm{I}_D \Rightarrow \;$ Principal component pursuit (PCP) [Candes etal '11]

 \triangleright $\bm{S}=\bm{0}, \mathrm{rank}(\bm{L})\leq \rho \Rightarrow$ Principal component analysis (PCA) [Pearson 1901]

G. B. Giannakis, K. Slavakis, and G. Mateos , Signal Processing Tools for Big Data Analytics Nice, France August 31, 2015, ICASSP2015

In‐network decentralized processing

 \Box Network anomaly detection: Spatially-distributed link count data

SGD for Matrix Factorization

 $X \approx UV^\top$

Genres

$$
\min_{U,V} \|X - UV^\top\|_F^2 = \min_{U,V} \sum_{(i,j) \in X} \left(X_{i,j} - \sum_r U_{i,r} V_{j,r} \right)^2 = \min_{U,V} \sum_{(i,j) \in X} L_{i,j}(U,V)
$$
\n
$$
L_{i,j}(U,V) = \left(X_{i,j} - \sum_r U_{i,r} V_{j,r} \right)^2
$$
\nSpring Semester 2017-2018

\nSpring Semester 2017-2018

\nUniversity of Crete, Computer Science Department

 $\sqrt{2}$

Institute of Computer Science

SGD for Matrix Factorization

Material from: N. Sidiropoulos (UMN), E. Papalexakis (CMU), Tutorial ICASSP 2014, Florence, Italy

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks University of Crete, Computer Science Department
Computer Science Department
Computer Science

DSGD for Matrix Factorization

Material from: N. Sidiropoulos (UMN), E. Papalexakis (CMU), Tutorial ICASSP 2014, Florence, Italy

Spring Semester 2017-2018 (CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

DSGD for Matrix Factorization

Partition your data & model into *d × d* blocks

Results in *d=3* strata Process strata sequentially, process blocks in each stratum in parallel

Spring Semester 2017-2018 $\left(\left(\begin{matrix} 0 & 0 \\ 0 & 1 \end{matrix}\right)\begin{matrix} 0 & 0 \end{matrix}\right)$ CS-541 Wireless Sensor Networks $\left(\begin{matrix} 0 & 0 \end{matrix}\right)$ University of Crete, Computer Science Department

Tensor Decomposition

Spring Semester 2017-2018 (TOWSE) CS-541 Wireless Sensor Networks
34 CS-541 Wireless Sensor Networks University of Crete, Computer Science Department

Distributed Machine Learning

Model Parallel Models

- 1. Partition the model into multiple local workers
- 2. For every sample, local workers collaborate to perform optimization

Parameter Server

• Single Machine Parallel

UpdateVar(i) { $old = y[i]$ $delta = f(old)$ $y[i]$ += delta }

• Distributed with PS

UpdateVar(i) { $old = PS.read(y, i)$ $delta = f(old)$ PS.inc(y,i,delta) }

• Examples: Petuum, MXNet, TensorFlow, etc

Distributed Machine Learning Architectures

- Support hybrid parallelism and fine-grained parallelization, particularly for deep learning
- Good balance between highlevel abstraction and low-level flexibility in implementation

Spark

Resilient distributed datasets (RDD)

• Programming language with distributed collection data-structure

Distributed learning on Spark

MLlib

- classification: logistic regression, linear SVM, naïve Bayes, least squares, classification tree
- regression: generalized linear models (GLMs), regression tree
- collaborative filtering: alternating least squares (ALS), non-negative matrix factorization (NMF)
- clustering: k-means|| decomposition: SVD, PCA optimization: stochastic gradient descent, L-BFGS

Petuum

The difference between data and model parallelism:

- data samples are always conditionally independent given the model
- Some model parameters that are not independent of each other.

Petuum

A parameter server: allows access to global model state from any machine via distributed shared-memory interface

A scheduler allows fine-grained control over the parallel ordering of model-parallel updates

TensorFlow

- TensorFlow is a deep learning library recently open-sourced by Google.
- But what does it actually do?
	- TensorFlow provides primitives for defining functions on tensors and automatically computing their derivatives.
- Computation graph

$$
h = ReLU(Wx + b)
$$

TensorFlow

- In TensorFlow computation <-> Graphs.
	- Each node is an operation (op).
- Data is represented a Tensors.
	- Op takes Tensors and returns Tensors.
- Variables maintain state across executions of the graph.
- Two phases in the program:
	- Construct the computation graph.
	- Executes a graph in the context of a Session.

A multimodal bike-sensing setup for automatic geo-annotation of terrain types

A multimodal bike-sensing setup for automatic geo-annotation of terrain types

University of Crete, Computer Science Department
University of Crete, Computer Science Department

Distributed Deep Learning

WSN to space

• Federated satellite architectures

The CubeSat space platforms

CS-541 Wireless Sensor Networks University of Crete, THE COMPUTER SERVICES SERVICES OF THE COMPUTER SCIENCE OF COMPUTER SCIENCE AND ASSESSMENT OF THE COMPUTER SCIENCE OF COMPUTER SCIENCE AND 48

The CubeSat space platforms

- Dimensioning
	- 1U: 10x10x10cm, 1Kg
	- 2U, 3U: 10x10x10:20/30, 2/3 Kg
- Applications

CS-541 Wireless Sensor Networks University of Crete, Computer Science Department 49

Deployment architectures

Key objectives

• **Objective 1 – Computational remote sensing.**

• minimize acquisition time, complexity of the sensor, removing mechanical components and replacing them with electronic ones, along with sophisticated computational methods.

• **Objective 2 – On-board payload data processing.**

- optimally exploit and utilize heterogeneous processing units
- low-level processing and high-level analysis of the acquired data.

• **Objective 3 – On-board compression and storage.**

• high-capacity on-board COTS memory modules + mathematical tools -> maximizing the utilization of on-board storage

• **Objective 4 – Flexible high-rate communications.**

- low-power high-rate space communication links.
- low-latency direct and relay links for inter-satellite links and between satellites and ground stations.

• **Objective 5 – Distributed ground station networks.**

- low-cost hardware components
- reduce the complexity and latency of data reception and high-level data understanding

Case studies

Reading List

Zhang Y, Li W, Zhou P, Yang J, Shi X. Big Sensor Data: A Survey. In International Conference on Internet and Distributed Computing Systems 2016 Sep 28 (pp. 155-166). Springer International Publishing.

